A SystemC™ OCP
Transaction Level Communication Channel

V2.0 — December 12, 2003

Document version 1.0

Revision History

Version Date Comment

1.0 1/15/03 Initial Generic Transaction Channel

1.0.1 3/31/03 First revision for OCP 1.0 channel

1.1 7/18/03 OCP 1.0 Sideband and layer adapters included

2.0 12/12/03 Updated generic channel, and OCP data class. Added new
OCP 2.0 specific API on the generic channel.

DISCLAIMER

This OCP-IP document is provided "as is" with no warranties whatsoever, including any
warranty of merchantability, noninfringement, fitness for any particular purpose, or any
warranty otherwise arising out of any proposal, specification or sample. OCP-IP disclaims
all liability for infringement of proprietary rights, relating to use of information in this
document. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

OCP International Partnership (OCP-IP) disclaims all warranties and liability for the use of
this document and the information contained herein and assumes no responsibility for any
errors that may appear in this document, nor does OCP-IP make a commitment to update
the information contained herein.

Contact the OCP-IP office to obtain the latest revision of this document.
Questions regarding this document or membership in OCP-IP may be forwarded to:

OCP-IP

WWW.0oCpip.org

E-mail: admin@ocpip.org
Phone: +1 503-291-2560
Fax: +1 503-297-1090

OCP-IP Technical Support
techsupport@ocpip.org

All product names are trademarks, registered trademarks, or servicemarks of their
respective owners.

Copyright © 2003 OCP-I1P

Table of Contents

R 1 o [o) 5
2. Channel Structure and Class HI€raChyuuueiiiiiiiiiiiiiiiiiiiiiiiiiiiieeniieeieieeeeeneeeeeeeeeeeeeenneennes 7
3. TranSaction ChaNNEL..........uuiiiiiiii e e e e e e e e e e e e s s bbb aeeeeeean 9
3.1. OCP Specific Transaction Channel and INterfaces..........ccccoviiiiiiiiiiiiiieeee e 9
3.2. Working with Different Channel VersionS. ... 9
4. OCP Specific TLL Channel MOGElccooo oo 10
4.1. OCP TL1 Channel CONSIIUCTONciiiiiiiiiiiiiiieeee e ettt e e e e eeeaeeeas 10
4.2. OCP TL1 Specific Enum Types and Template ClasSes..........cocvvuviiiiiiieiiiiiiiiiiiieeeee e 11
4.2.1. OCPMCMATYPE ENUM ... e e e e e et e e e e e e e eeees 11
4.2.2. OCPRESPTYPE ENUM...iiiiiiiiiiiiiiie et e et e e et e e e et s e e eatn e e s eabnaaaes 12
4.2.3. OCPMBUrStSeqTyPe ENUM ... 12
4.2.4. OCPRequestGrp Template Class........ccooeeiiiiiiiiiie 13
4.2.5. OCPResponseGrp Template Classc.uciiiiiiiiieiiiiiii e 15
4.2.6. OCPDataHSGrp Template Class..........c.uuuiiiiiiiiiiiiiiiieieee et 16

4.3. TL1 Master Interface Methods (ocp_tl1_master.if.h)ccoooooii 18
G T I LT 1W< B = T - 18
4.3.2. ReSPONSE Phase.........coooiiiii 20
4.3.3. Data Handshake ... 22

4.4, OCP TL1 Slave Interface Methods (ocp_tl1_slave if.n)ccceeiiii i, 24
4.4.1. ReqUESE PhaSe.....ccoooe i 24
4.4.2. RESPONSE PRASE.....oiiiiiiiiiiiiiiei ittt e e e e eaeeas 26
4.4.3. Data Handshake ... 28

5. OCP specific TL2 Channel MOUEL............uiiiiiiiii e e e e e e e e eeaes 31
5.1. OCP TL2 Channel CONSIIUCTONoiuuiiiiiiieeee e e ittt e e e e e e st e e e e e s sibaaaeeeee e e e e aannes 31
5.2. OCP TL2 Specific Enum Types and Template classes ... 31
5.2.1. OCPMCmdType, OCPSRespType and OCPMBurstSeqType Enums 31
5.2.2. OCPRequestGrp TeEMPIAtE ClasS e eee et 31
5.2.3. OCPResponsetGrp Template CIaSsSuuiiiiieiiiiiiiiiiiiieee e 32

5.3. TL2 Master Interface Methods (ocp_tI12_master_if.h)cccooeii 32
5.3. 1. REQUESE PRASE......uuiuiiiiii et a e e e s e s s e e s s e e e e e a e e e e e naaanaaas 32
5.3.2. RESPONSE PRASE.....ciiiiiiiiiiitie ettt e e e a e 35
5.3.3. Serialized Methods. ... 36

5.4. TL2 Slave Interface Methods (ocp_tl2_master _if.n)cccccooiiiiiiiiiii e 38
5.4.1. REQUESE PRASE......uuuiiiiii e a e e e e e e s e e s e e e s s a e e s e e e e e e e n e e e e aaas 38
5.4.2. RESPONSE PRASE.....ciiiiiiiiiiiiiiei ittt e e e e e e e 40

6. Example Using OCP Specific TL1 Channel and APl ... 43
6.1. Configuring the OCP Specific TLL Channel............uuuiuuiiiiiiiiiiiiiiiies 43
6.1.1. Parameter Map FOIMALccccooiieeeeee e 43
6.1.2. Building the Parameter Map from a File...... ..o 44
6.1.3. Configurable Master and SIAVE............ccoiiiiiiiiiii e 45
6.1.4. Building a Custom Configurable COre...........ccoooiiiiiiiiiiiie e 46

6.2. A Configurable Master MOUEL. 46
0 I T T [T 47
B.2.2. CONSIIUCTON. ...ttt et et e e e et e e e e r e e e e e e e eenb e e eeeeens 51
6.2.3. The end_of_elaboration() Method............oooiiiiiiiie e 52
6.2.4. SystemC Request TNread PrOCESS.........uuiiiiiiiiiiiiiieieeee e 55
6.2.5. SystemC Response Thread PrOCESS........uuuuuuiiuiiiiii s 59
6.2.6. SystemC SidebDaNd PrOCESScooiiiiiiiiiiiiii e 61
6.2.7. Template INSTANTIALION..... ... e 62

6.3. A Configurable Slave MOEL..............oiiiiiiiic e e e e e eenes 62

©

TR0 B == T [l T[T 63

R JZ N @ 111 £ U ex (0] USSP 68
B.3.3. DBSIIUCTON ...ttt e e e e ettt et e e e e e e e et e bb e e e e aae s 69
6.3.4. The end_of elaboration() Method................uuuiiiiiiiiii e 69
6.3.5. SystemC Request TNread PrOCESS........uuiiiiiiiiiiiiiiiieice e 73
6.3.6. SystemC ResSpoNnSe Thread PrOCESScoiiiiiiiiiiiiiiiieeee et 76
6.3.7. The Sideband Thread PrOCESS i 79
6.3.8. Template INStANTIALION........uuuiee s 80
6.4. THE MAIN PrOGIAIM ...coiiiiiiiiiiiii ittt e e e e s e e e e e e e e e bbb e e e e e e e e e anneee 80
. Examples Using OCP Specific TL2 Channel and APlccoooiiiiiiiiiiii e 85
7. L EXAMPIE H L e ————— 85
7. 1.1, MASEEI SEOUEBICE ... e a e a e e e e e e e e e e n e e as 85
7.1.2. SIAVE SEOUENCE.ceiii i ittt ettt e e e e e et e e e e e e e e r et e e e e e e s reeaeeeeas 86
A = 1 0.4 0] U= 86
7.2.1. SIAVE DESCIIPLION ..ceeieeiiiiiitee ettt e e e e et e e e e e e e s eeeaaeeas 86
A7 2 /=T (= gl I 1= o T o 87

. Debugging Your Model Using SOCCREATOR® TOOISuceiiiieiiiiiiiiiiii et e e 87
. Sideband SigNalS ..o, 88
0.1, MEITOE SIONAI ...ttt e e e e e e et e e e e e e e bbb e e e e e e e e nreeees 88
S I Y] = T 0 T | - Y 89
LSRG TS L (o 0 T - | R 89
0.4, SFIAQ SIGNAL.... .t e et e e e 90
O.5. SINEITUPL SIGNAI ... e e e e e e e e e e e e e e e e e e n e e e e e e e e e e nnnnes 91
S BT o o IS [[-1 92
9.7, CONLIOIWE SIGNAIuuetiiiii e s e e s e e s e e e e e e e e annes 93
9.8. CONLIOIBUSY SIGNAL.....cciiiiiiiiiiiiii et e e e e e e e 93
S IR T] =1 U 3 o = | 94
9.10. StAtUSRA SIGNQAIeeiei e ————— 95
9.11. StAtUSBUSY SIONAL......ciiiiiiiiiiii e e e e e e 96

List of Figures
Figure 1. Generic Channel Class HIErarChy ... 7
Figure 2. OCP TL1 Specific Channel Class Hierarchy (Inherited from TL Channel Class

[1T =T (1)) TR 8
Figure 3. Master MOUEL..........ooo i, 47
FIQUre 4. SIAVE IMOUEL ...t e e e e st e e e e e e e anes 63

List of Tables

Table 1. OCPMCmdType Enum Labels and ValUes ... 11
Table 2. OCPRespType Enum Labels and Valuescoouvviiiiiiiiiiieeeci e 12
Table 3. OCPMBuUrstSeqType Enum Labels and Values............cccccoiiiiiiiiiniiiiecccnns 12
Table 4. OCPReqUESIGIP MEMDBDEI TYPES ...vviiiiieeeiiiiiiiieie et et e e e e 13
Table 5. OCPResponseGrp MemDer TYPESuuuuiii e 15
Table 6. OCPDataHSGIP MEMDBEE TYPES ...ttt 17

1. INTRODUCTION

This document describes the SystemC model of an Open Core Protocol (OCP) channel. This
model is meant for the system simulation of cores that use the OCP to connect to one another. A
System on a Chip (SOC) with processors, memory, an interconnect, and I/O devices could use
OCP channels to handle the connections between the cores.

This document covers OCP specific versions of the SystemC channel: the OCP specific channels
for Transaction Level One (TL1) and Transaction Level Two (TL2). A base generic model,
which serves as the foundation of the OCP TL1 and TL2 channels, is described in A SystemC™
Generic Transaction Level Communication Channel specification (Refer to www.systemc.org,
Contributions area for more information). The OCP specific channel models were designed with
the goals of OCP correctness and ease of use. These OCP specific models are useful for cores
that require an accurate model of the OCP channel that is close to cycle accurate. As a group, the
OCP specific commands are more powerful and mask some of the complexity of the channel.
This version of the channel would be useful for all OCP cores except those cores that require a
Generic channel interface.

This document categorizes the communication abstraction levels according to those introduced
in the white paper “SystemC™ based SoC Communication Modeling for the OCP™ Protocol.”
(You can obtain a copy of this paper at www.copip.org.) The abstraction levels are as follows:

1. Transaction Level

* Layer-3: Message Layer
Model untimed functionality
Point-point communication

* Layer-2: Transaction Layer
Model/analyze SoC architecture
Start SW development
Estimate timing

* Layer-1: Transfer Layer
Cycle true but faster than RTL
Detailed analysis, develop low-level SW

2. Pin Level
* Layer-0: Register Transfer Level

“TLx” and Layer-x are used for Transaction Level, Layer-x interchangeably. For example, the
acronym “TL1” stands for Transaction Level One.

SystemC is a C++ modeling environment designed for both cycle based and higher level
modeling of systems. This document assumes a basic understanding of the SystemC language.
For more information on SystemC, go to www.systemc.org.

The OCP is a non-proprietary, openly licensed, core-centric protocol for on-chip
communications. To use the OCP channel model correctly, the user would be well served to have
a solid understanding of the OCP protocol. The protocol is described in the Open Protocol
Specification manual, which is available at: www.ocpip.org. The chapters on “Overview,”
“Theory of Operation,” “Signals and Encoding,” and “Protocol Semantics” are essential for
understanding the OCP protocol and for using the OCP channel model.

2. CHANNEL STRUCTURE AND CLASS HIERACHY

The generic channel is a SystemC module (sc_nodul e) that uses “request/update” methods for
delta cycle delayed updates of the channel state. Figure 1 shows the internal class hierarchy for
the generic channel. The generic model contains a pointer to the type of data that moves through
the channel. In this case, the data is in the Open Core Protocol (OCP) Transaction Layer One
(TLT) format. Any type of data, even non-OCP data, can move through the generic base channel.

Virtual
sc_interface
L)
SdirectlF sc module MdirectlF
<TL1_DataCl> — <TL1_DataCl>
A 4 A
Virtual Virtual
Abstract TLslavelF Abstract TLmasterlF
<OCP_TL1_DataCl> <OCP_TL1_DataCl>

i ;

sc_prim_channel
TL_Channel
<OCP_TL1_DataCl> ?
UpdateCl

"RegEnd" "ResEnd" TS e
Method Method) | » "Update" Method ™
Process Process Process .~

: v v

OCP_TL1_DataCl ParamcCl CommcCl

<DataType, AddrType>

Figure 1. Generic Channel Class Hierarchy

The OCP Specific channels are derived from the generic base channel model. The class
hierarchy for the OCP_TL1_Channel is shown in Figure 2. The OCP_TL1_Channel adds
OCP specific commands that process requests, responses, and data handshakes with single
commands. In addition, the OCP TL1 channel is built to ensure that the timing and the behavior
of the channel is OCP-correct. Other commands in the OCP_TL1_Channel provide direct
access to the events in the channel (CommCl) as well as the commands of the OCP TL1 Data
Class.

The interfaces OCP_TL1_S| avel Fand OCP_TL1 Mast er | F provide port access to all of
the OCP specific commands. OCP specific ports for the master and slave provide OCP specific

event finders so that methods in the user’s SystemC core model may be statically sensitive
events in the channel.

Text to be
supplied TLmasterlF

TLslavelF TL_Channel by Alan K.
or Joe

A A

OCP_TL1_SlavelF OCP_TL1_MasterlF

y y A

OCP_TL1_Channel

Figure 2. OCP TL1 Specific Channel Class Hierarchy
(Inherited from TL Channel Class Hierarchy)

Like TL1, the OCP Transaction Layer Two (TL2) channel is derived from the generic base
channel model and provides OCP specific commands that process requests and responses with
single commands. The interfaces OCP_TL2_S| avel Fand OCP_TL2_Mast er | F provide
port access to all of the OCP specific commands. OCP specific ports for the master and slave
provide OCP specific event finders so that methods in the user’s SystemC core model may be
statically sensitive events in the channel.

3. TRANSACTION CHANNEL

This section describes only the OCP Specific channel with the following goal: the OCP Specific
channel is designed to fully enforce the Open Core Protocol and to be close to cycle-accurate. As
a result, the OCP Specific channel maintains a notion of time and has additional restrictions on
how and when its commands may be used.

3.1. OCP Specific Transaction Channel and Interfaces

While the base generic channel model is meant to support basic channel communication, the
OCP specific channel models are built specifically to implement the OCP. The OCP specific
channels are OCP correct and follow the definitions in the OCP standard. In addition, the OCP
models were tailored to be easy for the core writer to use while still maintaining full OCP
functionality.

3.2. Working with Different Channel Versions

Each different channel interface is meant to be a stand-alone set of commands for implementing
that particular channel model. Commands should not be mixed from multiple APIs. For example,
a core that uses the OCP-specific TL1 API should only use commands from that API.

While it is possible to mix commands from one model with another, this is strongly discouraged
because you must take great care to ensure that the model still behaves as expected. To ensure
OCP correct behavior, you should not mix commands from the OCP-specific APIs with the
generic channel commands. In particular, the generic channel’s pointer access to the internals of
the channel should be avoided. If the core writer uses the base generic class data pointer to
directly manipulate the OCP TL1 data, the channel may no longer be OCP correct.

4. OCP SPECIFIC TL1 CHANNEL MODEL

The OCP TL1 specific channel has OCP specific commands for sending and accepting OCP
requests, data, and responses. Because the channel model was designed specifically for OCP TL1
transactions, it is both easier to use and it ensures that the channel is OCP correct.

Since the OCP TL1 specific channel is built upon the base generic channel and the OCP TL1
data class, it is possible to use generic commands with the OCP TL1 channel. However, this is
strongly discouraged as doing so may lead to unexpected behavior which is out of the bounds of
the OCP protocol.

4.1. OCP TL1 Channel Constructor

The OCP TL1 channel has the following constructor:

OCP_TL1_Channel (std::string nane,
bool sync = true,
bool use event = true,
bool use default event = true,
sc trace file* vcd tf = NULL
doubl e clock_period = 1,
sc_ tinme_unit clock time unit = SC NS

ne =

std::string nonFil eNa :
f

bool runtinmeCheck = fal se)
name specifies the name of the module (channel) instance.
synch specifies whether the channel’s internal state and events are

updated synchronously (synch = true)or
asynchronously (synch = fal se). Fora TL1 specific
channel, always set synch tot r ue.

use_event specifies whether the channel’s events for the
synchronization of Mput * () and Sget * () methods as
well as Sput * () and Myet * () methods are triggered
(use_event = true)ornot(use_event = false).
For a TL1 specific channel, always set use_event to
true.

use_defaul t _event specifies whether the channel should trigger the default
event. The channel may be faster if no default event is
triggered. use_def aul t _event can be false if none of
the attached modules are sensitive to port events. For a TL1
specific channel, always set use_def aul t _event to
true.

