
Transaction Generator 2 Tutorial

Updated: September 15, 2010
Esko Pekkarinen

Department of Computer Systems
Tampere University of Technology

Contents

1 GETTING STARTED 1
1.1 Introduction . 1
1.2 TG package and compilation . 1
1.3 Application XML source file . 2

2 MODELING THE APPLICATION 3
2.1 Application . 3

2.1.1 Events . 3
2.1.2 Tasks . 4
2.1.3 Task connections . 8

3 MODELING THE PLATFORM 9
3.1 Platform . 9

3.1.1 Resources . 9
3.1.2 NoC . 10

3.2 Mapping . 11

4 CONSTRAINTS 12

5 SIMULATION 14

6 SIMULATION WITH EXECUTION MONITOR 16
6.1 Setup . 16
6.2 Simulation . 16

7 CONCLUSIONS 19

1 GETTING STARTED 1

1 GETTING STARTED

1.1 Introduction

Transaction Generator 2 is a SystemC based benchmarking tool for network-on-chips [1]. It can be used
to simulate abstract models and platforms described in RTL or higher levels of abstraction and collect
various statistics about system performance. The system model is divided into three separate segments
as shown in figure 1. Refer to [2] for more information on application modelling and network-on-chip
benchmarking.

Computation Architecture
 Highly abstracted including

characteristic parameters

Application
 Process network
 Separation of

computation and
communication

Communication Architecture
 Network model is cycle-accurate

or event-accurate with time
estimation

Network model

A

C

E

B

F

PE0 PE1 PE2 PE3

28

30

20

25

4

8
D

Legend:

Mapping
 Defines where tasks are

executed

IV VIIIIII

Task

Group

Processing element (PE)

Inter-task transfer

Mapping/grouping

Initialization event

Tr
an

sa
ct

io
n

 G
en

er
at

o
r

Figure 1: Conceptual view of Transaction Generator

This tutorial introduces the usage of Transaction Generator 2 and Execution Monitor [3] by demonstrating
some of their properties. It should take less than two hours to complete. The example system is a basic
2x2 mesh with four identical processing elements (PEs) executing a simple application.

1.2 TG package and compilation

If Transaction Generator 2 (TG) is already installed on your computer, proceed to section 1.3.

The Transaction Generator 2 package includes the source codes for the simulator program and scripts for
compilation. Before proceeding, make sure your computer has the following tools and libraries.

Tool Purpose Notes
Make Compilation and simulation automation Tested with version 3.80
gcc Compilation Tested with version 3.4.3
Boost c++ libraries TG implementation At least version 1.42.0 is needed.
SystemC HW description in C++ Tested with version 2.2.0
OSCI TLM 2.0 TLM extension for SystemC Tested with version 2.0.1

Start by entering the directory TG is extracted to.

$ cd /path -to -tg/

The directory contains the following files and directories.

1 GETTING STARTED 2

bin/ Location for executables
COPYING GNU General Public License
COPYING.LESSER GNU Lesser General Public License
examples/ Example XML models
execution monitor/ Execution Monitor source files
hw lib/ Network-on-Chip hardware models

adapters/ Example OSCI TLM adapter
fifo/ Fifos used by Mesh 2D
mesh 2d/ Mesh 2D NoC models
noc factory/ Source code to modify for adding NoC models
packet codec/ Packet codec used by Mesh 2D
simple bus/ Simplified OSCI TLM shared bus model

java tool installer/ Java libraries for Execution Monitor
lib/ Support libraries for executables
Makefile Main makefile
Makefile.env.tmp Template for environment depended variables for Makefile
README Project info and known error messages
scripts/ Auxiliary scripts
transaction generator 2/ Main simulator source files
work libs/ Working directory for Modelsim

Before the compilation certain enviroment specific changes must be applied for the scripts to function
properly. Rename or copy Makefile.env.tmp as Makefile.env.

$ cp Makefile.env.tmp Makefile.env

Open Makefile.env using a text editor, for example Emacs.

$ emacs Makefile.env

Edit the paths on the following lines to match your directory structure. Note that the paths should be
relative to the location of Makefile.env.

BOOST_INC = ???/ boost_1_42_0/include

BOOST_LIBS = ???/ boost_1_42_0/lib

TLM_INC = ???/tlm -2009 -07 -15/ include/tlm

SC_INC = ???/ systemC/include

Now compile the simulator program using make. This might take a few minutes.