10

ved_tf
cl ock_period
clock_tinme_unit

monFi | eName

runt i neCheck

No Longer used. Always set to NULL.
The period of the OCP Channel cycle.
The time unit of the OCP channel’s period.

The name of the file to use to output the OCP Monitor data.
If this parameter is not set then no OCP Monitor data is
recorded.

Boolean to turn the run time checker on (true) or off (false).
The run time checker provides basic debugging capability by
monitoring the number of requests and responses and
commands and command-accepts and ensuring that the
counts match.

4.2. OCP TL1 Specific Enum Types and Template Classes

The OCP TL1 commands pass requests, responses and data handshakes through as single
structures. This section describes those structures (actually template classes) as well as the Enum
types used by elements of those structures.

4.2.1. OCPMCmdType Enum

The OCCPMCnd Ty pe enumerator defines the master command names. The enumerator values are
listed in Table 1. This Enum type is defined as

Enum OCPMCmdType

Table 1. OCPMCmdType Enum Labels and Values

Label Value Description

OCP_MCMD | DLE 0 Idle command
OCP_MCMD_WR 1 Write command
OCP_MCMD_RD 2 Read command
OCP_MCMD_RDEX 3 Exclusive read command
OCP_MCMD_RDL 4 Read linked command
OCP_MCMD_WV\RNP 5 Non-posted write command
OCP_MCVD_WV\RC 6 Write conditional command

11

Label Value Description

OCP_MCVD_BCST 7 Broadcast command

4.2.2. OCPRespType Enum

The OCPSRESPTYpe enumerator defines the slave response names. The enumerator values are
listed in Table 2. This Enum type is defined as

Enum OCPSRESPType

Table 2. OCPRespType Enum Labels and Values

Label Value Description
OCP_SRESP_NULL 0 Null response
OCP_SRESP_DVA 1 Data valid/accept response
OCP_SRESP_FAI L 2 Request failed
OCP_SRESP_ERR 3 Error response

4.2.3. OCPMBurstSeqType Enum

The OCPMBuUr st SeqType enumerator defines the OCP master burst sequence types. The
enumerator values are listed in Table 3. This Enum type is defined as

Enum OCPMBur st SeqType

Table 3. OCPMBurstSeqType Enum Labels and Values

Label Value Description
OCP_MBURSTSEQ | NCR 0 Incrementing
OCP_MBURSTSEQ DFLT1 1 Custom (packed)
OCP_MBURSTSEQ WRAP 2 Wrapping
OCP_MBURSTSEQ DFLTZ2 3 Custom (not packed)
OCP_MBURSTSEQ_XOR 4 Exclusive OR
OCP_MBURSTSEQ _STRM 5 Streaming
OCP_MBURSTSEQ_UNKN 6 Unknown

12

Label Value Description

OCP_MBURSTSEQ_RESERVED 7 Reserved

4.2.4. OCPRequestGrp Template Class

The OCPRequest G p class is used for sending and receiving requests. All of signals that
make up the request group of signals are to be found here. This template class is defined as

Tenpl at e<cl ass Td, class Ta>
cl ass OCPRequest G p

4.2.4.1. Data Type and Address Type

The class template parameters Td and Ta indicate the data type and address type of the
MData and MAddr signals, respectively. By making this a template, any sized data or
address width may be supported.

4.2.4.2. Members

Some configurations of the OCP will not use all of the members in the class. In that case, the
unused members are invalid and should not be referenced or used. Table 4 lists the member
names and their data types for OCPRequest G p.

Table 4. OCPRequestGrp Member Types

Name Data Type Description

MCnd OCPMCnd Ty pe Master command

MAddr Addr Type Master address

MAddr Space unsi gned i nt Master address space

MDat a Dat aType Master data, when no data
handshake

MDat al nf o Unsi gned i nt Extra information sent with the
write data

MByt eEn unsi gned i nt Master byte enable

Mrhr eadl D unsi gned i nt Master thread identifier

MConnl d unsi gned i nt Master connection identifier

13

Name Data Type Description

MReqgl nf o unsi gned i nt Extra information sent with the
response.

MAt omi cLengt h unsi gned i nt Length of atomic burst

MBur st Lengt h unsi gned i nt Burst length

MBur st Pr eci se bool Given burst length is precise

MBur st Seq OCPMBur st SeqType Address sequence of burst

MBur st Si ngl eReq bool Burst uses single request/multiple

data protocol

MRef Last bool Last response in burst

4.2.4.3. Constructor

OCPRequest G oup(bool has_ndata = true)
OCPRequest Group(const OCPRequest Gr p& src)

The first form constructs a default OCPRequestGrp object and uses the has_ndat a
parameter to indicate whether or not there is a data handshake. The value for has_ndat a
should be true for channels without data handshaking where all data is tranmitted with the request. It
should be false for write requests when data handshaking is enabled because the data will come
through the data handshake, not the request.

The second form is the copy constructor which copies the Sr € into a new
OCPRequestGroup object.

4.2.4.4. Assignment Operator (=)

OCPRequest Gr oup& oper at or =(const OCPRequest G oup& r hs)

The assignment operator assigns one OCPRequestGroup object to another.

4.2.45. copy

voi d copy(const OCPRequest Grp& src)

Copies one OCPRequestGrp object to another.

14

4.2.5. OCPResponseGrp Template Class

The OCPResponse@ p class is used to send and receive responses with the OCP TL1 specific
channel. All of the signals that make up the response group are to be found in this class. This
template class is defined as

Tenpl at e<cl ass Td>
OCPResponseG p

4.25.1. DataType

The class template parameter Td indicates the data type of the SData signal. This allows the
response to contain any width of data. Note that the type of the response data must match the
type of request and data handshake data.

425.2. Members

Some configurations of the OCP will not use all of the members in the class. This
corresponds to the fact that some OCP implementations do not use all of the OCP signals. In
that case, the unused members are invalid and should not be referenced or used. Table 5 lists
the names and their data types of OCPResponseG p.

Table 5. OCPResponseGrp Member Types

Name Type Description

SResp OCPSRespType Slave response

SDat a Dat aType Data returned by slave

SThr eadl D unsi gned i nt Slave thread identifier

SDat al nf o unsi gned i nt Extra information sent with the

response data.

SRespl nf o unsi gned i nt Extra information sent out with
the response.

SResplLast bool Last response in burst

15

4.2.5.3. Constructor

OCPResponseG p(voi d)

OCPResponseG p(const OCPResponseG p& src)

The first form constructs a default OCPResponseGrp object. The second form is the copy

constructor which copies the Sr ¢ into a new OCPResponseGrp object.

4.25.4. Assignment Operator (=)

OCPResponseG p& oper at or =(const OCPResponseG p& rhs)

The assignment operator assigns one OCPResponse@ p object to another.

4.255. copy

voi d copy(const OCPResponseG p& src)

Copies one OCPResponse@ p object to another.

4.2.6. OCPDataHSGrp Template Class

The OCPDat aHs G p class is a structure used to send and receive data handshake data. All of
the OCP signals that make up the data group are to be found in this class. This template class is
defined as

Tenpl at e<cl ass Td>
Cl ass OCPDat aHSG' p

4.2.6.1. Data Type

The class template parameter Td indicates the data type of the MDat a signal. For instance, it
canbe i nt or unsi gned | ong to represent a data width of up to 32 bits and 64 bits,
respectively. Note that the data type used for the Dat aHSG' p should match the data type
used for the request and response group.

4.2.6.2. Members

Some configurations of the OCP will not use all of the members in the class. This is due to
the fact that not every OCP configuration uses all of the OCP signals. In that case, the unused
fields are invalid and should not be referenced or used. Table 6 lists the member names and
their data types of OCPDat aHSgr p.

16

Table 6. OCPDataHSGrp Member Types

Name Type Description

MDat a Dat aType The master data being sent to the slave
MDat aThr eadl D unsi gned i nt The thread identifier for the write data
MDat aByt eEn unsi gned i nt The data byte enable field

MDat al nf o unsi gned i nt The data info field.

MDat aLast bool Is this the last data transfer in a burst?
MDat aVal i d bool Synchronization bit. True when the

master places the data onto the
channel. False after the slave has
accepted the data.

4.2.6.3. Constructor

OCPDat aHSGr p(voi d)

OCPDat aHSG' p(const OCPDat aHSG p& src)

The first form constructs a default (empty) data handshake structure. The second form copies
the passed datahandshake data into the new object.

4.2.6.4. Assignment Operator (=)
OCPDat aHSG' p& oper at or =(const OCPDat aHSG p& r hs)

The assignment operator assigns one OCPDat aHSGr p object to another.

4.2.6.5. copy
voi d copy(const OCPDat aHsG p& src)

Copies one OCPDat aHSGr p object to another.

17

4.3. TL1 Master Interface Methods (ocp_tl1_master.if.h)

The methods described in this section handle the OCP TL1 master’s transaction request phase,
response phase, and data handshake.

4.3.1. Request Phase

This section describes the methods for the master’s TL1 request phase.

bool get SBusy() const
Purpose: Used to check whether a new request can be placed on the channel.

Return: Returns true if the channel is free for a new request. get SBusy()
returns false if there was already a request accepted in this cycle, if there
was a previous request still on the channel waiting to be accepted, or if
there is a new request on the channel. This function does not check the
threadbusy signal (if any). See also get SThr eadBusy/() .

Events: No event.

bool start OCPRequest (
const OCPRequest G p<Td, Ta>& newRequest)

Purpose: Places the passed request onto the channel.

Return: Returns false if there is another request in progress or about to start or if
the slave is busy.

bool start OCPRequest Bl ocki ng(
const OCPRequest G p<Td, Ta>& newRequest)

Purpose: Waits until the channel is free for a new request and then starts the passed
request on the channel. st ar t OCCPRequest Bl ocki ng() returns once
the request has started but before the slave has accepted the request.

Return: Returns false if there is already a blocking request waiting to be sent, or if
the request could not be sent.

18

bool get SCrdAccept () const

Purpose:

Return:

unsi gned i

Purpose:

Return:

sc_event &

Purpose:

Return:

sc_event &
Purpose:

Return:

Returns the current value of the SCrdAccept signal.

Returns true if the current command was accepted. Returns false if the
current command has not been accepted, or if there is no current
command.

nt get SThreadBusy() const

Returns the current value of the SThreadBusy signal in the channel.

The unsi gned i nt returned contains the SThreadBusy signals for
each of the threads in the channel. If a bit is “1” then that thread is busy.

Request St art Event ()

This event is triggered when a new request has been placed on the
channel. A slave could use wait on this event so that it would restart when
a new request was available.

SystemC event.

Request EndEvent ()
This event is triggered when the request is accepted.

SystemC event.

voi d wai t SCndAccept (voi d)

Purpose:

Return:

If there a current request on the channel, wai t SCndAccept () waits
until the request has been accepted by the slave. This method returns
immediately if there is no request on the channel or if that request has
already been accepted. Note that if SCmdAccept is not part of the
channel, this command will wait until request is automatically accepted by
the channel (one delta cycle after the request is submitted.)

None.

19

4.3.2. Response Phase

This section describes the methods for the master’s TL1 response phase.

bool get OCPResponse(OCPResponseG p<Td>& nyResponse,

Purpose:

Return:

bool accept Response = fal se)
[/ Proposed for 1.0.2

If there is an unread response available on the channel, the response is
read and returned as myResponse. And if accept Response is true,
put MRespAccept () is called. Note that if MRespAccept is not part
of the OCP channel, the response is always automatically accepted, and
the value of the accept Response parameter is ignored.

Returns false if there is no response available or if the response has
already been read by a get Response command or if there is a
get ResponseBl ocki ng command in progress.

bool get OCPResponseBl ocki ng(OCPResponseG p<Td>& myResponse,

Purpose:

Return:

bool accept Response = fal se)

Waits for a new, unread response to become available on the channel. The
response is then read and returned as myResponse. And if

accept Response is true, put MRespAccept () is called. Note that if
MRespAccept is not part of the OCP channel, the response is always
automatically accepted, and the value of the parameter

accept Response is ignored. .

Returns false if there is already another get ResponseBl ocki ng
command in progress or if a response cannot be read.

bool put MRespAccept ()

Purpose:

Return:

Sets the MRespAccept signal in the OCP channel and releases the
response.

Returns false if there is no response to accept or if the current response has
already been accepted. Otherwise, put MRespAccept () returns true
and the response will be accepted on the next delta cycle. Note that after
the response has been accepted, the OCP channel signal SResp is then
automatically reset to “ OCP_SRESP_NULL" .

20

voi d put Mrhr eadBusy(unsi gned i nt next MThr eadBusy)

Purpose:

Return:

At the next delta cycle, the OCP signal MThreadBusy will be set to the
passed value

None.

voi d put Next MThr eadBusy()

Purpose:

Return:

sc_event &

Purpose:

Return:

sc_event &
Purpose:

Return:

Sets the value of the MThreadBusy signal at the beginning of the next
clock cycle. The thread busy value passed in here will be placed on the
channel at the very beginning of the next SystemC clock cycle, before any
thread or method processes start. This function ensures that at the next
cycle, the slave will be have this value of the MThreadBusy signal in order
to decide which response (if any) to send. Note that if this command is
called more than once in the same cycle, the value passed in the last call
will be used.

None.

ResponseSt art Event ()

This event is triggered when a new response has been placed on the
channel.

SystemC event.

ResponseEndEvent ()
This event is triggered when the response is accepted.

SystemC event.

21

4.3.3. Data Handshake

This section describes the methods for the master’s TL1 data handshake.

bool get SBusyDat aHS() const

Purpose: Used to check whether a new data handshake can be started on the
channel.
Return: Returns true if the channel is free for a new data handshake.

get SBusyDat aHS() returns false if there was already data accepted in
this cycle, if there was a previous data handshake still on the channel
waiting to be accepted, or if there is a new data handshake on the channel.
This function does not check the t hr eadbusy signal (if any). See also
get SDat aThr eadBusy/() .

Events: No event.

bool start OCPDat aHS(const OCPDat aHSG p<Td>& newbDat a)

Purpose: Places the passed data onto the channel and automatically sets the OCP
signal MDataValid to true.

Return: Returns false if there is another data handshake in progress or about to
start or if the slave is busy.

bool start OCPDat aHSBI ocki ng(
const OCPDat aHSG p<Td>& newbDat a)

Purpose: Waits until the channel is free for new data and then starts the passed data
and sets the OCP signal MDataValid to true.
st art OCPDat aHSBI ocki ng() returns once the handshake has started
but before the slave has accepted the handshake.

Return: Returns false if there is already a blocking data hand shake waiting to be
sent or if the data could not be sent.

22

bool get SDat aAccept () const
Purpose: Returns the current value of the SDataAccept signal.

Return: True if the current data handshake data has been accepted by the slave.

unsi gned int get SDat aThreadBusy() const

Purpose: Returns the current value of the SDataThreadBusy signal in the channel.

Return: The unsi gned i nt returned has one bit for each thread on the channel.
If a bit is “1”, that thread is busy and no more data transfers should be sent
to that thread.

voi d wai t SDat aAccept ()
Purpose: Blocks until the current data handshake transfer is accepted by the slave.

Return: None.

sc_event & Dat aHSSt art Event ()

Purpose: This event is triggered whenever a new data handshake transfer is started
on the channel.

Return: SystemC event.

sc_event & Dat aHSEndEvent ()

Purpose: This event is triggered when the current data handshake transfer has been
accepted by the slave.

Return: SystemC event.

23

voi d wai t SDat aAccept (voi d)

Purpose:

Return:

If there a current data handshake on the channel, wai t SDat aAccept ()
waits until the data has been accepted by the slave. This method returns
immediately if there is no data handshake on the channel or if that data has
already been accepted. Note that if SDataAccept is not part of the
channel, this command will wait until the data handshake is automatically
accepted by the channel (one delta cycle after the data is submitted).

None.

4.4. OCP TL1 Slave Interface Methods (ocp_tl1_slave_if.h)

The methods described in this section handle the slave’s transaction level 1 request phase,
response phase, and data handshake.

4.4.1. Request Phase

This section describes the methods for the slave’s TL1 response phase.

bool get OCPRequest (OCPRequest G p<Td, Ta>& nyRequest,

Purpose:

Return:

bool accept Request = fal se)

If there is an unread request available on the channel, the request is read
and returned as “myRequest.” And if accept Request is true,

put SCndAccept () is called. Note that if the SCmdAccept signal is
not part of the OCP channel, the request is always automatically accepted,
and the value of the accept Request parameter is ignored.

Returns false if there is no request available or if the request has already
been read by a get Request command or if there is a
get Request Bl ocki ng command in progress.

24

bool get OCPRequest Bl ocki ng(
OCPRequest Gr p<Td, Ta>& nyRequest,
bool accept Request = fal se)

Purpose: Waits for a new, unread request to become available on the channel, then
reads the request and returns it as myRequest . If accept Request is
true then put SCrdAccept () is called to accept the request at the end of
the delta cycle. Note that this function waits only until it has the new
request. Also note that if the SCmdAccept signal is not part of the OCP
channel, the request is always automatically accepted, and the value of the
accept Request parameter is ignored.

Return: Returns false if there is already another get Request Bl ocki ng
command in progress or if a request cannot be read.

bool put SChrdAccept ()

Purpose: Sets the SCmdAccept signal in the OCP channel and “releases” the
request.
Return: Returns false if there is no request to accept or if the current request has

already been accepted. Otherwise, put SChdAccept () returns true and
the request will be accepted on the next delta cycle. Note that after the
command has been accepted, the OCP channel signal MCmd is then
automatically reset to " OCP_MCMVD_| DLE" .

voi d put SThreadBusy(unsi gned int next SThreadBusy)
Purpose: Sets the next value of the OCP signal SThreadBusy. This signal is

updated at the end of the current delta cycle.

Return: None.

25

voi d put Next SThr eadBusy/()

Purpose:

Return:

Sets the value of the SThreadBusy signal at the beginning of the next
clock cycle. The thread busy value passed in here will be placed on the
channel at the very beginning of the next SystemC clock cycle, before any
thread or method processes start. This function ensures that at the next
cycle, the master will be have this value of the SThreadBusy signal in
order to decide which request (if any) to send. Note that if this command
is called more than once in the same cycle, the value passed in the last call
will be used.

None.

4.4.2. Response Phase

This section describes the methods for the slave’s TL1 response phase.

bool start OCPResponse(

Purpose:

Return:

const OCPResponseG p<Td>& newResponse)

Places the passed response onto the channel.

Returns false if there is another response in progress or about to start or if
the master is busy.

bool start OCPResponseBl ocki ng(

Purpose:

Return:

const OCPResponseG p<Td>& newResponse)

Waits until the channel is free for a new response and then starts the
passed response on the channel. put OCPResponseBl ocki ng()
returns once the response has started but before the master has accepted
the response.

Returns false if there is already a blocking response waiting to be sent or if
the response could not be sent.

26

sc_event & Request Start Event ()

Purpose: This event is triggered when a new request has been placed on the
channel.
Return: SystemC event.

sc_event & Request EndEvent ()
Purpose: This event is triggered when the request is accepted.

Return: SystemC event.

unsi gned i nt get MrhreadBusy()

Purpose: Returns the current value of the MThreadBusy signal. This allows the
slave to determine if a thread is busy before sending a response on that
thread.

Return: The unsi gned i nt returned has one bit for each thread in the channel.

If a bit is “1”, that thread is busy.

bool get MRespAccept ()
Purpose: Check whether the master has accepted the current response.

Return: Returns true if the current response has been accepted.

sc_event & ResponseStart Event ()

Purpose: This event is triggered when a new response has been placed on the
channel.
Return: SystemC event.

sc_event & ResponseEndEvent ()
Purpose: This event is triggered when the response is accepted.

Return: SystemC event.

27

voi d wai t MRespAccept (voi d)

Purpose:

Return:

If there a current response on the channel, wai t MRespAccept () waits
until the response has been accepted by the master. This method returns
immediately if there is no response on the channel or if that response has
already been accepted. Note that if MRespAccept is not part of the
channel, this command will wait until the response is automatically
accepted by the channel (one delta cycle after the response is submitted).

None.

4.4.3. Data Handshake

This section describes the methods for the slave’s TL1 data handshake.

bool get OCPDat aHS(OCPDat aHSG p<Td>& nyDat a,

Purpose:

Return:

bool acceptData = fal se)

If there is an unread data handshake available on the channel, the data
group is read and returned as nyDat a. And if accept Dat a is true then
put SDat aAccept () is called. Note that if SDat aAccept is not part
of the OCP channel, data is always automatically accepted during the next
delta cycle, and the value of the accept Dat a parameter is ignored.

Returns false if there is no data available or if the data has already been
read by a getData command or if there is a get Dat aBl ocki ng
command in progress.

bool get OPCDat aHSBI ocki ng(OCPResponseG p<Td>& nyDat a,

Purpose:

Return:

bool acceptData = fal se)

Waits for new, unread data to become available on the channel. The data
is then read and returned as “myData.” And if accept Dat a is true then
put SDat aAccept () is called. get OPCDat aHSBI ocki ng() returns
once the data has been placed on the channel. Note that this function does
not continue to wait until the data is accepted. Also note that if the
SDataAccept signal is not part of the OCP channel, data is always
automatically accepted, and the value of the accept Dat a parameter is
ignored

Returns false if there is already another getDataBlocking command in
progress or if the data cannot be read.

28

bool put SDat aAccept ()

Purpose:

Return:

sc_event &

Purpose:

Return:

sc_event &

Purpose:

Return:

Sets the SDataAccept signal in the OCP channel and “releases” the data
hand shake.

Returns false if there is no data to accept or if the current data has already
been accepted. Otherwise, put SDat aAccept () returns true and the
data handshake will be accepted on the next delta cycle. Note that after the
data has been accepted, the OCP channel signal MDataValid is
automatically reset to false.

Dat aHSSt art Event ()

This event is notified whenever any new data handshake data is placed on
the channel.

SystemC event.

Dat aHSEndEvent ()

This event is notified when the current data handshake data is accepted by
the slave.

SystemC event.

voi d put SDat aThr eadBusy(unsi gned i nt next SDat aThr eadBusy)

Purpose:

Return:

Sets the next value of the SDataThreadBusy signal on the channel. Each
bit in the next SDat aThr eadbusy parameter represents one thread in
the channel. If a bit is “1” that means that the corresponding thread is now
busy.

No return value.

29

voi d put Next SDat aThr eadBusy()

Purpose:

Return:

Sets the value of the SDataThreadBusy signal at the beginning of the next
clock cycle. The thread busy value passed in here will be placed on the
channel at the very beginning of the next SystemC clock cycle, before any
thread or method processes start. This function ensures that at the next
cycle, the master will be have this value of the SDataThreadBusy signal in
order to decide which data handshake (if any) to send. Note that if this
command is called more than once in the same cycle, the value passed in
the last call will be used.

None.

30

5. OCP SPECIFIC TL2 CHANNEL MODEL

The OCP TL2 specific channel has OCP specific commands for sending and accepting OCP
requests and responses. Because the channel model was designed specifically for OCP TL2
transactions, it is both easier to use and it ensures that the channel is OCP correct.

Because the OCP TL2 specific channel is built upon the base generic channel and the OCP TL2
data class, it is possible to use generic commands with the OCP TL2 channel. However, this is
strongly discouraged. Doing so may lead to unexpected behavior that is out of the bounds of the
OCP protocol.

5.1. OCP TL2 Channel Constructor

The OCP TL2 channel has the following constructor:

OCP_TL2_ Channel (sc_nodul e_nane nane)

name Name of the module (channel) instance.

5.2. OCP TL2 Specific Enum Types and Template classes

The OCP TL2 commands can pass requests and responses through as single structures. This
section describes those structures (actually template classes) as well as the Enum types used by
elements of those structures. (Seet| _sc/include/ ocp_tl gl obal s.)

5.2.1. OCPMCmdType, OCPSRespType and OCPMBurstSeqType Enums

These enums are the same that are used for the OCP TL1 Specific channel. See section 4.2 “OCP
TL1 Specific Enum Types and Template Classes.”

5.2.2. OCPRequestGrp Template Class

This class is the same as for the OCP TL1 Specific channel (See section 4.2.4 “OCPRequestGrp
Template Class.” From the user’s point of view, the only difference is with the MDat a member
of the structure, which should be ignored in TL2. Users should instead use the TL2 specific
member VDat aPt r to set or get the pointer on the master data array. Note that the assignment
operator (=) and the copy () method copy the value of the pointer from one instance to another
and do not copy the array itself.

31

5.2.3. OCPResponsetGrp Template Class

This class is the same as for the OCP TL1 Specific channel. (See section 4.2.5
“OCPResponseGrp Template Class.””) From the user’s point of view, the only difference between
the classes is the SDat a member of the structure, which should be ignored in TL2. Users should
instead use the TL2 specific member SDat aPt r to set or get the pointer on the slave data array.
Note that the assignment operator (=) and the copy () method copy the value of the pointer
from one instance to another and do not copy the array itself.

5.3. TL2 Master Interface Methods (ocp_tl2_master_if.h)
The methods described in this section handle the OCP TL2 master’s transaction request phase

and response phase.

5.3.1. Request Phase

bool get SBusy ()

Purpose: Status of the slave-busy semaphore. Indicates whether the slave has
released the previous request.

Return: Immediately returns true if slave has not responded to the last request
event, and false if it has.

bool get SChdAccept ()

Purpose: Returns the current value of the SCmdAccept signal.

Return: Returns true if the current command was accepted. Returns false if the
current command has not been accepted, or if there is no current
command.

wai t SCndAccept ()

Purpose: Waits until SCmdAccept is asserted by the slave.

bool get SThreadBusyBit(unsigned int Threadl D = 0)

Return: Returns the right bit of the SThreadBusy signal corresponding to the
ThreadID.

32

bool sendOCPRequest (OCPRequest Gr p<Tdat a, Taddr >& r eq,
i nt RegqChunkLen = 1,
bool | ast _chunk _of a burst = true)

Purpose: Places the passed request on the channel. The ReqChunkLen parameter
specifies the length of the request chunk. Note that the data array pointed
by the Mlat aPt r member of the request must have its size equal to
ReqChunkLen in case of a WRITE request. The
| ast _chunk_of _a_bur st parameter indicates whether this request
chunk is the last one of a complete request burst.

Return: Returns false in the following cases:
* Another request in progress

* The channel is configured with st hr eadbusy_exact setto 1,
SThr eadBusy is tested (relatively to the MThr eadl D field of the
request), and the method returns false if the slave thread is busy.

bool start OCPRequest (OCPRequest Gr p<Tdat a, Taddr >& r eq,
i nt RegqChunkLen = 1,
bool |ast _chunk _of a burst = true)

Purpose: This function has exactly the same behaviour as ‘sendOCPRequest ’
and can be considered as an alias. Its semantic is equivalent to the TL1
API corresponding function.

bool start OCPRequest Bl ocki ng(
OCPRequest Gr p<Tdat a, Taddr >& r eq,
i nt RegqChunkLen = 1,
bool | ast_chunk _of a burst = true)

Purpose: Waits until the channel is free for a new request then starts the passed
request on the channel. This call returns once the request has started but
before the dave has accepted the request. The parameters have the same
meaning as for sendOCPRequest () .The semantic of this function is
equivalent to the TL1 API corresponding function.

Return: Returns false in the following cases:

* There is already a (send/ st art) OCPRequest Bl ocki ng waiting
to be sent

* Thereisa(send/ st art) OCPRequest call in progress

33

* Ifthe channel is configured with st hr eadbusy_exact setto 1,
SThr eadBusy is tested (relatively to the MThr eadl D field of the
request), and the method returns false if the slave thread is busy. Note
that the SThr eadBusy test occurs at the beginning of the call before
testing if the request channel is free.

bool sendOCPRequest Bl ocki ng(

Purpose:

Return:

sc_event &

Purpose:

Return:

sc_event &
Purpose:

Return:

OCPRequest G p<Tdat a, Taddr >& r eq,
i nt RegqChunkLen = 1,
bool | ast_chunk_of a burst = true)

Waits until the channel is free for a new request then starts the passed
request on the channel. This call returns once the slave has accepted the
request. The parameters have the same meaning as for
sendOCPRequest () .

Returns false in the following cases:

» There is already a (send/ st art) OCPRequest Bl ocki ng waiting
to be sent

* Thereisa(send/ st art) OCPRequest call in progress

* Ifthe channel is configured with st hr eadbusy_exact setto 1,
SThr eadBusy is tested (relatively to the MThr eadl D field of the
request), and the method returns false if the slave thread is busy. Note
that the SThr eadBusy test occurs at the beginning of the call before
testing if the request channel is free.

Request St art Event ()

This event is triggered when a new request has been placed on the
channel. A slave could use a wait on this event so that it would restart
when a new request was available.

SystemC event.

Request EndEvent ()
This event is triggered when the request is accepted.

SystemC event.

34

sc_event & SThreadBusyEvent ()
Purpose: This event is triggered when the SThreadBusy signal changes.

Return: SystemC event.

5.3.2. Response Phase

bool put MRespAccept ()

Purpose: Sets the MRespAccept signal in the OCP channel and releases the
response.
Return: Returns false if there is no response to accept. Note that after the response

has been accepted, the OCP channel signal SResp is then automatically
reset to “OCP_SRESP NULL”.

voi d put Mrhr eadBusyBi t (bool nextBit Val ue,
unsi gned i nt
Threadl D = 0)

Purpose: Sets the right bit of the MThreadBusy signal corresponding to the
ThreadID in the OCP channel.

bool get OCPResponse(OCPResponseG p<Tdat a>& resp,
bool accept,
unsi gned i nt & RespChunkLen,
bool & | ast _chunk_of _a burst)

Purpose: If there is a new, unread response is available on the channel, the response
is read and returned as “r esp” , and if accept is true,
put MRespAccept () is called. Note that if MRespAccept is not part of
the OCP channel, the response is always automatically accepted, and the
value of the accept parameter is ignored. The RespChunkLen parameter
specifies the length of the response chunk. The
Last _chunk_of _a_bur st parameter indicates if this response chunk
is the last one of a complete response burst.

Return: Returns false in the following cases:
* No response is available

* A get OCPResponse or aget OCPResponseBIl ocki ng has
already read the response.

35

* A get OCPResponseBl ocki ng command is already in progress.

bool get OCPResponseBl ocki ng(OCPResponseG p<Tdat a>& resp,

Purpose:

Return:

sc_event &

Purpose:

Return:

sc_event &
Purpose:

Return:

bool accept,
unsi gned i nt & RespChunkLen,
bool & | ast _chunk_of a burst)

Waits for a new, unread response to become available on the channel. The
response is then read and eventually accepted (depending on the accept
parameter) and returned as “ r esp” . Parameters have the same meaning
as for get OCPResponse() .

Returns false if there is already another getResponseBlocking command
in progress.

Responset St art Event ()

This event is triggered when a new response has been placed on the
channel.

SystemC event.

ResponseEndEvent ()
This event is triggered when the response is accepted.

SystemC event.

5.3.3. Serialized Methods

These methods could be used to write testbenches at the TL2 level. Serialized methods take
charge of both request and response phases of a complete OCP transaction, making testbenches
more compact and easier to code.

bool OCPReadTr ansfer (OCPRequest G p<Tdat a, Taddr >& r eq,

Purpose:

OCPResponseG p<Tdat a>& resp,
int TransferLen = 1)

Issues a blocking request call to pass r eq on the channel, waits for the
slave to release the request, then issues a blocking response call to retrieve
the response, stores it in r esp, and releases the response. The

Tr ansf er Len parameter specifies the size of the data array pointed to
by req. MDat aPtr.

36

Return:

Note:

Returns false in the following cases:

* Request Phase:

(0]

o

The MCd request field is not equal to OCP_MCVD_RD
A sendOCPRequest Bl ocki ng is already waiting to be sent
A sendOCPRequest call in progress

If the channel is configured with st hr eadbusy_exact is set
to 1, SThr eadBusy is tested (relatively to the MThr eadl D
field of the request), and the method returns false if the slave
thread is busy.

* Response Phase:

(0]

Another get OCPResponseBIl ocki ng command in progress is
already in progress.

The SRespChunkLen response field is different from

Tr ansf er Len, or the SRespChunkLast field is not equal to
true. This can happen when the slave truncates the response into
several response chunks. In this case, the user should use
sendOCPRequest ()/get OCPResponse() blocking calls
instead.

Use of this function should be avoided when the OCP channel is configured to
support several threads. Because this function gets the first response following
the request without testing the SThreadID, there is no guarantee that the
response corresponds to the ThreadID of the request.

bool OCPW it eTransfer (OCPRequest G p<Tdat a, Taddr >& req,

Purpose:

Return:

int TransferLen = 1)

Issues a WRITE request to the slave, and waits for the slave to release the
request. Tr ansf er Len specifies the size of the data array pointed to by
req. MDat aPt r . The transfer is atomic; that is,. the MReqChunkLast
parameter is set to 1.

Returns false in the following cases:

* The MCnd request field is not equal to OCP_MCMVD_WR.

* A sendOCPRequest Bl ocki ng is already waiting to be sent.

37

» A sendOCPRequest call in progress.

* Ifthe channel is configured with st hr eadbusy_exact setto 1,
SThreadBusy is tested (relatively to the MThr eadl D field of the
request), and the method returns false if the slave thread is busy.

5.4. TL2 Slave Interface Methods (ocp_tl2_master_if.h)

The methods described in this section handle the OCP TL2 slave’s transaction request phase and
response phase.

5.4.1. Request Phase

bool get OCPRequest (OCPRequest Gr p<Tdat a, Taddr >& r eq,
bool accept
i nt & ReqChunkLen,
bool & | ast _chunk_of a_ burst)

Purpose: If there is a new, unread request available on the channel, the request is
read and returned as “ r eq”, and if accept is true, put SCnmdAccept () is
called. Note that if the SCmdAccept signal is not part of the OCP
channel, the request is always automatically accepted, and the value of the
accept parameter is ignored. The ReqChunkLen parameter specifies the
length of the request chunk. The Last _chunk_of _a_bur st
parameter indicates if this request chunk is the last one of a complete
request burst.