$ make

sctg (or sctg.exe) simulator executable is now ready in the working directory. It is needed later for the
simulation.

1.3 Application XML source file

The application and the platform network-on-chip (NoC) are described in an XML file which is auto-
matically parsed by the TG before running. Another XML file defines the properties of the processing
elements. The application XML consists of the following sections: application, mapping, platform and
constraints.

Application describes the load of computational tasks and communications which mapping assingns
to hardware for execution. Platform describes the network along with its hardware resources. Finally,
constraints specify the simulation and statistics parameters for TG. An example source file is explained
in sections 2, 3 and 4. Sections 5 and 6 describe how to run the simulation and view the statistics.

The complete XML documentation [4] is available at NocBench project’s web site:
http://www.tkt.cs.tut.fi/research/nocbench/

2 MODELING THE APPLICATION 3

2 MODELING THE APPLICATION

2.1 Application

The application section defines the computational and communicational behavior of the system which
is generated using tasks and events. Kahn process networks can be used to visualize the functionality,
although TG enables also more versatile and detailed modeling.

The example application of this tutorial is presented in figure 2. It has 4 tasks that model the computation
performed by the PEs. Arrows denote the communication between them. When a task receives a data
token, it starts ”computation” and after that it emits tokens to others. The start and end points of the
arrows are here referred to as ports.

1

Legend:

Task

Event

Inter-task data transfer

2

3 4

Figure 2: The process network of the example application

2.1.1 Events

Events are used to model the simulus from the environment. They generate and send data tokens to
tasks via unidirectional ports. The tokens received by tasks activate the functionality in the recipient
task whereas events are time based. An activated event sends a fixed number of bytes to the given output
port. The starting time of the first transmission (offset) is by default zero, but can be easily adjusted.
At least one event is required to start the application. The list of events in our example application is
given below.

Listing 1: Events in the example

<event_list >

<!-- 1. event -->

<event name="ActivateSendOnce"

id="1"

amount="8"

count="1"

offset="0.050"

prob="1.0"

out_port_id="70" />

<!-- 2. event -->

<event name="ActivateSendPeriodically"

id="2"

amount="1"

count="25"

period="0.004"

prob="1.0"

out_port_id="80" />

</event_list >

2 MODELING THE APPLICATION 4

The first event is used to activate a single task once. 50 ms (=0.050 s) after the start of the simulation
it sends 8 bytes to port 70 triggering task ”SendOnce”. Since the amount of transmissions is only one,
it’s unnecessary (yet, possible) to define the period between transmissions.

The second event activates another task every 4 ms by sending 1 byte to port 80. After 25 transmissions
the event stays idle for the rest of the simulation. If the transmission count isn’t defined, the event will
send unlimited times by default.

2.1.2 Tasks

Tasks are the primary method for modeling the computational load and the amount of communication.
They activate on the incoming data token sent by events or other tasks according to their trigger condition.
Every task has at least one trigger which reacts to data in certain port(s) and then executes computational
operations and/or sends data to another task(s). ”Computation” is implemented simply by waiting for
a certain period of time.

The tasks in the example application are described next. The tasks are created so that they demon-
strate the most common usage possibilites.

Listing 2: Task 1: very simple task

<!-- 1.task -->

<task name="SendOnce" id="1" class="general">

<in_port id="11"/>

<out_port id="10"/>

<trigger >

<in_port id="11"/>

<exec_count >

<op_count >

<int_ops >

<polynomial >

<param value="1500000" exp="0"/>

</polynomial >

</int_ops >

</op_count >

<send out_id="10" prob="1">

<byte_amount >

<polynomial >

<param value="1024" exp="0"/>

</polynomial >

</byte_amount >

</send >

<next_state value="READY"/>

</exec_count >

</trigger >

</task >

The first task is activated when a data token arrives in port 11. After executing 1500000 integer operations
it send 1024 bytes to port 10. The ports will be connected to other tasks later.

2 MODELING THE APPLICATION 5

Listing 3: Task 2 introduces memory operations

<!-- 2.task -->

<task name="SendPeriodically" id="2" class="general">

<in_port id="21"/>

<out_port id="20"/>

<trigger >

<in_port id="21"/>

<exec_count >

<op_count >

<mem_ops >

<polynomial >

<param value="3000" exp="0"/>

</polynomial >

</mem_ops >

</op_count >

<send out_id="20" prob="1">

<byte_amount >

<polynomial >

<param value="16" exp="0"/>

</polynomial >

</byte_amount >

</send >

<next_state value="READY"/>

</exec_count >

</trigger >

</task >

Tasks can execute three different types of operations: integer, floating point and memory operations.
The second tasks executes 3000 memory operations every time it receives a data token in port 21. After
the execution, it sends 16 bytes is to port 20.

2 MODELING THE APPLICATION 6

Listing 4: Task 3 with polynomial data amount and multiple triggers

<!-- 3.task -->

<task name="ForwardData" id="3" class="general">

<in_port id="31"/>

<in_port id="32"/>

<in_port id="33"/>

<out_port id="30"/>

<trigger >

<in_port id="32"/>

<exec_count >

<op_count >

<int_ops >

<polynomial >

<param value="16284" exp="0"/>

</polynomial >

</int_ops >

</op_count >

<send out_id="30" prob="1">

<byte_amount >

<polynomial >

<param value="4" exp="1"/>

</polynomial >

</byte_amount >

</send >

<next_state value="READY"/>

</exec_count >

</trigger >

<trigger dependence_type="and">

<in_port id="31"/>

<in_port id="32"/>

<exec_count >

<op_count >

<int_ops >

<polynomial >

<param value="16384" exp="0"/>

</polynomial >

</int_ops >

</op_count >

<send out_id="30" prob="1">

<byte_amount >

<polynomial >

<param value="512" exp="0"/>

</polynomial >

</byte_amount >

</send >

<next_state value="READY"/>

</exec_count >

</trigger >

</task >

Tasks can contain more than one input or output ports and multiple triggers can be defined for a single
task. Task 3 has three input ports, one output port and two separate triggers. The first trigger is similar
to the previous except that it sends out a number of bytes relative to the received bytes. In this case
data arrives from the second task. Hence, 16 bytes arrive every 4 ms and 4*16=64 bytes is sent after
16384 integer operations have been completed.

The second trigger is activated when data has been received in both ports 31 and 32. Since port 31
receives data from the first task, this trigger is activated only once during the simulation. Data arriving
in port 32 naturally activates the upper trigger as well.

2 MODELING THE APPLICATION 7

Listing 5: Task 4 with differing functionality and distributional data amounts

<!-- 4.task -->

<task name="DataProcessing" id="4" class="general">

<in_port id="41"/>

<out_port id="40"/>

<trigger >

<in_port id="41"/>

<exec_count mod_phase="0" mod_period="2">

<op_count >

<float_ops >

<distribution >

<uniform min="16384" max="32769"/>

</distribution >

</float_ops >

<mem_ops >

<polynomial >

<param value="1500" exp="0"/>

</polynomial >

</mem_ops >

</op_count >

<next_state value="READY"/>

<send out_id="40">

<byte_amount >

<polynomial >

<param value="16" exp="0"/>

</polynomial >

</byte_amount >

</send >

</exec_count >

<exec_count mod_phase="1" mod_period="2">

<op_count >

<float_ops >

<distribution >

<uniform min="1200" max="2600"/>

</distribution >

</float_ops >

</op_count >

<next_state value="READY"/>

<send out_id="40">

<byte_amount >

<polynomial >

<param value="8" exp="0"/>

</polynomial >

</byte_amount >

</send >

</exec_count >

</trigger >

</task >

The functionality of a trigger can also vary according to how many times it has already been executed.
This is set by the <exec count> tag. In previous tasks no attributes are given and hence every time
similar execution begins. In task 4 there are two variations to the execution. A modulo operation selects
which one is executed. In addition, the number of operations is partially randomized.

When the number of trigger activations is even, a random number of floating point operations followed
by 1500 memory operations are executed before sending 16 bytes to port 40. The number of floating
point operations is a random number between 16384 and 32769 with uniform distribution. When the
number of trigger activations is odd, a smaller amount of floating point operations are executed and only
8 bytes are sent.

2 MODELING THE APPLICATION 8

2.1.3 Task connections

Finally, the tasks and events are connected by their individual ports. Port id numbers can be chosen
freely, but each number must be unique. In this example every task has exactly one output port. Task
3 has three input ports, whereas the others have only one.