Return: Returns false in the following cases:
* No request available

* A get OCPRequest oraget OCPRequest Bl ocki ng has
already read the request.

* A get OCPRequest Bl ocki ng command is already in progress

bool get OCPRequest Bl ocki ng(OCPRequest Gr p<Tdat a, Taddr >& r eq,
bool accept,
i nt & ReqChunkLen,
bool & | ast _chunk_of a_burst)

Purpose: Waits for a new, unread request to become available on the channel. The
request is then read, eventually accepted (depending on the accept

38

Return:

parameter), and returned as “r €q” . If not, the method returns false. The
parameters have the same meaning as for get OCPRequest () .

Returns false if there is already another get OCPRequest Bl ocki ng
command in progress.

voi d put SThreadBusyBit (bool nextBit Val ue,

Purpose:

unsigned int Threadl D = 0)

Sets the right bit of the SThreadBusy signal corresponding to the
ThreadID in the OCP channel.

bool put SChrdAccept ()

Purpose:

Return:

sc_event &

Purpose:

Return:

sc_event &
Purpose:

Return:

Sets the SCmdAccept signal in the OCP channel and releases the request.

Returns false if there is no request to accept or if the current request has
already been accepted. Note that after the command has been accepted, the
OCP channel signal MCmd is then automatically reset to

“OCP_MCMD IDLE”.

Request St art Event ()

This event is triggered when a new request has been placed on the
channel. A slave could use a wait on this event so that it would restart
when a new request was available.

SystemC event.

Request EndEvent ()
This event is triggered when the request is accepted.

SystemC event.

39

5.4.2. Response Phase

bool sendOCPResponse(OCPResponseG p<Tdat a>& resp,
i nt RespChunkLen = 1,
bool | ast_chunk_of a burst = true)

Purpose: Places the passed response onto the channel. The ReqChunkLen
parameter specifies the length of the response chunk. Note that the data
array pointed to by the Sdat aPt r member of the response must have its
size equal to ReqChunkLen. The | ast _chunk_of _a_bur st
parameter indicates if this response chunk is the last one of a complete
response burst.

Return: Returns false in the following cases:
* Another response in progress

* Ifthe channel is configured with m hr eadbusy_exact setto 1,
Mrhr eadBusy is tested, and the method returns false if the master is
busy.

bool start OCPResponse(OCPResponseG p<Tdat a>& resp,
i nt RespChunkLen = 1,
bool | ast_chunk_of a burst = true)

Purpose: This function has exactly the same behaviour as ‘sendOCPResponse’
and can be considered as an alias. Its semantic is equivalent to the TL1
API corresponding function.

bool sendOCPResponseBl ocki ng(
OCPResponseG p<Tdat a>& resp,
i nt RespChunkLen = 1,
bool | ast_chunk_of a burst = true)

Purpose: Waits until the channel is free for a new response and then starts the
passed response on the channel. sendOCPResponseBl ocki ng()
returns once the master has accepted the response. The parameters have
the same meaning as for sendOCPResponse() .

Return: Returns false in the following cases:

* A(send/start) OCPResponseBl ocki ng is already waiting to
be sent

40

* A(send/start) OCPResponse call in progress

Note: If the channel is configured with nt hr eadbusy_exact setto I,
MThreadBusy is tested and the method returns false if the master is busy. Note
that the MThreadBusy test occurs at the beginning of the call before testing if the
response channel is free.

bool start OCPResponseBl ocki ng(
OCPResponseG p<Tdat a>& resp,
i nt RespChunkLen = 1,
bool | ast_chunk_of a burst = true)

Purpose: Waits until the channel is free for a new response and then starts the
passed response on the channel. This call returns once the response has
started but befor e the master has accepted the response. The parameters
have the same meaning as for sendOCPResponse() . The semantic of
this function is equivalent to the TL1 API corresponding function.

Return: Returns false in the following cases:

* A(send/start) OCPResponseBl ocki ng is already waiting to
be sent

* A(send/start) OCPResponse call in progress

Note: If the channel is configured with mt hr eadbusy_exact setto I,
MThreadBusy is tested and the method returns false if the master is busy. Note
that the MThreadBusy test occurs at the beginning of the call before testing if the
response channel is free.

bool get MBusy()

Purpose: Status of the master-busy semaphore. This method indicates whether the
master has released the previous response.

Return: Immediately returns true if master has not responded to the last response
event, and false if it has.

bool get MThreadBusyBit (unsigned int Threadl D = 0)

Purpose: Returns the right bit of the MThreadBusy signal corresponding to the
Thr eadl D.

41

bool get MRespAccept ()
Purpose: Checks whether the master has accepted the current response.

Return: Returns true if the current response has been accepted.

voi d wai t MRespAccept ()

Purpose: Waits until MRespAccept is asserted by the master

sc_event & Responset Start Event ()

Purpose: This event is triggered when a new response has been placed on the
channel.
Return: SystemC event.

sc_event & ResponseEndEvent ()
Purpose: This event is triggered when the response is accepted.

Return: SystemC event.

sc_event & MrhreadBusyEvent ()
Purpose: This event is triggered when the MThreadBusy signal changes.

Return: SystemC event.

42

6. EXAMPLE USING OCP SPECIFIC TL1 CHANNEL AND API

The example described in this section demonstrates the use of the OCP Specific TL1 channel in a
simple reference master and slave. The first part of the example shows how the configuration
parameters can be set in the OCP specific TL1 channel. This technique is expanded upon to
configure a master and a slave core.

The second part of the example shows a configurable reference master core that uses the OCP
specific TL1 API. The third part of the example is a configurable slave core that also uses the
OCP specific TL1 API.

6.1. Configuring the OCP Specific TL1 Channel

The OCP specific TL1 channel can be configured using any of the standard OCP configuration
parameters. This section illustrates some of these parameters, but is by no means complete. For
the complete list of OCP parameters, refer to the Open Core Protocol Specification document.
The parameters of the OCP channel have the exact same names and function as the parameters in
the OCP specification document.

The channel should be configured anytime after it is created and before the simulation is started.
To configure the channel, the channel’s set Conf i gur ati on() function is called with a
MAP object that contains all of the parameter settings, for example:

set Configurati on(map<string, string>& paraneterMp);

The MAP object is a C++ Standard Template Library (STL) object that is an associative array. In
this case, the MAP is string-to-string with the key string being the name of the parameter and the
value string being the parameter value. This parameter MAP may be automatically generated by
a configuration tool. It may be hand coded in the user’s mai n. cc program, or it may be built by
reading in parameter data from a file. Section 6.1.1 gives the details of the parameter MAP
format.

6.1.1. Parameter Map Format

Each entry in the parameter map is a pair of strings. The left side (the key side) of the pair is the
parameter name. The right side (the value side) is the parameter value. The parameter name is a
string, and it must exactly match the OCP standard parameter name. For example,
“cndaccept ” is the OCP parameter to indicate that the SCmdAccept signal is part of the
OCP channel. You must be careful in the use of case or nonstandard spellings (such as
“CMDAccept ” or “ SConmandAccept ”) which will not give you the desired result.

43

The value side of the parameter map has the following format:
type_char: val ue

Where t ype_char is a single character is one of the following:

I " specifies an integer or Boolean
“f” specifies a floating point value
“s” specifies a string.

Note that a colon (:) is required, and the value is the value of the parameter. Also, the value
should not contain any spaces. For example:

“i:1” An integer value 1 or the Boolean value TRUE.
“f:3.14159” The floating point value for PI.
“s:little” The string value “little.”

The following is an example that builds a simple parameter map and then uses it to configure the
channel. OCP Parameters which are not set by the user are configured to their default value as
specified in the OCP Specification.

[l C++ STL include
include <map>

/1l Create a paraneter nap:
map<string, string> nyParamvap;

nyPar amvap. i nsert(make_pair(“cndaccept”, “i:1"));
myPar anmVap. i nsert (make_pair(“addr_wdth”, “i:40"));
nyPar amvap. i nsert(make_pair(“endian”, “s:big”));
/Il etc...

/!l Send it to the channel
myCcpChannel - >set Confi gur ati on(nyPar amvap) ;

6.1.2. Building the Parameter Map from a File

You can also build the parameter map by using a file. This can be useful because the file name
may be passed to the main program that builds the simulation. Also, the file name may be
changed on the command line so the parameters are changed without having to recompile the
model.

In the example below, the parameters are in a file as lines of pairs of space separated strings:
cndaccept i:1

addr_wdth i:40
endi an s: both

44

The user’s code then reads the strings from the fil and stores them into an STL map. The map is
then passed to the channel’s set Conf i gur at i on function.

6.1.3. Configurable Master and Slave

The same parameter map scheme described in section 6.1.11s used to configure the reference
master and reference slave.

The following table gives the parameters for the reference master.

Default
Parameter Name Type Value Description
nTr espaccept _del ay i 1 The number of cycles to delay before
accepting a response from the slave.
nr espaccept _fi xeddel ay i 1 MRespAccept Delay Style. If this

parameter is true (1), the master always
waits for “mrespaccept_delay” cycles
before accepting a response. If this
parameter is false (0), the master waits
for a random number of cycles before
accepting the response. This random
number of cycles will vary uniformly
from 0 to nT espaccept _del ay.

To configure the reference master, create a parameter map using the parameters above and then
send it to the reference master using the following command:

voi d Master<Tdatad >::set Configurati on(MapStringType& passedMap)

The following table gives the parameters for the reference slave:

Parameter Name Type Default Description
Value
| at encyX i 3 This is actually a set of parameters, one for

each thread in the channel. Each parameter sets
the latency for one thread. The latency is the
minimum number of cycles between when the
request arrives and when the response is sent.
As an example, the parameter | at encyO will
set how many cycles the slave will wait before
accepting a request on thread number zero,
while | at ency5 will set the latency cycles

45

Parameter Name Type Default Description

Value
for thread 5
limtreqg_enable i 0 (false) Should the slave limit how many requests it
has outstanding?
limtreq_nax i 4 The maximum number of requests that the

slave can have outstanding at any one time on
any one thread. Note that this parameter is not
used if | i m t req_enabl e is false.

Once the parameter map for the reference slave has been built, it can be sent to the slave with the
following commands:

voi d Sl ave<Tdat aCl >: : set Configuration(MapStringType& passedMap)

6.1.4. Building a Custom Configurable Core.

A user core may also be configurable and of course the core writer is free to use the parameter
map scheme presented here to configure their own custom core.

6.2. A Configurable Master Model

This section provides an example of a configurable master model that has a single-threaded
master OCP interface and that can generate simple OCP traffic to mimic an initiator core. This
master model not only has its own parameters but can also deal with different OCP parameter
settings. For instance, the master model can talk to an OCP channel with the following settings:

- cndaccept == 1, sthreadbusy == 0 or 1, and sthreadbusy_exact ==
- cndaccept == 0, sthreadbusy == 1, and sthreadbusy_exact ==

- respaccept == 0, nthreadbusy == 0, and nthreadbusy_exact ==

- respaccept == 1, nthreadbusy == 0 or 1, and nt hreadbusy_ exact ==
- respaccept == 0, nthreadbusy == 1, and nt hreadbusy_exact ==

The address, the request type (WR or RD), and the write data of a request can also be specified.

In addition, the latency between the acceptance of a previous request and sending of a current
request can be controlled. Also, the latency between receiving a response and accepting the
response can be controlled.

Figure 8 shows a diagram of the configurable master model. This master model implements two
SystemC thread processes (represented by the two ovals in the figure). (The master model is a
derived class of the SystemC sc_nodul e class.) The request thread process handles the
sending of requests for the master core. The response thread process handles the receiving of
responses for the master core.

46

In the following sections, the source code (with explanations) of the master model is described to
help you understand the implementation of the model.

Class Master : public sc_module

SysC Request Thread Proc SysC Response Thread Proc

Request

Response
.......... Processing
request 3 and
request 2 Acceptance
delay
request 1 delay
delay —p| response
request 0

MRespAccept

|—| SCmdAccept or
7 New Response
Req Phase | Threadbusy

single-threaded
OCP

Figure 3. Master Model

6.2.1. Header File

You must follow a few rules in defining the master core template class so that it can
communicate with the OCP Channel. The following are comments on the code followed by the
full master header file.

First, include the OCP specific TL1 channel header files:

/1 OCP-1P Channel header files
#i ncl ude "gl obal s. h"

#include "ocp_tl1 master_port.h"
#i ncl ude "ocp_tl _paramcl.h"

The file gl obal s. h contains the definitions of the types used in the channel. This also includes
the fileocp_t | 1 _dat a_cl . h that defines the data class used by the OCP specific TL1
channel, which then includes ocp_gl obal s. h. The header file ocp_gl obal s. h in turn is
used to define the structures used to pass requests and responses to the channel. If this core did
not have a header file such as gl obal s. h, it would need to directly include the header files
ocp_tl1 data cl.handocp_gl obal s. h.

47

The header ocp_t | 1_mast er _port . h contains the master port to the OCP specific TL1
channel. In addition to providing the master interface to the channel, the port also provides event
finders for all of the master and sideband events of the channel.

The ocp_t | _param cl . h header file contains the definition of the parameter class. The
configurable master uses this class to read the channel’s configuration and then uses that
information to set up its own configuration to match.

The master class is a template class and the parameter of the template is the data class that the
master will support over the OCP connection. A data class with a 32 bit data width and a 32 bit
address is specified as follows:

OCP_TL1_Dat aCl <OCPCHANNELBI t 32, OCPCHANNELBI t 32>

Where OCPCHANNELBI t 32 is defined as follows in the file gl obal s. h:

t ypedef unsigned int OCPCHANNELBI t 32;

After including the header files, you must declare a SystemC port (SC_por t). Specifically, you
need to declare an OCP TL1 master port (i pP) for the Master class to communicate with an
OCP SystemC TL1 channel. This is accomplished with the following statement:

OCP_TL1 MasterPort<Tdatad > i pP;

The master port provides event finders for the channel events (such as Request St art and
Request End). If these event finders are not needed, they could be declaared the as follows,
which would also work:

sc_port< OCP_TL1 Masterl F<Tdatad > > ipP;

Next, declare functions that define SystemC thread or method processes used in your model. For
example, in this master core model, the following functions are defined:

SC HAS PROCESS(Master);

voi d request Thr eadProcess();

voi d responseThreadProcess();

voi d exerci seSi debandThr eadPr ocess();

The macro SC_HAS PROCESS(Mast er) tells SystemC that the master core is a SystemC
module with its own processes. In this case, the thread processes that follow. Each of these
processes are explained in detail in later sections.

After declaring the functions for the thread or method processes, define a SystemC
end_of el aboration functi on. For example,

voi d end_of _el aboration(); /1 SystenC net hod

48

Now define a pointer that points to the OCP parameters of the OCP channel that is connected to
the master core model’s i pP port:

Par anCl <Tdat aCl >* m pOCPParam // pointer to OCP paraneters
The rest of the data members hold the parameter and configuration values of the master.

The following is the complete header file for the master.

#i fndef _SI MPLE_MASTER_H
#define _SI MPLE_MASTER H

#i ncl ude <i ostreanr
#i ncl ude "stdlib.h"
#i ncl ude "gl obal s. h"

/1 OCP-1P Channel header files
#i ncl ude "ocp_gl obal s. h"
#include "ocp_tl1 nmaster_port.h"
#i nclude "ocp_tl_paramcl.h"

/1 For multithreaded nasters only
/1 #include "nmaster_data_queue. h"

/1 define the Master transactor class
tenpl ate <typenane Tdat ad >
class Master : public sc_nodul e

/1 public nmenbers and net hods
R e

/1 type definitions
t ypedef typenane Tdat ad :: DataType Td;
t ypedef typenane Tdatad :: Addr Type Ta;

/1 nmenber definitions

/1 channel port
OCP_TL1 MasterPort<Tdatad > i pP;

/1 SystenC nacros
/1 has SystenC processes
SC HAS_PROCESS(Master);

/1 constructor and destructor

Mast er (sc_nodul e_nane, double, sc_tine_unit,
int, ostreant debug_os_ptr = NULL);

~Master();

/1 met hods
voi d set Configuration(MapStringType& passedMap);

49

/'l process nethods

voi d request Thr eadProcess();

voi d responseThr eadProcess();

voi d exerci seSi debandThr eadPr ocess();

private:
R L R
/1 private nenbers and met hods
R R

/1 SystentC nethods
voi d end_of el aboration();

/'l menber definitions

// master identification
i nt m | D

/1 ocp clock information

doubl e m ocpC kPeri od;

sc_time_unit mocpd kTi neUnit;

/1 nodel a per thread data queue

/1 used for multi-threaded master

/1 Dat aQueue<Tdat aCl > m Dat aQueueThr eadO;

/1
ostream® m debug_os_ptr;

/] Paraneters fromthe OCP Channel

/1 Class that holds all OCP paraneters
Par anCl <Tdat aCl >* m _OCPPar anp;

/1 The nunber of threads
int mthreads;

/1 is MAddrSpace part of the OCP channel ?
bool m addr space;

/1 is SThreadBusy part of the channel?
bool m st hreadbusy;

/1 1s SThreadBusy conpliance required?
bool m st hreadbusy_exact;

/1 is MrhreadBusy part of the channel?
bool m nt hr eadbusy;

/1 1s MrhreadBusy conpliance required?
bool m nt hreadbusy_exact;

/1 is MRespAccept part of the channel?
bool m respaccept;

/1 is Data Handshake part of the channel ?
bool m dat ahandshake;

50

/1l is wite response part of the channel ?
bool mwiteresp_enabl e;

/1 is the READ-EX comand part of the channel
bool mreadex_enabl e;

/1 Are non-posted wites (wite conmands that receive responses)
/1 part of the channel ?
bool m witenonpost enabl e;

/1 Response delay style - fixed or random
bool mrespaccept fixeddel ay;

/1 Delay in accepting responses (max delay for random
i nt mrespaccept _del ay;

/1 Map of string to string that holds the Master's paranter val ues
MapStri ngType m Par anivap;

b

#endi f // _SI MPLE_MASTER_H

6.2.2. Constructor

In the master core model’s constructor, the following items are implemented:

The base sc_nodul e class is initialized using the name parameter passed to the Master
class.