Listing 6: Task conncections

<!-- Connect the task and event ports -->

<!-- 1.event to 1.task -->

<task_connection src="70" dst="11"/>

<!-- 2.event to 2.task -->

<task_connection src="80" dst="21"/>

<!-- 1.task to 3.task -->

<task_connection src="10" dst="31"/>

<!-- 2.task to 3.task -->

<task_connection src="20" dst="32"/>

<!-- 3.task to 4.task -->

<task_connection src="30" dst="41"/>0

<!-- 4.task back to 3.task -->

<task_connection src="40" dst="33"/>

3 MODELING THE PLATFORM 9

3 MODELING THE PLATFORM

3.1 Platform

This section defines the PEs, the NoC and assigns the tasks of the application to separate PEs for
execution.

3.1.1 Resources

This segment specifies the used PEs and some of their properties. Most of the PE’s attributes are defined
in the processing element library file which is selected in the constraints section. However, in order to
enable unambiguous mapping, a type, name and an id must be given to each PE. The type has to match
a defined type in the PE library.

Listing 7: Resources

<resource_list >

<resource id="0" name="cpu1" frequency="20"

type="CPU_TYPE_2" packet_size="16">

<port terminal="0"/>

</resource >

<resource id="1" name="cpu2" frequency="20"

type="CPU_TYPE_2" packet_size="16">

<port terminal="1"/>

</resource >

<resource id="2" name="cpu3" frequency="20"

type="CPU_TYPE_2" packet_size="16">

<port terminal="2"/>

</resource >

<resource id="3" name="cpu4" frequency="20"

type="CPU_TYPE_2" packet_size="16">

<port terminal="3"/>

</resource >

</resource_list >

As you can see, our example system has four identical CPUs running at 20 MHz frequency. According
to the PE library file, they are capable of executing 3 integer operations, 1 floating point operation,
or 1 memory operation per clock cycle. Also an optional parameter for packet size has been defined.
Therefore, any data transfer longer than 16 bytes is divided into smaller packets.

3 MODELING THE PLATFORM 10

3.1.2 NoC

The platform network is a 2D-mesh which requires one router for each PE. The routers are defined in
this section and connected to the CPUs specified in the previous section.

Listing 8: Noc

<noc class="mesh_2d" type="sc_rtl_1" subtype="2x2">

<router_list >

<router width="32" id="0" name="mesh_r1" frequency="50" type="mesh_router">

<port name="mesh_p1" id="0" type="ptk_if" address="0x00000000"/>

</router >

<router width="32" id="1" name="mesh_r2" frequency="50" type="mesh_router">

<port name="mesh_p2" id="1" type="ptk_if" address="0x00000001"/>

</router >

<router width="32" id="2" name="mesh_r3" frequency="50" type="mesh_router">

<port name="mesh_p3" id="2" type="ptk_if" address="0x00010000"/>

</router >

<router width="32" id="3" name="mesh_r4" frequency="50" type="mesh_router">

<port name="mesh_p4" id="3" type="ptk_if" address="0x00010001"/>

</router >

</router_list >

<terminal_list >

<connection port="0" router="0" name="mesh_p" id="0"/>

<connection port="1" router="1" name="mesh_p" id="1"/>

<connection port="2" router="2" name="mesh_p" id="2"/>

<connection port="3" router="3" name="mesh_p" id="3"/>

<network_interface type="mesh_if"/>

</terminal_list >

</noc >

The type of the network determines which network model TG will use for the simulation. Router data
widths and addresses must be defined for the simulation to run properly. For our example mesh the first
four hexes of the address define the row number and the last four hexes the column number. Terminal
list connects the router ports by id to the PE ports identified by the terminal number. The frequency of
the network is set to 50 MHz.

3 MODELING THE PLATFORM 11

3.2 Mapping

Finally, the individual tasks can be assigned for the CPUs.

Listing 9: Mapping

<mapping >

<resource name="cpu1" id="0">

<group name="g1" id="0">

<!-- Assing task 1 to cpu1 -->

<task name="SendOnce" id="1"/>

</group >

</resource >

<resource name="cpu2" id="1">

<group name="g2" id="1">

<!-- Assing task 2 to cpu2 -->

<task name="SendPeriodically" id="2"/>

</group >

</resource >

<resource name="cpu3" id="2">

<group name="g3" id="2">

<!-- Assing task 3 to cpu3 -->

<task name="ForwardData" id="3"/>

</group >

</resource >

<resource name="cpu4" id="3">

<group name="g4" id="3">

<!-- Assing task 4 to cpu4 -->

<task name="DataProcessing" id="4"/>

</group >

</resource >

</mapping >

The example maps one task for each CPU based on their id number.

4 CONSTRAINTS 12

4 CONSTRAINTS

All the settings for the simulation are specified in the constraints section.

Listing 10: Constraints

<constraints >

<rng_seed value="42"/>

<sim_resolution time="1.0" unit="fs"/>

<sim_length time="100.0" unit="ms"/>

<measurements time="2.0" unit="ms"/>

<pe_lib file="examples/pe_lib.xml"/>

<log_exec_mon file="log_execmon.txt"/>

<log_token file="log_token.txt"/>

<log_summary file="log_summary.txt"/>

<log_pe file="log_pe.txt"/>

<log_app file="log_app.txt"/>

<cost_function func="ec_1"/>

<cost_function func="ec_2"/>

<cost_function func="tc_1"/>

<cost_function func="tc_2"/>

<cost_function func="tc_3"/>

<cost_function func="tc_4"/>

<cost_function func="tc_tot"/>

<cost_function func="pf_0"/>

<cost_function func="pu_0 *100"/>

<cost_function func="pf_1"/>

<cost_function func="pu_1 *100"/>

<cost_function func="pf_2"/>

<cost_function func="pu_2 *100"/>

<cost_function func="pf_3"/>

<cost_function func="pu_3 *100"/>

<cost_function func="pu_avg *100"/>

<cost_function func="lat_20_32_avg"/>

</constraints >

The seed for random number generators, the log files as well as the simulation length and the interval
between snapshots can be adjusted. If the log files aren’t defined, TG will skip the log writing process.
The file containing the PE attributes is also defined here, although the PEs are already defined in the
platform section.

During the simulation performance statistics is gathered by TG. Cost functions are used to view the
desired values after the simulation has been completed. The functions of the example along with their
explanations are listed on the following page.

4 CONSTRAINTS 13

Cost function Description
ec 1 Total times event 1, ActivateSendOnce, has happened
ec 2 Total times event 2, ActivateSendPeriodically, has happened
tc 1 Total times task 1, SendOnce, has been triggered
tc 2 Total times task 2, SendPeriodically, has been triggered
tc 3 Total times task 3, ForwardData, has been triggered
tc 4 Total times task 4, DataProcessing, has been triggered
tc tot Total times all tasks have been triggered
pf 0 Frequency of PE with id 0, cpu1, MHz
pu 0*100 Average utilization percentage of PE with id 0, cpu1
pf 1 Frequency of PE with id 1, cpu2, MHz
pu 1*100 Average utilization percentage of PE with id 1, cpu2
pf 2 Frequency of PE with id 2, cpu3, MHz
pu 2*100 Average utilization percentage of PE with id 2, cpu3
pf 3 Frequency of PE with id 3, cpu4, MHz
pu 3*100 Average utilization pertcentage of PE with id 3, cpu4
pu avg*100 Average utilization percentage of all PEs
lat 20 32 avg Average latency for a token transfer from task 2 to task 3

5 SIMULATION 14

5 SIMULATION

Now we’re ready for the actual simulation. Start the simulation simply by invoking the sctg with the
example XML file as a parameter.

$./sctg -i examples/tutorial.xml

The resulting print should match the following.

Transaction Generator 2

input -file: examples/tutorial.xml

Delay for playback: 1ms

Directory to save logs: .

cpu1: int (3) float (1) mem (1)

cpu2: int (3) float (1) mem (1)

cpu3: int (3) float (1) mem (1)

cpu4: int (3) float (1) mem (1)

Task SendOnce mapped to PE cpu1

Task SendPeriodically mapped to PE cpu2

Task ForwardData mapped to PE cpu3

Task DataProcessing mapped to PE cpu4

PE cpu1 mapped to event 1

PE cpu2 mapped to event 2

Found address 0x0 for PE cpu1 (terminal :0 router :0 port :0)

Found address 0x1 for PE cpu2 (terminal :1 router :1 port :1)

Found address 0x10000 for PE cpu3 (terminal :2 router :2 port :2)

Found address 0x10001 for PE cpu4 (terminal :3 router :3 port :3)

Starting simulation with seed 42

Measuring statistics with 2 ms interval

Measuring. Current simulation time is 2 ms

Measuring. Current simulation time is 4 ms

Measuring. Current simulation time is 6 ms

.

.

.