The OCP master interface port (i pP) is also initialized and named “ i pPort " .
The master’s configuration and parameters are given their initial default values.

Functions for sending a request from the master, processing a response from the slave,
and for setting sideband signals on the channel are registered using the SystemC
SC_THREAD macro.

The following is the code for the constructor of the master core model:

e e
/1 constructor
e e e
t enpl at e<t ypenane Tdat ad >
Mast er <Tdat aCl >: : Mast er (

sc_nodul e_nane nane,

doubl e ocp_cl ock_peri od,
sc_time_unit ocp_clock_tine_unit,
i nt id,

51

ost r eant debug os ptr
) : sc_nodul e(nane),
i pP("ipPort"),
m | D(id),
m ocpC kPeri od(ocp_cl ock_peri od),
m ocpC kTi neUni t (ocp_cl ock_tine_unit),
m debug_os_ptr(debug_os_ptr),
m_OCPPar anmP(NULL) ,
m t hreads(1),
m addr space(fal se),
m st hr eadbusy(f al se),
m st hr eadbusy_exact (fal se),
m_nt hr eadbusy(f al se),
m_nt hr eadbusy_exact (f al se),
m r espaccept (true),
m dat ahandshake(f al se),
m writeresp_enabl e(fal se),
m wri t enonpost _enabl e(f al se),
m_r espaccept _del ay(0)

{
/1 setup a SystenC thread process, which uses dynam c sensitive
SC THREAD(r equest Thr eadPr ocess) ;
/1 setup a SystenC thread process, which uses dynam c sensitive
SC_THREAD(r esponseThr eadPr ocess) ;
/1 setup a SystenC thread process to drive any connected sideband signals
SC _THREAD(exer ci seSi debandThr eadPr ocess) ;

}

6.2.3. The end_of_elaboration() Method

The end of elaboration() method is called by SystemC after the model has been built and
connected, but before the simulation begins. Sometime during the construction of the models, the
master’s Set Conf i gur at i on function should have been called with a parameter map of the
master’s parameters. During the end_of _el abor ati on() method, that master processes
this parameter map to set its own master parameters.

At the end of elaboration point, the OCP channel must have already been connected to the core.
The master takes advantage of this to read the OCP parameters of the channel and then uses
those parameters to configure itself to work with the channel it was connected to.

The following are some important points regarding the code for the
end_of el aborati on() method:

* The Get Par antCl () method returns a pointer that points to the OCP channel’s
parameters. The master then uses this pointer to extract the channel’s parameters and to use
them to configure itself. For example,

m OCPPar anP = i pP->CGet ParantC () ;

52

» The master uses functions in the Par antCl class that extract integers and Booleans from
string formatted parameter maps. For example, the complex looking function call

Par anmCl <Tdat aCl >: : get Bool OCPConf i gVal ue(nmyPrefi x, paranNane,
m respaccept _fi xeddel ay, m Par anivap)

returns true if the passed parameter map (m_Par amVap) contains a Boolean parameter
named by the string “ par amet er Nanme” where “ par amet er Nane” is the
concatenation of “ myPr ef i X" and “ par anNane”. (Note that “ myPr ef i X" is
generally not used and set to “ ” . If the parameter map does contain the parameter, the
value of m r espaccept _fi xeddel ay is set to the value of that parameter.

The following is code for the end_of _el abor at i on method.

e
/1 SystenC Method Master::end_of el aboration()
R e i
/1
/1 At this point, everything has been built and connected.
/1 We are now free to get our OCP paraneters and to set up our
/1 own variables that depend on them
/1
t enpl at e<t ypenanme Tdat ad >
voi d Master<Tdatad >::end_of _el aboration()
{
/1 Call the System C version of this function first
sc_nodul e: : end_of _el aboration();

/1 This Master adjusts to the OCP it is connected to.

/1 Now get nmy OCP paraneters fromthe port.
m OCPPar anP = i pP->CGet ParantC () ;

/1 Cet the nunber of threads
m t hr eads = m OCPPar anP- >t hr eads;

/1 This Reference Master is single threaded.
if (mthreads > 1) {
cout << "ERROR Single threaded Master \"" << nane()
<< "\" connected to OCP with " << mthreads
<< " threads." << endl;

}

/1 is the MADdrSpace field part of the OCP channel ?
m addr space = m OCPPar anP- >addr space;

/1 is SThreadBusy part of the channel?
m st hr eadbusy = m OCPPar anP- >st hr eadbusy;

/1 1s SThreadBusy conpliance required?

53

m st hr eadbusy_exact = m OCPPar anP- >st hr eadbusy_exact ;

/1 is MrhreadBusy part of the channel?
m_nt hr eadbusy = m OCPPar anP- >nt hr eadbusy;

/1 1s MrhreadBusy conpliance required?
m nt hr eadbusy_exact = m OCPPar anP- >mt hr eadbusy_exact ;

/1 is MRespAccept part of the channel?
m respaccept = m OCPPar anP- >r espaccept ;

/1 Just a doubl e check here
i f (m._nmthreadbusy_exact && mrespaccept) {
cout << "ERROR Master \"" << name()
<< "\" connected to OCP with both MrhreadBusy_ Exact and MRespAccept
active which are exclusive." << endl

}

/1 is Data Handshake part of the channel ?

m dat ahandshake = m OCPPar anP- >dat ahandshake;
/1 if so, quit. This core does not support it.
assert (m dat ahandshake == fal se);

/1l is wite response part of the channel ?
mwiteresp_enabl e = m OCPParanP->writeresp _enabl e;

/1l is READ-EX part of the channel ?
m r eadex_enabl e = m OCPPar anP- >r eadex_enabl e;

/1 Are non-posted wites (wite conmands that receive responses)
/Il part of the channel?
m wri t enonpost _enabl e = m OCPPar anP- >wr i t enonpost _enabl e;

/!l Retrieve any configuration paraneters that were passed to this bl ock
/1 in the setConfiguration conmmand.

#i f def DEBUG
cout << "I amconfiguring a Master!" << endl
cout << "Here is ny configuration map for Master >"
<< name() << "< that was passed to ne." << endl
MapStringType::iterator map_it;
for (map_it = m ParanMap. begin(); map_it !
cout << "map[" << map_it->first << "]
}

cout << endl
#endi f

m Par amivap. end(); ++map_it) {
" << map_it->second << endl

string nmyPrefix = ;
string paranNane = "undefi ned"

/1 NMRespAccept delay in OCP cycles

paramNane = "nrespaccept del ay";
if (!(ParanC <Tdat ad >:: get | nt OCPConf i gVal ue(nmyPrefix, paramNane,

54

m respaccept _del ay, m Paranivap))) {
/1 Could not find the paraneter so we nust set it to a default
#i f def DEBUG
cout << "Warning: nmaster paranter \"" << paranmNanme
<< "\" for Master \"" << name()
<< "\" was not found in the paranmeter map." << endl;

cout << " setting mssing parameter to 1." << endl;
#endi f
m r espaccept _del ay = 1;
}
/1 NMRespAccept Delay Style. 1=fixed delay : O=random del ay
par amNane = "nrespaccept fixeddel ay"”;

if (!(ParanC <Tdatad >:: get Bool OCPConfi gVal ue(nyPrefix, paramNane,
m respaccept _fi xeddel ay, m Paranivap))) {
/1 Could not find the paraneter so we nust set it to a default
#i f def DEBUG
cout << "Warning: nmaster paranter \"" << paranmNanme
<< "\" for Master \"" << nane()
<< "\" was not found in the parameter map." << endl
cout << " setting mssing paraneter to 1 (fixed delay)."
<< endl;
#endi f

}

m r espaccept _fi xeddel ay = true;

6.2.4. SystemC Request Thread Process

For this master core example, the master request thread process works from a table of requests.
The delays between the sending out of each request are also set in a table. For each table entry,
the master sends the corresponding request then waits the corresponding time before moving on
to the next table entry.

The Commands table is the table of commands to send out while the Num\\4i t table contains
the length of time to wait before sending out the next command. Each time is organized by row
with each row being a “test” of up to four commands.

The following is an explanation of the code below:

1. Sets up the tables to be used by the process. The code then enters the infinite loop of the
thread and waits for the first wait period before sending its first request.

2. After the wait is over, the code checks to see if the slave has sett hr eadbusy. Note that the
parameter m st hr eadbusy was set by looking at the OCP channel’s parameters during the
end_of el abor ati on() method. If SThreadBusy is part of the channel, and if that
signal has been asserted, the request process will continue to wait until the slave releases
threadbusy by driving it to zero.

3. Once the threadbusy hurtle has been cleared, the request process then tries to send a request.
First it constructs the request by reading the next command from the table. If the command is

55

incompatible with the channel that the master is connected to, the master changes the
command to a simpler one that the channel can accept. If the command calls for data (that is,
it is some sort of write command) new data is generated through a counter.

4. The data is sent with the OCP specific TL1 channel command:

i pP->st art OCPRequest Bl ocki ng(req);

This command places the newly generated request on the channel. If there is already a
request on the channel (for example, if the previous request has not yet been accepted), that
command will block until the channel is free and the new command can be placed on the
channel. The function returns once the request has started, but before it has been accepted by
the slave. A blocking call like this one may only be used within a thread process. A SystemC
method does not allow the context switching required by a blocking command.

5. Finally, return to step 1, processing the table and setting up the wait time before the next
command may be issued.

The following is the code for the Request Thread Process.

t enpl at e<t ypenanme Tdat ad >
voi d Mast er<Tdat ad >: : request ThreadPr ocess()

Ta Addr[] = {0x1784, 0x20, 0x20, Ox40};

/1 start tine of requests

int NumMai t[NUM TESTS][4] = {
{100, 3, OxF, OxF},
{7, 1, 3, OxF},
{6, OxF, OxF, OxF},

{10, 2, 1, OxF},
{7, 1, 3, OxF},
{6, 1, 1, 1},
{7, 2, OxF, OxF},
{8, 2, 1, OxF},// no data handshake
{7, 2, 2, 2}

}s

/1 specifies the command to use

OCPMCdType Comrands[NUM TESTS] [4] = {
{OCP_MCMD_WR, OCP_MCMD_RD, OCP_MCMD | DLE, OCP_MCMVD_| DLE},
{OCCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_| DLE},
{OCCP_MCMD_RD, OCP_MCMD_| DLE, OCP_MCMD_| DLE, OCP_MCMVD_| DLE},
{oCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_| DLE},
{oCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_|I DLE
{OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCVD_RD},
{CCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_| DLE, OCP_MCMVD_I| DLE},
{OCCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_| DLE},
{oCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD}

b

/1 nunber of specified transactions in a test
int Numfr[] = {2, 3, 1, 3, 3, 4, 2, 3, 4};

56

R e
/1 (1) processing and preparation step
A R R R PP

/1 initialize data
OCPRequest Gr p<Td, Ta> req;

i nt Count = 0;

i nt Nr = 0;
sc_tinme old tinme;
sc_tinme current _time;
bool st hr eadbusy;
unsi gned int ny_data = O;

/1 calculate the newwaiting tine
double wait_for = NumMit[Nr][Count];

/1 Do requests contain data (or will it be sent separately)
/1 Always true as this core does not support data handshake
req. HasvWbata = true;

i pP->ocpWait();

/1 main | oop
while (true) {
/1 wait for the tine to send the current request

if (mdebug os ptr) {
(*m.debug_os_ptr) << "DB (" << name() << "):
<< "master wait _for =" << wait_for << endl

}
i pP->ocpWait(wait _for);

/'l remenber the tine
old time = sc_time_stanp();

/1 (2) is SThreadBusy?
A R T

/1 NOTE: we are single threaded so the thread busy signa
/1 looks like a boolean (0 or 1).
/1 Abritration based on thread busy will be needed for a
/1 mul ti-threaded nodel
i f (msthreadbusy_exact) {
st hreadbusy = i pP->get SThr eadBusy();
whi | e (sthreadbusy) {
i pP->ocpWait();
st hreadbusy = i pP->get SThr eadBusy();

}
}
R e
/1 (3) send a request
R R R

57

/1 NOTE: data handshake is not handled by this sinple exanmple.

/1 Conpute the next request
req. MCmd = Conmands[Nr][Count];

/1 is this an extended conmand to be sent over a basic
/1 channel ?
if ((!mreadex_enable) &% (req. MCnd == OCP_MCMD _RDEX)) {
/1 channel cannot handl e READ-EX. Send sinpl e READ.
req. MCmd = OCP_MCMVD_RD;
} else if ((!mwitenonpost_enable) &% (req. Monmd == OCP_MCVD_WRNP)) {
/1 channel cannout handl e WRI TE-NP. Send sinple WRI TE.
req. MCmd = OCP_MCMD_WR;
}

/1 conpute the address
req. MAddr = Addr[Count] + m_| D*0x40;
req. MByt eEn = Oxf;
i f (m_addrspace) {
req. MAddr Space = 0x1;
}

/1 conpute the data
switch (req. MCnd) {

case OCP_MCVMD WR:

case OCP_MCVD_VARNP:

case OCP_MCMD WRC.

case OCP_MCVD_BCST:
/!l This is a wite conmand - it has data
ny_dat a++;
/1 put the data into the request
req. MData = ny_data + m_| D*0x40;
br eak;

case OCP_MCVD_RD:

case OCP_MCVD_RDEX:

case OCP_MCVD _RDL:
/1 this is a read comand - no data.
req. Mbata = 0O;
br eak;

defaul t:
cout << "ERROR: Master \"" << name()

<< "\" generates unknown conmand #"
<< reg. MCnd << endl;

}

if (mdebug os ptr) {
(*m debug os_ptr) << "DB (" << nane() << "):
<< "send request." << endl;
(*m debug_os_ptr) << "DB (" << nane() << "):

<< " t =" << sc_sinulation_tinme() << endl;
(*m debug _os_ptr) << "DB (" << name() << "): "
<< " Mond: " << req. MCmd << endl;
(*m debug os ptr) << "DB (" << nanme() << "):
<< " MData: " << reqg.Mbata << endl;
(*m debug _os _ptr) << "DB (" << name() << "): "
<< " MByt eEn: " << req. MByteEn << endl;

58

/1 send the request
i pP->st art OCPRequest Bl ocki ng(req);

A R R R
/1 (1) processing and preparation step
R e

/1 conpute the next pointer
if (++Count >= NunTr[Nr]) {

Count = 0;

if (++tNr >= NUM_TESTS) Nr = 1;
}

/1 calculate the newwaiting tine
wait _for = NumMit[Nr][Count];
current _time = sc_tine_stanp();
doubl e delta tine =
(current _time.value() - old_time.value()) / 1000;

if (delta_tinme >= wait_for) {

wait _for = 0;
} else {

wait for = wait _for - delta_tine;
}

}
6.2.5. SystemC Response Thread Process

The code for the master’s response thread process is much simpler than that for the request. The
code follows this pattern:

The master receives a response.
The master waits for a given amount of time.
The master accepts the response.

The following is an explanation of the code below.

1. Once the process enters the infinite loop of the thread, it starts waits for a response to come
from the slave. The command

i pP- >get OCPResponseBl ocki ng(resp);

gets the current response from the OCP channel that is connected to the i pP port. If there is
no request waiting on the OCP channel, the command blocks until a new request arrives.
Because this is a blocking command, it may only be used in a thread process like this one. A
SystemC method process does not allow for the context switching required by a blocking
command.

2. Once the request has arrived, the response delay is calculated using the master parameters set
from the passed parameter map.