Measuring. Current simulation time is 96 ms

Measuring. Current simulation time is 98 ms

Measuring. Current simulation time is 100 ms

Simulation ends at 100 ms

Cost 1 ; 1 ; "ec_1"

Cost 2 ; 25 ; "ec_2"

Cost 3 ; 1 ; "tc_1"

Cost 4 ; 25 ; "tc_2"

Cost 5 ; 26 ; "tc_3"

Cost 6 ; 26 ; "tc_4"

Cost 7 ; 78 ; "tc_tot"

Cost 8 ; 20 ; "pf_0"

Cost 9 ; 25 ; "pu_0 *100"

Cost 10 ; 20 ; "pf_1"

Cost 11 ; 3.75 ; "pu_1 *100"

Cost 12 ; 20 ; "pf_2"

Cost 13 ; 7.058050000000001 ; "pu_2 *100"

Cost 14 ; 20 ; "pf_3"

Cost 15 ; 18.5937 ; "pu_3 *100"

Cost 16 ; 13.6004375 ; "pu_avg *100"

Cost 17 ; 4.6e-06 ; "lat_20_32_avg"

5 SIMULATION 15

At the start of the simulation TG prints information regarding the simulation, PEs, tasks, events and
routing. After that, the measurements begin. Our greatest interest is, naturally, the cost function results.

One of the assets of TG is fast and easy modification. Next, we’ll map three of the tasks to a single
CPU and see how it affects the results. Make a copy of tutorial.xml in examples directory, rename it
as tutorial 1.xml and open it using a text editor. Locate the mapping section and cut-paste the lines
containing the task assignments for CPUs 2 and 3 below the task assignment of cpu1. Save the file.

Listing 11: Modified task assignments

<resource name="cpu1" id="0">

<group name="g1" id="0">

<!-- Assing task 1 to cpu1 -->

<task name="SendOnce" id="1"/>

<task name="SendPeriodically" id="2"/>

<task name="ForwardData" id="3"/>

</group >

</resource >

Now three of the tasks are executed by cpu1. Run the simulation again using tutorial 1.xml as an input
file. The number of triggered events and tasks hasn’t changed, but the effect can be seen in the utilization
function results.

Cost 9 ; 25 ; "pu_0 *100"

Cost 11 ; 3.75 ; "pu_1 *100"

Cost 13 ; 7.058050000000001 ; "pu_2 *100"

Cost 15 ; 18.5937 ; "pu_3 *100"

Cost 16 ; 13.6004375 ; "pu_avg *100"

Make a copy of tutorial 1.xml for another modification and rename it as tutorial 2.xml. This time, we’ll
adjust the hardware by increasing the frequency of one of the CPUs. Locate the platform section and
set the frequency of cpu1 (id 0) to 45 MHz. Save the file and run the simulation. See, how the change
affects the results.

Now, cost functions aren’t the only source of TG’s information. If enabled in the XML application file,
TG will also write comprehensive log files. The most important logs are listed below.

File Information
log app.txt Task states and data buffers
log pe.txt PE utilization and HW data buffers
log summary.txt Cost function results, PE, task and event statistics

If you open log summary.txt, you’ll notice that most of our cost function results could have also been
found in this file without the use of cost functions. Therefore, we could have used cost functions to
gather more complex information and read other results, for example PE utilizations, from the log file.
An excerpt of the log is given below.

- PE cpu3 average utilization during simulation was 0.0705805

idle: 1858839 exec: 141161 total: 2000000

sent 2112 bytes

received 1736 bytes

intra tx 0 bytes (traffic between tasks)

Another easy tool for processing TG’s information is graphical Execution Monitor which is introduced
in the following section.

6 SIMULATION WITH EXECUTION MONITOR 16

6 SIMULATION WITH EXECUTION MONITOR

Execution Monitor is a Java based program for visualization of processing element utilization and simu-
lation. Although Transaction Generator 2 can be used as a stand-alone simulator, Execution Monitor is
meant to complement the information provided by TG.

6.1 Setup

Simulation with Execution Monitor requires a compiled installation of Boost’s libraries as well as the
following tools.

Java Development Kit (JDK) Tested with version 1.6.0 16
Apache Ant Tested with version 1.7.1

Modify Makefile.env again and uncomment the following lines. Values of ASIO FLAGS and ASIO LINK are
given to the compiler and depend on the used system. Refer to Boost.Asio documentation for help. The
following example values are for Windows XP with Cygwin.