59

3. The thread implements the delay based on the channel configuration. If the OCP channel has
an MRespAccept signal, that signal is used to keep the slave from sending more responses.
The following command is used to set MRespAccept to true to accept the response:

i pP- >put MRespAccept () ;

If instead, the slave is t hr eadbusy_exact , the MThreadBusy signal is used to pause the
slave. The following command is used to set MThreadBusy to true:

i pP- >put MThr eadBusy(1) ;

The same command (with a different parameter) is used to unset MThreadBusy as well, that
is:

i pP- >put Mrhr eadBusy(0) ;

In between the two calls to put MThr eadBusy () , the following command causes the
response thread to wait for wai t _f or OCP channel cycles before resuming:

i pP->ocpWait(wait _for);
The following is the code for the master’s response thread process.

t enpl at e<t ypenane Tdat ad >
voi d Mast er<Tdat ad >:: responseThr eadPr ocess()

{

/1 initialization
OCPResponse@& p<Td> resp;
doubl e wait_ for;

i pP->ocpWait();

/1 main | oop

while (true) {
I e
/1 (1) wait for a response (blocking wait)
I I

/1 get the next response
i pP- >get OCPResponseBl ocki ng(resp);

N L TR
/1 (2) process the response
R LR T E R

/1 conpute the response acceptance tine
if (mrespaccept fixeddel ay) {
wait _for = mrespaccept _del ay;
} else {
/1 Go random up to max del ay
wait_for =
(int)((mrespaccept _delay+l) * rand() / (RAND MAX + 1.0));

60

A R e e
/1 (3) generate a one-cycl e-pul se MRespAccept signal

if (mrespaccept) {

if (wait_for == 0) {
/1 send an one-cycl e- pul se MRespAccept signal
i pP->put MRespAccept ();

} else {
/1 wait for the acceptance pul se cycle
i pP->ocpWait(wait _for);
//wait (ocpd kP->posedge_event ());

/1 send an one-cycl e- pul se MRespAccept signal
i pP->put MRespAccept ();

}

i f (m._nthreadbusy_exact) {
/1 use the MrhreadBusy signal instead of resp accept
if (wait_for > 0) {

/1 Set MrhreadBusy
i pP->put Mrhr eadBusy(1);
/1 keep MrhreadBusy on
i pP->ocpWait(wait _for);
/1 now release it
i pP->put Mrhr eadBusy(0) ;

}
6.2.6. SystemC Sideband Process

The code example shown in this section is a simple process that illustrates how the OCP specific
TL1 API can be used to set sideband signals in the OCP channel.

The following is an explanation of the code below.

1. Before the start of the infinite loop of the thread, the sideband process checks the channel’s
parameters to determine which (if any) master sideband signals are available in the channel.

2. Once the code reaches the main loop, the process waits then sets all of the master sideband
signals that are connected to it. It updates the values to be set next time and then repeats.

The following is the code for the master’s sideband thread process.

t enpl at e<t ypenane Tdat ad >
voi d Mast er <Tdat ad >: : exer ci seSi debandThr eadPr ocess(voi d)
{

/1 Systematically send out sideband signals on

/1 any signals that are attached to us.

i pP->ocpWait(10);

i nt tweakCounter =0;

61

bool hasMerror = m OCPPar anP- >nerror;

bool next MError = fal se;

bool hasMFl ag = m OCPPar anP- >nf | ag;

i nt num\VFl ag = m OCPPar anP- >nf | ag_wdt h;
unsi gned i nt next MFlag = 0;

unsi gned int nmaxM-lag = (1 << num\WFl ag) -1;

/1 main | oop

while (true) {
/1 wait 10 cycles
i pP->ocpWait(10);

/1 Now count through ny sideband changes
t weakCount er ++;

/1 Drive MError
if (hasMError) {
if (tweakCounter%® == 0) {
/1 Toggl e MERROR
next Merror = ! next MeError;
i pP->Mout MEr r or (next MError);

}

/1 Drive Ml ags
i f (hasMFl ag) {
if (tweakCounter9d == 0) {
/1 go to next Ml ag
next MFl ag += 1;
i f (next Ml ag > maxMrl ag) ({
next MFlag = O;

}
i pP- >Mput MFI ag(next MFl ag) ;

}

6.2.7. Template Instantiation

The final line of the mast er . cc file makes sure that the compiler creates an instance of the
Master template for the OCP_TL1_SI GNAL_CL type defined in the gl obal s. h header file.
The last line is

templ ate class Master< OCP_TL1_SI GNAL_CL >;
6.3. A Configurable Slave Model

This section provides an example of a configurable slave model, which reacts like a target
memory core and takes in or delays the acceptances of OCP requests based on parameterized
settings. The slave model has a single-threaded slave OCP interface. This slave model not only
has its own parameters but can also deal with different OCP parameter settings. For instance, the
slave model can talk to an OCP channel with the following settings:

62

- cndaccept == 1, sthreadbusy == 0 or 1, and sthreadbusy_ exact ==

- cndaccept == 0, sthreadbusy == 1, and st hreadbusy_exact ==

- respaccept == 0, mhreadbusy == 0, and nt hreadbusy_exact == 0

- respaccept == 1, mhreadbusy == 0 or 1, and nt hreadbusy_exact == 1
- respaccept == 0, mthreadbusy == 1, and nt hreadbusy_exact ==

Parameters belonging to the slave model itself are:

* | at encyX This is the response latency for thread number X. There is a latency
parameter for each thread in the channel. This parameter sets the minimum number of
cycles between receiving the request and issuing the response.

elimtreq_enableand!limtreq_max. Whentheli m treq_enabl e parameter
is set to 1, the outstanding requests per thread are limited to | 1 m t r eq_max

Figure 9 shows a diagram of the configurable slave model.

single-threaded

J A OCP
Req Phase T
[

I —

SysC
Request
Thread
Proc

Read

Response
FIFO

Simple
Read/Write
Memory SysC
Response
Thread
Proc

Class Slave : public sc_module

Figure 4. Slave Model

6.3.1. Header File

The header file for the simple configurable slave calls the header files for the channel it is
connected to and for the objects it uses. It then defines the template class that is the slave. The
following are a few explanations regarding some of the highlights of the code. The full header
file is provided below.

63

First, the slave includes the OCP specific TL1 channel header files:

/1 QOCP-1P Channel header files
#i ncl ude "gl obal s. h"

#i nclude "ocp_tl 1l slave port.h"
#i nclude "ocp_tl _paramcl.h"

The file gl obal s. h contains the definitions of the types used in the channel. This file also
includes the header ocp_t | 1_dat a_cl . h that defines the data class used by the OCP specific
TL1 channel. The header ocp_t1 1_dat a_cl . h in turn includes ocp_gl obal s. h, which is
used to define the structures used to pass requests and responses to the channel. If this core did
not have an include file like gl obal s. h, it would need to directly include

ocp_tl1 data cl.handocp_gl obal s. h.

The header ocp_t | 1_sl ave_port. h is the slave port to the OCP specific TL1 channel. In
addition to providing the slave interface to the channel, the port also provides event finders for
all of the slave events and sideband events of the channel.

The ocp_t | _param cl . h header file contains the definition of the parameter class. The
configurable slave uses this class to read the channel’s configuration and then uses that
information to set up its own configuration to match the channel it is connected to.

The header file then defines objects that are used by the slave. The file

sl ave_response_queue. h defines a simple response queue that the slave uses to queue
responses as they are waiting to go out on the channel. The file Menor yd . h implements a
simple memory.

Following the include statements, the slave header file defines the slave class. The slave is a
template class and the parameter of the template is the data class that the slave will support over
the OCP connection. A data class with a 32 bit data width and a 32 bit address is specified as
follows:

OCP_TL1 Dat aCl <OCPCHANNELBI t 32, OCPCHANNELBI t 32>
Where OCPCHANNELBI t 32 is defined in the file gl obal s. h as
t ypedef unsigned int OCPCHANNELBI t 32;

The simple configurable slave has a single port which connects to the OCP channel. The
following code declares the slave port for the OCP channel:

/1 channel port
OCP_TL1_Sl avePort <Tdat aCl > t pP;

64

Next the S| ave class declares functions that define SystemC thread or method processes used in
your model. For example, in this slave core model, the following functions are defined:

/'l has SystentC processes

SC_HAS PRCCESS(Sl ave) ;

voi d request Thr eadProcess();

voi d responseThreadProcess();

voi d exerci seSi debandThr eadProcess();

The SC_HAS_ PROCESS(S| ave) macro tells SystemC that the slave core is a SystemC
module with its own processes. In this case, the thread processes that follow. Each of these
processes are explained in detail in below.

Lastly, the S| ave class define a SystemC end_of _el abor at i on function to be called
automatically after all models are built and connected but just before the simulation is to start:

voi d end_of el aboration(); /1 SystenC nethod

Following the declaration of the end_of _el aboar t i on method, the Sl ave class define a
pointer that points to the OCP parameters of the OCP channel that is connected to the model’s
tpP port:

Par anCl <Tdat aCl >* m _OCPPar anp;

Also, there is the following function for compatibility with the base generic channel class:

bool MoutDirect(int, bool, Td*, Ta, int);

The rest of the data members of the SI ave class hold the parameter and configuration values of
the master.

The following is the complete header file for the slave.

#i fndef _SI MPLE_SLAVE_H
#define _SI MPLE_SLAVE_H

#i ncl ude <i ostreanp

#i ncl ude <map>

#i ncl ude "gl obal s. h"

/1 OCP-1P Channel header files

#i nclude "ocp_tl 1l slave port.h"
#i nclude "ocp_tl_paramcl.h”

#i ncl ude "sl ave_response_queue. h"

#i ncl ude "Menoryd . h"

/1 define the Slave cl ass
tenpl ate <typenane Tdatad >
class Slave : public sc_nodul e

65

/1 type definitions

t ypedef typenane Tdat adC :: DataType Td;
typedef typenane Tdat ad :: Addr Type Ta;
typedef map< Ta, Td > MenmMVapType;

/1 nmenber definitions

/1 channel port
OCP_TL1_Sl avePort <Tdat aCl > t pP;

/1 Systent nacros

/1l has SystenC processes
SC_HAS_PROCESS(Sl ave) ;

/1 constructor and destructor

Sl ave(sc_nodul e_name, double, sc_tine_unit,
int, Ta, ostreant debug_os_ptr = NULL);

~Sl ave();

/1 methods
voi d set Configuration(MapStringType& passedMap);

voi d request Thr eadProcess();
voi d responseThreadProcess();
voi d exerci seSi debandThr eadPr ocess();

private:
R
/1 private nenbers and net hods
e

/1 SystenC nethods
voi d end_of el aboration();

/1 methods
bool MoutDirect(int, bool, Td*, Ta, int);

/1 nmenber definitions

/1 slave identification
int. mlID

/1 ocp clock information
doubl e m ocpdC kPeri od
sc_time_unit mocpd kTi neUnit;

/1 nunber of nenory bytes and the menory array
Ta m_Menor yByt eSi ze

/1 nodel a per thread response queue

66

ResponseQueue<Tdat all > m ResponseQueue;
Menor yd <Tdat adl > *m Menory;
ostreant m.debug_os_ptr;

/1l current value of SThreadBusy as set by this Slave.
i nt m_cur SThreadBusy;

Par anCl <Tdat aCl >* m _OCPPar anp;

/1 Nunmber of threads in the OCP channel
int mthreads;

/1 Does the channel use data handshaki ng?
bool m dat ahandshake;

/1 Are wites with responses part of the OCP channel ?
bool mwiteresp_enabl e;

/1 is SThreadBusy part of the OCP channel ?
bool m st hreadbusy;

/1 do we follow the rules of sthread_busy exact?
bool m st hreadbusy_exact;

/1 is MrhreadBusy part of the OCP channel ?
bool m nt hreadbusy;

/1 is SCndAccept part of the OCP channel ?
bool m cndaccept;

I e I IR
/] Paraneters of the Sl ave Model
I

/1 should there be a limt to the nunmber of outstandi ng requests per
/1 thread?

/1 default = false;

bool mlimtreq_enable;

/1 maxi mum nunber of outstanding requests per thread

/] default = 4;

int mlimtreq_nax;

/! Response Latency
int mLatency;

MapStri ngType m Par anivap;
b
#endi f // _SI MPLE_SLAVE_H

67

6.3.2. Constructor

In the slave model’s constructor, the following items are implemented:

The base sc_nodul e class is initialized using the name parameter passed to the Sl ave
class.

The OCP slave interface port (t pP) is also initialized and named “ t pPort” .

The slave’s configuration and parameters are given their initial default values. They will
receive their parameter values at the end of elaboration.

Functions for receiving requests, sending responses and for checking sideband signals on
the channel are registered using the SystemC SC_THREAD macro.

The following is the code for the constructor.

e
/1 constructor

I e e e
t enpl at e<t ypenanme Tdat ad >

Sl ave<Tdat adl >: : Sl ave(

sc_nodul e_nane n,

do
scC
in
Ta
0s
sc
tp
m_
m_
m_
m_
m_
m_
m_
m_

ubl e ocp_cl ock_peri od,
_tinme_unit ocp_clock tine_unit,
t id,

menory_byte_si ze,
treant debug os ptr
_nodul e(n),
P("tpPort"),
I D(id),
ocpd kPeri od(ocp_cl ock_peri od),

ocpd kTi meUnit(ocp_clock tinme_unit),
Menor yByt eSi ze(nenory_byte_si ze),
Menor y(NULL) ,
debug_os_ptr(debug _os _ptr),

cur SThr eadBusy(0),

OCPPar anP(NULL) ,

m t hreads(1),

m dat ahandshake(f al se),
mwriteresp_enabl e(fal se),
m st hr eadbusy(f al se),

m st hr eadbusy_exact (fal se),
m nt hr eadbusy(f al se),

m cndaccept (true),
mlimtreq_enable(l),
mlimtreq_nax(4),

m Lat ency(0)

/1
/1
/1

/1

Not e: nmenber vari abl es that depend on val ues of
configuration parameters are constructed when those
val ues are known - at the end of el aboration.

setup a SystenC thread process, which uses dynam c sensitive

68

SC THREAD(r equest Thr eadPr ocess) ;

/1 setup a SystenC thread process, which uses dynam c sensitive
SC _THREAD(r esponseThr eadPr ocess) ;

/1 setup a SystenC thread process to check and
/'l set sideband signals
SC _THREAD(exer ci seSi debandThr eadPr ocess) ;

}

6.3.3. Destructor
The destructor cleans up the memory created in the end_of _el abor ati on() function.

The following is the code for the destructor.

t enpl at e<t ypenane Tdat ad >
Sl ave<Tdat adl >; : ~Sl ave()

{
}

6.3.4. The end_of_elaboration() Method

del ete m Menory;

This function is automatically called after the model has been built and connected but before the
simulation begins. At the end of elaboration point, the OCP channel must have already been
connected to the core. The slave takes advantage of this to read the OCP parameters of the
channel and then to use those parameters to configure itself to work with the channel it was
connected to.

The following are some points regarding the code for the end_of _el abor ati on() method:

* The Get Par antCl () method returns a pointer that points to the OCP channel’s
parameters. For example,

m OCPPar anP = t pP->CGet ParantC () ;

The slave then uses this pointer to extract the channel’s parameters and to use them to
configure itself. Because the names of the channel parameters match the names in the
OCP Specification document, the parameter look-up is one to one. The channel
parameters are then stored locally in the core for convenience.

* Sometime before the end of elaboration, the set Conf i gur ati on() function was
called and the slave’s parameters were passed to it using a string to string parameter
map. The read this map, the slave uses functions in the Par anCl class that extract
integers and Booleans from string formatted parameter maps. The complex looking
function call

69

Par anCl <Tdat aCl >: : get Bool OCPConf i gVal ue(myPrefi x, paranNane,
m|limtreq_enable, m Paranmvap)

returns true if the passed parameter map (m_Par anmVap) contains a Boolean parameter
named by the string “ par amNane” . If the parameter map does contain the parameter,
the value of m | i mi t r eq_enabl e is set to the value of that parameter. The parameter

“nyPrefix” is generally not used and can be set to “” .

* Finally, the slave uses the values of its own parameters and the configuration of the
channel to which it is connected to build the memory model that it will use during the
simulation.

The following is the complete code for the slave’s end_of _el abor ati on() method.

e
/1 SystenC Method Sl ave::end_of el aboration()

R e i
/1

/1 At this point, everything has been built and connected.

/1 We are now free to get our OCP paraneters and to set up our

/1 own variables that depend on them

/1

t enpl at e<t ypenanme Tdat ad >

voi d Sl ave<Tdat aCl >: : end_of _el aborati on()

{

sc_nodul e: : end_of el aboration();

NNy

/1

/1 Process OCP Paraneters fromthe port
/1

NNy

m_OCPPar anP = t pP->Cet Parant () ;

/1l Set the nunber of threads
m t hr eads = m OCPPar anP- >t hr eads;

if (mthreads > 1) {
cout << "Warning: Singled threaded reference Sl ave "
<< nanme() << " attached to nmulti-threaded OCP." << endl;
cout << "Only commands sent on thread O will be processed.”
<< endl;

}

/1 Does the channel use data handshaki ng?

m dat ahandshake = m OCPPar anP- >dat ahandshake;

/1 1s so, quit as this Slave does not handl e data handshake.
assert (! m OCPPar anP- >dat ahandshake) ;

/1 Do wites get reponses?
mwiteresp_enabl e = m OCPParanP->writeresp_enabl e;

/1 is SThreadBusy part of the channel?