USE_EXECMON = -DSCTG_USE_EXECMON

ASIO_FLAGS = -D_WIN32_WINNT =0 x0501 -D__USE_W32_SOCKETS

ASIO_LINK = -lboost_system -lws2_32

Set environment variable JAVA HOME to point JDK and install Execution Monitor by invoking make. This
will also recompile Transaction Generator 2 automatically.

6.2 Simulation

Before simulation, launch Execution Monitor.

$ bin/execution_monitor &

Load the example user interface (File->Open) using file tutorial conf.xml in the examples directory.
The window now matches figure 3.

Figure 3: Execution Monitor Control tab

Now, run the simulation again. To enable the use of Execution Monitor, simply add parameter -e.

$./sctg -e -i examples/tutorial.xml &

6 SIMULATION WITH EXECUTION MONITOR 17

TG will wait for connection from Execution Monitor. Press the reconnect button in the lower left corner
of Execution Monitor window to start the simulation. You can now observe the utilization of the CPUs
in the Control tab.

At 50 ms task 1 is activated and cpu1 begins the computation of 1500000 integer operations which
takes 25 ms to complete. The CPU then stays idle for the rest of the simulation.

Data arriving from cpu1 causes a minor deviation in cpu3 at 75 ms, but otherwise cpu2 and cpu3
operate at regular intervals according to event 2. The utilization of cpu4 differs due to the two execution
variations and the randomized number of operations in DataProcessing.

Next, open the Computation tab (figure 4). It shows the execution statistics. If all the CPUs run at the
same frequency as the do in the example, it’s quite easy to balance the computational load by assigning
equal amount of execution cycles to the CPUs. Of course, the dependencies between the tasks must be
considered as well. However, system balance is peripheral in this example.

Figure 4: Computation tab

Have a look at the other tabs. Processes shows simulation statistics by task and Signals the amount of
data transferred between the tasks. The Charts tab isn’t used in the example.

Next, simulate tutorial 1.xml and tutorial 2.xml with Execution Monitor and observe the different tabs
during the run. An example of Control tab is given in figure 5.

Figure 5: Example CPU utilizations

6 SIMULATION WITH EXECUTION MONITOR 18

You’ll notice, how SendOnce uses all the computation capacity of cpu1 after 50 ms, blocking the other
two tasks on the CPU. This also forces cpu4 to stay idle for a long period since no token arrives from
ForwardData. Once the computation is finished the other tasks are executed for several times and data
tokens are sent to cpu4 repeatedly until all the blocked executions are processed. Figure 6 depicts the
scenario.

Figure 6: CPU1 and CPU4 utilization highlights

Althought simulation with TG reveals that all the necessary tasks are executed during the run, it cannot
detect bad mapping of the tasks. With Execution Monitor we have found a bottleneck in the example:
Assigning three tasks to cpu1 throttles the performance of the whole system.

7 CONCLUSIONS 19

7 CONCLUSIONS

The tutorial is now finished. It introduced the XML system modeling, running simulations and the use
of Execution Monitor with Transaction Generator 2. You should now know how the application and the
platform NoC is described in the XML file, how to reassign the tasks among the PEs, how to modify
the hardware of existing systems and how to simulate high abstraction level models using Transaction
Generator 2.

To learn more, see also the example real-life application provided with the TG package. It features a
video coded that encodes and decodes a QCIF sized video stream using a 2x2 mesh NoC. The application
XML file (test mesh.xml) is located in the examples directory. You can also keep experimenting with the
example application given in this tutorial.

References

[1] T. Bjerregaard and S. Mahadevan, ”A survey of research and practices of Network-on-chip”, ACM
Computing Surveys, Volume 38 , Issue 1, 2006, Article No. 1.

[2] Erno Salminen, Cristian Grecu, Timo D. Hämäläinen, Andrè Ivanov, ”Application modeling and hard-
ware description for Network-on-chip benchmarking”, IET Computers & Digital Techniques, September
1, 2009, Vol.3, Issue 5, Special issue on Network-on-chip, pp. 539-550.

[3] Kalle Holma, Tero Arpinen, Erno Salminen, Marko Hännikäinen, Timo D. Hämäläinen, ”Real-Time
Execution Monitoring on Multi-Processor System-on-Chip”, International Symposium on System-on-
Chip, Tampere, Finland, November 5-6, 2008, pp. 23-28.

[4] Lasse Lehtonen, Esko Pekkarinen, ”Transaction Generator 2 Technical”, spesification document, July
15, 2010, 70 pages