70

m st hr eadbusy = m OCPPar anP- >st hr eadbusy;

/1 is this slave expected to foll ow the threadbusy exact protocol?
m st hr eadbusy_exact = m OCPPar anP- >st hr eadbusy_exact ;

/1 is MrhreadBusy part of the channel ?
m nt hr eadbusy = m OCPPar anP- >nt hr eadbusy;

/1 is SCndAccept part of the channel ?
m cndaccept = m OCPPar anP- >cndaccept ;

111

/1

/] Process Sl ave Paraneters
/1l

111

/1 For Debuggi ng
if (mdebug os ptr) {
(*m debug os _ptr) << "DB (" << nane() << "):
<< "Configuring Slave." << endl
(*m debug _os ptr) << "DB ("
<< nane()
<< "): was passed the follow ng configuration map:" << endl
MapStringType::iterator map_it;
for (map_it = m ParamVap. begi n();
map_it !'= m Paranvap.end(); ++map_it) {
(*m.debug os_ptr) << "map[" << map_it->first << "] ="
<< pap_it->second << endl

}

cout << endl

}

/1 Here the prefix is not needed.
/1 the future
string myPrefix ="";

string paranmNane = "undefined";

/1 latency(0), latency(l), ... , latency(n)

paramNane = "l atency(0)";

i f (!(Parant <Tdatad >:: get | nt OCPConf i gVal ue(myPrefi x,
par anNane,
m_Lat ency,

m _Paramvap))) {
/1 Could not find the paraneter so we nust set it to a default
#i f def DEBUG
cout << "WArning: paranter \"" << paranNane
<< "\" for Slave \"" << name()
<< "\" was not found in the parameter map." << endl

cout << " setting mssing paraneter to 3." << endl
#endi f
m Latency = 3;
}
/1 limtreg_enable
paramNane = "limtreq_enabl e";

i f (!(ParantC <Tdat ad >: : get Bool OCPConfi gVal ue(nyPrefi x,

71

par anNane,
m|imtreq_enabl e,
m_Paramvap))) {
/1 Could not find the paraneter so we nust set it to a default
#i f def DEBUG
cout << "WArning: paranter \"" << paranNane
<< "\" for Slave \"" << name()
<< "\" was not found in the parameter map." << endl

cout << " setting mssing paranmeter to false." << endl
#endi f
mlimtreq_enable = fal se
}
/1 limtreq_max
paramNane = "limtreq_max";
if (!(ParanC <Tdat ad >:: get | nt OCPConf i gVal ue(nmyPrefi x,

par anNane,
mlimtreq_nax,
m _Paramvap))) {

/1 Could not find the paraneter so we nust set it to a default

#i f def DEBUG
cout << "WArning: paranter \"" << paranNane
<< "\" for Slave \"" << name()
<< "\" was not found in the parameter map." << endl

cout << " setting mssing paranmeter to 4." << endl
#endi f
mlimtreq_nmax = 4,
}
IRy
/1
// Initialize the Slave with New Paraneters
/1
IRy

/1 Clear the response queue
m ResponseQueue. reset () ;

/1 Create the nmenory:

if (mMnory) {
/1 Just in case we are called multiple tines.
del ete m Menory;

}
char id_buff[10];
sprintf(id_buff,"%l", mID);
string nmy_id(id_buff);
m Menory =
new MenoryCd <Tdat al >(my_i d, m OCPPar anP- >addr _wdt h, si zeof (Td));

72

6.3.5. SystemC Request Thread Process

The request thread processes each new request as it arrives from the channel. This section
explains some highlights of the code for the request thread process. The complete code for the
request process is presented below.

The basis loop of the request thread process does the following: gets a new request, processes it,
generates a response (if needed), then queues that response for the response thread to process.
The request thread uses a blocking command to get the next request:

t pP- >get OCPRequest Bl ocki ng(req, false);

This command gets the current request from the channel if there is one. If there is no request, the
command blocks until a new request arrives. When a request is found, it is copied into the
variable r eq. The second parameter to the command (f al se) indicates that the command
should not automatically accept the request it receives. The thread then processes the command.
Either it updates the memory (for a write command) or it extracts a value from the memory for a
read command.

After receiving a request, the process then builds a response. In this slave model, all requests
generate a response for the response queue. Some are actual responses such as the responses to a
read request. These responses have SResp of type OCP_SRESP_DVA. Some of the responses
are just place-holder responses. They are there to make sure that the timing for activities such as
writes are accurate. Place-holder responses take up a spot in the response queue, but they have an
SResp type of OCP_SRESP_NULL and are never sent on the OCP channel. Each item in the
outgoing response queue consists of a response and a time stamp of the earliest time that the
response may be sent (if it is an actual response) or cleared from the queue (if it is a place-holder
response).

Note in the code (see comment 2 in the code below) how each element of the response structure
is set by the slave. For example, the following line sets the response type of the out going
response:

resp. SResp = OCP_SRESP_DVA;

If the outgoing response queue is full, the slave can no longer accept any new requests. Based on
the configuration of the channel, the slave uses either SThreadBusy or a delay on accepting the
request to keep the master from sending any new requests that cannot be processed due to the
full queue (see comment 4 in the code below)

The following is the complete code for the slave’s request thread process.

73

t enpl at e<t ypenane Tdat ad >
voi d Sl ave<Tdat adl >: : request Thr eadPr ocess()

{

/1 The new request we have just received
OCPRequest Gr p<Td, Ta> req;

/1 The response to the new request
OCPResponseG p<Td> resp;

/1 Time after which the response can be sent or this
request can be cleared fromincom ng queue.
sc_tine send_ti ne;

/1 W are in the initialization call.
/1 Wait for the first sinulation cycle.
t pP->ocpWait ();

/1 main | oop
while (true) {

R L L
/1 (1) Get the next request
L
t pP- >get OCPRequest Bl ocki ng(req, f al se);

R L e
/1 (2) process the new request and generate a response.

/1 conpute the word address
if (reg. MAddr >= m MenoryByteSi ze) {

req. MAddr = req. MAddr - m MenoryByt eSi ze;
}

/1l send a response for wites if channel requires it.

if (mwiteresp_enable & (req. MCnd == OCP_MCMD WR)) {
req. MCnmd = OCP_MCVD_WARNP;

}

/! wite to or read fromthe nenory
switch (req. MCnd) {
case OCP_MCMD _W\R
/1 posted wite to nenory
m Menory->wite(req. MAddr, req. MDat a, r eq. MByt eEn) ;

/1 note that posted wites do not have responses.

/1 However, they do have a processing delay that can
/1 contribute to a max request limt back up.

/! To solve this problem requests that have no

/1 response to generate a dumy respose with

/1 SRESP=NULL which is defined as "No response".

/1 Dumry responses are never sent out on the channel.
resp. SResp = OCP_SRESP_NULL;

resp. SThreadl D = req. Mrhr eadl D,

br eak;

case OCP_MCVD _RD:
case OCP_MCMD_RDEX:

74

/1 NOTE that for a single threaded sl ave,

/1 Read- EX works just |ike Read

/1 read from nenory

m_Menory- >r ead(req. MAddr, resp. SDat a, r eq. MByt eEn) ;
/1 setup a read response

resp. SResp = OCP_SRESP_DVA;

resp. SThreadl D = req. Mrhr eadl D;

br eak;

case OCP_MCVD_V\RNP
/1l Generate an acknow edgenent response
resp. SResp = OCP_SRESP_DVA,
resp. SThreadl D = req. Mrhr eadl D,
resp. Sbata = 0;

br eak;
def aul t:
cout << "MOmd #" << req.MCmd << " not supported yet."
<< endl;

sc_stop();

br eak;
}
L T R
/1 (3) generate a conpletion tine stanp and add the response
/1 to the queue
I e TR

/1 conpute pipelined response del ay
send _tinme = sc_tinme_stanp() + sc_tine(m.Latency, mocpd kTi neUnit);

/1 purge the queue of any posted wite place hol der responses
/1 that have reached their send tines
m ResponseQueue. pur gePl acehol ders();

m ResponseQueue. enqueueBl ocki ng(resp. SResp, resp. SData, send_tine);

I e
/1 (4) if our queue is full, generate back pressure halt

/1 the flow of requests. Qtherw se, accept the request

/1 and nove on.

I e e R

/1 Do we need to set SThreadBusy??

if (msthreadbusy && (m ResponseQueue.length() >= mlimtreq_max)) {
m _cur SThr eadBusy = 1;
t pP- >put SThr eadBusy(m cur SThr eadBusy) ;

}

/1 Should we accept this command?
if (mcndaccept) {
/1 if queue is full, delay accepting request
whi l e (m ResponseQueue.length() >= mlimtreq_max) {
/1 Qur queue is full. Wait for this to change.
t pP->ocpWait ();
}

/1 nowit is okay to accept the request

75

t pP- >put SCndAccept () ;

}
6.3.6. SystemC Response Thread Process

The response thread process cycles through the response queues, and then places each response
into the channel at the appropriate time. This section explains some highlights of the code for the
response thread process. The complete code for the request process is presented below.

The basis loop of the response thread process does the following:

Clears and processes any writes that do not need a response, then it finds the next
response to send out (if any)

Builds the response, makes sure the channel is free, then places the new response on the
channel.

If no more responses are available to be sent, the process waits until responses arrive.

The command following command changes the channel’s SThreadBusy signal at the next delta
cycle:

t pP- >put SThr eadBusy(m cur SThr eadBusy) ;

The following loop checks to see if the master’s MThreadbusy signal is true for our thread
(thread zero). As long as the master keeps this signal high, the slave must wait before sending a
new response on that thread.

nt hr eadbusy = t pP->get Mrhr eadBusy() ;
whil e (mhreadbusy & 1) {

t pP->ocpWait ();

nt hr eadbusy = t pP- >get MIhr eadBusy() ;
}

The following command will try to place the passed response unto the channel:

t pP- >st art OCPResponseBl ocki ng(resp);

If the channel is busy (that is, there is already a response on the channel waiting to be accepted,
the command will block until the response can be placed on the channel. Note that this command
returns once the response has been placed on the channel, but before the response has been
accepted by the master.

The following is the complete code for the Response Thread Process.

76

t enpl at e<t ypenane Tdat ad >
voi d Sl ave<Tdat adl >: : responseThr eadProcess()

{

OCPResponse p<Td> resp,

sc_tinme send_ti ne;
sc_tinme Cur Ti ne;
unsi gned int nt hr eadbusy;

t pP->ocpWai t ();

/1 main | oop
while (true) {

L L R e R R
/1 (1) Find a response to place on the channe

/1 W are single threaded - al ways choose thread zero:
int selectedThread = O;

/1l Get to next response (wait for one, if necessary).

/1l First, clear any stale wite latency waits
m ResponseQueue. pur gePl acehol ders();

/1 Can we free SThreadBusy??
if (msthreadbusy && (m cur SThreadBusy==1) &&
(m_ResponseQueue.length() < mlimtreqg_max)) {
/1 Qur queue has been shortened. C ear threadBusy.
m _cur SThr eadBusy = 0;
t pP- >put SThr eadBusy(m cur SThr eadBusy) ;

}

/1 Get the next request off of the queue
m ResponseQueue. dequeueBl ocki ng(resp. SResp, resp. Shat a, send_ti ne);
resp. SThreadl D = sel ect edThr ead,;

/1 check if we still need to wait
CurTime = sc_tine_stanmp();
if (send_tinme > CurTine) {
t pP->ocpWait ((send_tinme.value() - CurTine.value())/1000);
}

if (mdebug os ptr) {
(*m debug os_ptr) << "DB (" << nane() << "):
<< "slave wait time ="
<< send_tinme.val ue() << endl

/1 The response could be a place hol der response
/1 used to inplenent wite latency. If this is the case,
/1 skip the rest of the steps.

if (resp.SResp == OCP_SRESP_NULL) {

if (mdebug os ptr) {
(*m debug os _ptr) << "DB (" << nane() << "):

77

<< "finished Wite Latency waiting." << endl
} else {

L
/1 (2) is MrhreadBusy?
R LR R R

i f (m_nthreadbusy) {
nt hr eadbusy = t pP->get Mrhr eadBusy() ;
whil e (mhreadbusy & 1) {
t pP->ocpWait ();
nt hr eadbusy = t pP->get MIhr eadBusy() ;

}
}
e e L
/1 (3) return a response
L T

if (mdebug os ptr) {
(*m debug _os _ptr) << "DB (" << nane() << "):
<< "send response.” << endl
(*m.debug _os_ptr) << "DB (" << name() << "):
<< " t =" << sc_sinulation_tine() << endl
(*m debug os ptr) << "DB (" << nanme() << "):
<< " SResp: " << resp. SResp << endl
(*m.debug _os_ptr) << "DB (" << name() << "):
<< " SData: " << resp. SData << endl
}

/1 Send out the response
t pP- >st art OCPResponseBl ocki ng(resp);

}

/1 We must be able to clear ThreadBusy now as we just sent a
/1 request (or cleared a wite |atency)
if (msthreadbusy && (m cur SThreadBusy==1) &&
(m ResponseQueue.length() < mlimtreqg_mx)) {

/1 Qur queue has been shortened. C ear threadBusy.

m _cur SThr eadBusy = 0;

t pP- >put SThr eadBusy(m cur SThr eadBusy) ;
} else {

assert (" Sl ave shoul d have been able to clear SThreadBusy");
}

/1 wait until next cycle to send out the next response (if any)
t pP->ocpWait ();

78

6.3.7. The Sideband Thread Process

This slave process demonstrates how the sideband signals on the channel may be exercised. The
code below reads the MError signal and then uses that to set the SError signal. This process also
periodically changes the SInterrupt and SFlag signals as well.

The following is the complete code for the Sideband Thread Process.

/1 Exercises the sideband signals by setting themw th a recurring pattern
/1 Also | oops back error signal fromthe Master if both Master and Sl ave
/1 versions (Merror and SError) are configured into the channel

t enpl at e<t ypenanme Tdat ad >

voi d Sl ave<Tdat aCl >: : exer ci seSi debandThr eadPr ocess()

/1 Systematically send out sideband signals on any signals that are
attached to us.

t pP- >ocpWai t (10);

i nt tweakCounter =0;

bool hasMerror = m OCPPar anP- >nerror;

bool hasSError = m OCPPar anP- >serror;

bool next SError = fal se;

bool hasSlI nterrupt = m OCPParanP->i nterrupt;

bool nextSInterrupt = fal se;

bool hasSFl ag = m OCPPar anP- >sf | ag;

i nt nunBFl ag = m OCPPar anP- >sf| ag_wdt h;

unsi gned int nextSFlag = O;

unsi gned int maxSFlag = (1 << nunBFl ag) -1;

/1 main | oop

while (true) {
/1 wait 10 cycles
t pP- >ocpWai t (10);

/1 Now count through ny sideband changes
t weakCount er ++;

/1 Drive SError every tine we are called
if (hasSError) {
if (hasMerror) {
/1 loop MError back through SError
next SErr or =t pP- >Sget MError () ;
t pP- >Sput SEr r or (next SError);

} else {
/1 Toggle SError
next SError = ! next SError;

t pP- >Sput SEr r or (next SError);

}

/1 Drive Slnterrupt
if (hasSInterrupt) {
/1 Drive every other time we are called
if (tweakCounterd®2 == 0) {
/1 Toggle Slnterrupt
next SInterrupt = !'nextSlnterrupt;

79

t pP- >Sput Sl nt er rupt (next Sl nt err upt) ;
}

/1 Drive SFl ag
i f (hasSFlag) {
/1 Drive every fourth tine we are called
if (tweakCounter%l == 0) {
next SFl ag += 1;
i f (nextSFlag > naxSFl ag) {
next SFlag = O;
}

t pP- >Sput SFl ag(next SFI ag) ;
}

}
} // end while
}

6.3.8. Template Instantiation

The final line of the S| ave. cc file makes sure that the compiler creates an instance of the
Slave template for the OCP_TL1_SI GNAL_CL type defined in the gl obal s. h header file.
The final line is as follows:

i e e T
/1 explicit instantiation of the Slave tenplate class
i e
tenplate class Slave< OCP_TL1_SIGNAL_CL >;

6.4. The Main Program

The mai n. cc program processes its command line options with the
process_comand_| i ne() function, then reads in the configuration parameters for the
channel, master, and slave. The configuration files are converted into the STL maps in the
readMapFr onFi | e() function. The mai n. cc program then creates a channel and uses the
new channel configuration map to configure it. The program then does the same for the master
and slave. Finally, it connects the master to the channel and the slave to the channel.

Once the model has been build, the mai n. cc program calls the SystemC function:

sc_start(sinulation_end_time, SCNS);

that runs the simulation for si mul at i on_end_t i me nano-seconds. After the simulation has

completed, some minimal reporting is done.

The following is the complete code of the mai n. cc program.

80

LEEEEEEEEE i

/1

/1 Sinple Main to read in Map data fromfiles
/1 and then use that to configure and connect
/1 a master and sl ave.

/1

FHEEEEEEEE

#i
#i
#i
#i
#i
#i
#i

#i

#i
#i
#i
#i
#i

ncl
ncl
ncl
ncl
ncl
ncl
ncl

ncl

ncl
ncl
ncl
ncl
ncl

#def i
#def i

#def i
#def i

#def i
#def i

ude
ude
ude
ude
ude
ude
ude

ude

ude
ude
ude
ude
ude

ne
ne

ne
ne

ne
ne

<map>
<set >
<string>
<al gorit hne
<stdi o. h>
<stdlib. h>
<i ostreane

"systent. h"

"mast er. h"
"s| ave. h"

"ocp_tl1l data_cl.h"
"ocp_tl_paramcl.h"
"ocp_tl 1 channel.h"
OCP_CLOCK_PERI OD 1
OCP_CLOCK TIME_UNIT SC NS
MASTER CLOCK_PERI OD 1

MASTER CLOCK_TIME_UNIT SC_NS

SLAVE_CLOCK_PERI CD 1
SLAVE_CLOCK_TIME_UNIT SC_NS

voi d process_comand_| i ne(int argc,

char* argv[],

string& ocp_parans_fil e_nane,
string& master_parans_fil e_nane,
string& slave parans_file_nane,
doubl e& simul ation_end_tine,
bool & debug_dunp,

string& debug fil e_nane)

/1 get the ocp paraneters file name
ocp_parans_file_name = "";
if (argc > 1) {

}

string file_nane(argv[1]);
ocp_parans_file _name = fil e_nane;

/1 get the master parameters file nane

master _parans_file_nane = ;
if (argc > 2) {

string file_nane(argv[2]);
master _parans_file name = fil e_nane;

81

}

}

/1 get the slave paraneters file nane
sl ave_parans_file_name = ""
if (argc > 3) {
string file_nane(argv[3]);
slave_parans _file nane = file_nane;

}

/1 get the sinulation end tine
simul ati on_end_tine = 1000;
if (argc > 4) {
sinmulation_end _tinme = (double) atoll (argv[4]);
}

/1 do we dunp out a log file?

debug_dunp= fal se;

debug file _nanme = "";

if (argc > 5) {
string file_nane(argv[5]);
debug file_name = file_nane;
debug _dunp = true;

voi d readMapFronFil e(const string &ryFil eNanme, MapStringType &myPar anivap)

{

map

}

i nt

/1 read pairs of data fromthe passed file
string |eftside;
string rightside;

/1 (1) open the file
ifstreaminputfile(nyFileName.c _str());
assert(inputfile);

/1 set the formatting
inputfile.setf(std::ios::skipws);

/1 Now read through all the pairs of values and add themto the passed

while (inputfile) {

inputfile >> | eftside;

inputfile >> rightside;

nmyPar am\vap. i nsert (std:: nake_pair (| eftside, rightside));
}

/1 Al done, close up
inputfile.close();

sc_main(int argc, char* argv[])

OCP_TL1_ Channel < OCP_TL1_ Dat aCl <OCPCHANNELBi t 32, OCPCHANNELBI t 32> >*

pCCP;

Mast er < OCP_TL1_ Dat aC <OCPCHANNELBI t 32, OCPCHANNELBI t 32> >* pMast er
Sl ave< OCP_TL1 Dat aC <OCPCHANNELBI t 32, OCPCHANNELBi t 32> >* pSl ave;
MapStri ngType ocpPar amvap;

82

MapStri ngType nast er Par amvap;
MapStri ngType sl avePar anvap;

doubl e simul ation_end_ti re;
bool debug_dunp;

string ocpPar anti | eNane;
string mast er Par anti | eNane;
string sl avePar anti | eNane;
string dunp_fil e_nane;

of stream debugFi | e;

R e
/1 (1) process command |ine options
/1 and read ny paraneters
e

process_conmand_| i ne(argc, ar gv, ocpPar anfi | eNane, nmast er Par anfi | eNane,
sl avePar anFi | eNane, si mul ation_end_ti ne, debug_dunp, dunp_fil e_nane);

if (! ocpParanfileNanme.enmpty()) {
readMapFr onti | e(ocpPar anti | eNamre, ocpPar anivap) ;
}

if (! masterParantil eName.enpty()) {
r eadMapFr onti | e(mast er Par anti | eNane, mast er Par anivap) ;
}

if (! slaveParantil eNane.enmpty()) {
readMVapFr onti | e(sl avePar anfi | eName, sl avePar amivap) ;
}

/1 open a trace file

i f (debug_dump) {
cout << "Debug dunpfilenane: " << dunp_file_nane << endl
debugFi | e. open(dunp_file_name.c_str());

L e
/1 (2) Create the OCP Channel
e e

pOCP = new OCP_TL1 Channel < OCP_TL1 Dat aC <OCPCHANNELBI t 32,
OCPCHANNELBI t 32> >

("ocp0",true,true, true, NULL, OCP_CLOCK PERI OD, OCP_CLOCK TI ME_UNI T, "ocp0. ocp");
pCOCP- >set Conf i gur at i on(ocpPar amvap) ;

L e
/1l (3) Create the Master and Sl ave
A L L E R

pMaster = new Master< OCP_TL1 DataC <OCPCHANNELBI t 32, OCPCHANNELBI t 32>
>("master", MASTER CLOCK PERI OD, MASTER CLOCK TIME_UNIT, O, &debugFile);

pSl ave = new Sl ave< OCP_TL1 Dat aCl <OCPCHANNELBI t 32, OCPCHANNELBI t 32>
>("slave", SLAVE CLOCK PERI OD, SLAVE CLOCK TIME UNIT, 0, Ox3FF, &debugFile);

83

/1 (4) connect channel, naster, and slave, & clock

I e e R R
pMast er - >i pP(*pQOCP) ;

pSl ave- >t pP(*pCCP) ;

e L
/1 (5) start the sinulation
[l m e
sc_start(sinulation_end_time, SCNS);

A

cout << "main program finished at
<< sc_tinme_stanp().to_doubl e() << endl;

sc_sinctontext* sc_curr_sincontext = sc_get_curr_sincontext();

cout << "delta_count: " << dec << sc_curr_sinctontext->delta_count ()
<< endl;
cout << "next _proc_id: " << dec << sc_curr_sintontext->next_proc_id()
<< endl;
return (0);

84

7. EXAMPLES USING OCP SPECIFIC TL2 CHANNEL AND API

The two examples described in this section demonstrate the use of the OCP specific TL2
channel. The first example illustrates a single-threaded OCP communication between an OCP
master and an OCP slave. Both are using the TL2 specific API to model the protocol.

The second example shows a more complex example in which a multi-threaded master
communicates with a multi-threaded slave via the OCP TL2 channel.

All the concerned files for these examples are located in ‘t | _sc/ exanpl es/ocp_tl2’. A
README file details how to compile and run the code.

7.1. Example # 1

In this example, a simple TL2 master communicates with a simple TL2 slave. The OCP
parameters describing the channel are stored in the ' ocpPar ans' file. The master uses an
OCP specific TL2 master port to connect the channel, and the slave uses an OCP specific TL2
slave port. These ports allow modules to perform access to all the TL2 API functions and events
available (see section 5).

The master and the slave use an ' OCPRequest G p' structure to pass/get all the request
signals to the channel, and an ' OCPResponse@ p' structure to store/send the response
signals.

Both master and slave are non-pipelined modules, which use one single thread to handle requests
and responses.

The communication between the master and the slave is composed of the following sequences:

7.1.1. Master Sequence

* Master sends a 10-length WRITE burst to the slave using
sendOCPRequest Bl ocki ng(). Only one chunk is used (i.e. transaction is atomic).

* Master sends a 10-length READ burst to the slave using
sendOCPRequest Bl ocki ng(). Only one chunk is used (i.e. transaction is atomic).

* Master waits and get the corresponding response using two successive
get OCPResponseBl ocki ng() calls catching 5-length chunks.

* Master performs a complete 20-length WRITE transaction using the serialized method
'OCPWriteTransfer()'. This call includes the following phases:

0 request send

0 request acknowledge

85

* Master performs a complete 20-length READ transaction using the serialized method
'OCPReadTransfer()'. This call includes the following phases:

0 request send

(@)

request acknowledge
0 response reception

0 response acknowledge

7.1.2. Slave sequence

» Slavereceives a 10-length WRITE burst from the master, and stores the received data in
an internal array.

» Slave receives a 10-length READ burst from the master, and sends the response using
two consecutive response chunks (5-length each) with a different 'SRespInfo' signal
value.

» Slavereceives a 20-length WRITE burst from the master, and stores the received data in
an internal array.

» Slavereceives a 20-length READ burst from the master, and sends the response using

one response call.

7.2. Example #2

In this example, a multi-threaded TL2 master communicates with a multi-threaded TL2 slave.
The OCP parameters describing the channel are stored in the ‘ocpPar ans_conpl ex’ file.

7.2.1. Slave Description

The TL2 slave emulates a '3 threads' OCP slave. It uses two SystemC threads, one for requests
and one for responses. The request SC_THREAD catches every request, computes the response
and stores it in one of the three response queues, depending on the ThreadID of the request.
Then, the response SC_ THREAD issues responses to the master. The slave acts as a memory: a
write request updates an internal memory array, and a read request reads a cell of this array.
The slave accepts some parameters, described in the ‘slaveParams’ files:

* latencyX

* limitreq_enable

* limitreq max

86

These parameters are described in section 6.1.3 of the OCP API documentation. Note that for
TL2, delays are not expressed in terms of clock cycles but as absolute timings (unit is SC_NS in
the slave).

7.2.2. Master Description

The TL2 master emulates a '3 threads' master. It sends requests labelled with a MThread ID
varying from 0 to 2. Depending on the current thread, each request targets a different location in
the target memory space (no overlap between thread operations). The master uses two SystemC
threads, one for the requests and one for the responses.

The master accepts some parameters, described in the ‘masterParams’ file:
* mrespaccept delay
* mrespaccept fixeddelay

* command cycles

The first two parameters are described in section 6.1.3. Note that for TL2, delays are not
expressed in terms of clock cycles but as absolute timings (unit is SC_NS in the master).
'Command_cycles' specifies the number of times the predefined TL2 requests sequence is sent.

8. DEBUGGING YOUR MODEL USING SOCCREATOR® TOOLS

The main debugging tool available for the OCP channel model is the OCP monitor output. The
OCP monitor is activated by passing a file name for the OCP monitor output when the channel is
constructed. (See section 4.1 for more details about the channel constructor.) If the OCP monitor
is used, the channel will print out its current state at the end of every OCP clock cycle.

The resulting OCP Monitor file can be processed with “ocpdis,” a tool that is available separately
from the channel, which reformats the data for easy reading. The tool “ocpcheck,” also available
separately, processes the OCP Monitor data and checks that the OCP channel followed the OCP
protocol.

87

9. SIDEBAND SIGNALS

The access methods for sending and receiving sideband signals are shared by both the base
generic class API and the OCP TLI1 specific API. The commands described in this section may
be used with either API. The following sections also describe the proposed methods for the
sideband signal API.

9.1. MError Signal

This section describes the methods for the MError signal.

voi d Mput MError (bool nextValue) //Proposed for 1.0.2
Caller: Master

Purpose: Changes the next value of the MError signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

bool SgetMError() const //Proposed for 1.0.2
Caller: Slave

Purpose: Returns the current value of the MError signal in the channel.

const sc_event & Si debandMError Event () const
/' Proposed for 1.0.2

Caller: Slave

Purpose: Returns the event associated with the MError signal. This event is
triggered whenever the MError signal changes to a new value. Note that a
call toset MError ()orreset MError () will not always result in the
event Si debandMEr r or Event occurring. For example, if the current
value of METrror is true and the function set MEr r or () is called, the
event Si debandMEr r or Event will not be triggered because the
current value (true) and the next value (true) are the same. This method is
called by the slave.

88

9.2. MFlag Signal

This section describes the methods for the MFlag signal.

voi d Mout MFl ag(i nt next Val ue) [/ Proposed for 1.0.2
Caller: Master
Purpose: Changes the next value of the MFlag signal. If the OCP channel is

asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

int Sget MFl ag() const /1 Proposed for 1.0.2
Caller: Slave
Purpose: Returns the current value of the MFlag signal in the channel.

const sc_event & Si debandMFl agEvent () const
/1 Proposed for 1.0.2

Caller: Slave

Purpose: Returns the event associated with the MFlag signal. This event is triggered
whenever the MFlag signal changes to a new value.

9.3. SError Signal

This section describes the methods for the SError signal.

voi d Sput SError(bool nextValue) //Proposed for 1.0.2
Caller: Slave

Purpose: Changes the next value of the SError signal. If the OCP channel is
asynchronous, change is immediate. If the channel is synchronous, the
change occurs at the next update.

89

bool MyetSError() const //Proposed for 1.0.2
Caller: Master

Purpose: Returns the current value of the SError signal in the channel.

const sc_event & Si debandSError Event () const
/' Proposed for 1.0.2

Caller: Master

Purpose: Returns the event associated with the SError signal. This event is
triggered whenever the SError signal changes to a new value. Note that a
calltoset SError () orreset SError () will not always result in the
event Si debandSEr r or Event occurring. For example, if the current
value of SError is true and the function set SEr r or () is called, the
event Si debandSEr r or Event will not be triggered because the
current value (true) and the next value (true) are the same.

9.4. SFlag Signal

This section describes the methods for the SFlag signal.

voi d Sput SFl ag(i nt nextVal ue) /1 Proposed for 1.0.2
Caller: Slave
Purpose: Changes the next value of the SFlag signal. If the OCP channel is

asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

int Mget SFl ag() const /] Proposed for 1.0.2
Caller: Master
Purpose: Returns the current value of the SFlag signal in the channel.

90

const sc_event & Si debandSFl agEvent () const
/1 Proposed for 1.0.2

Caller: Master
Purpose: Returns the event associated with the SFlag signal. This event is triggered
whenever the SFlag signal changes to a new value.
9.5. Sinterrupt Signal

This section describes the methods for the Sinterrupt signal.

void Sput SInterrupt(bool nextValue) //Proposed for 1.0.2
Caller: Slave

Purpose: Changes the next value of the Sinterrupt signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

bool MetSInterrupt() const [/ Proposed for 1.0.2
Caller: Master

Purpose: Returns the current value of the Sinterrupt signal in the channel.

const sc_event & Si debandSI nt errupt Event () const
[/ Proposed for 1.0.2

Caller: Master

Purpose: Returns the event associated with the SInterrupt signal. This event is
triggered whenever the Sinterrupt signal changes to a new value. Note
that a calltoset SI nterrupt () orreset Sl nterrupt () will not
always result in the event Si debandSI nt er r upt Event occurring.
For example, if the current value of Sinterrupt is true and the function
set Sl nterrupt () is called, the event
Si debandSlI nt er r upt Event will not be triggered since the current
value (true) and the next value (true) are the same.

91

9.6. Control Signal

This section describes the methods for the Control signal.

bool SysputControl (int nextValue) //Proposed for 1.0.2

Caller: System side

Purpose: If ControlBusy is false, this function changes the next value of the
Control sideband signal. If the ControlBusy signal is part of the OCP
channel configuration, and the current value of ControlBusy is true, the
next value of the Control sideband signal will not be changed and the
set Cont r ol () method will return false. Otherwise, the method will
return true and will set the next value of the Control signal. If the OCP
channel is asynchronous, the change to the Control signal is immediate. If
the channel is synchronous, the change occurs at the next update.

int CgetControl () const /] Proposed for 1.0.2
Caller: Core side
Purpose: Returns the current value of the Control signal in the channel.

const sc_event & Si debandControl Event () const
[/ Proposed for 1.0.2

Caller: Core side

Purpose: Returns the event associated with the Control signal. This event is
triggered whenever the Control signal changes to a new value.

92

9.7. ControlWr Signal

This section describes the methods for the ControlWr signal.

voi d Sysput Control W(bool nextVal ue)
/1 Proposed for 1.0.2

Caller: System side

Purpose: Changes the next value of the ControlWr signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

bool CgetControl W() const /'l Proposed for 1.0.2
Caller: Core side

Purpose: Returns the current value of the ControlWr signal in the channel.

const sc_event & Si debandControl W Event () const
/'l Proposed for 1.0.2

Caller: Core side
Purpose: Returns the event associated with the ControlWr signal. This event is
triggered whenever the ControlWr signal changes to a new value.
9.8. ControlBusy Signal

This section describes the methods for the ControlBusy signal.

voi d Cput Control Busy(bool nextValue)//Proposed for 1.0.2
Caller: Core side

Purpose: Changes the next value of the ControlBusy signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

93

bool Sysget Control Busy() const /'l Proposed for 1.0.2
Caller: Core side

Purpose: Returns the current value of the ControlBusy signal in the channel.

const sc_event & Si debandControl BusyEvent () const
/'l Proposed for 1.0.2

Caller: System side

Purpose: Returns the event associated with the ControlBusy signal. This event is
triggered whenever the ControlBusy signal changes to a new value. Note
that a call to set Cont r ol Busy() orreset Control Busy() will
not always result in the event Si debandCont r ol BusyEvent
occurring. For example, if the current value of ControlBusy is true and
the function set Cont r ol Busy() is called, the event
Si debandCont r ol BusyEvent will not be triggered because the
current value (true) and the next value (true) are the same.

9.9. Status Signal

This section describes the methods for the Status Signal.

void Cput Status(int nextValue) //Proposed for 1.0.2
Caller: Core side

Purpose: This function changes the next value of the Status sideband signal. If the
OCP channel is asynchronous, the change to the Status signal is
immediate. If the channel is synchronous, the change occurs at the next

update.
int SysgetStatus() const /' Proposed for 1.0.2
Caller: System side
Purpose: Returns the current value of the Status signal in the channel.

94

bool readStatus(int& currentValue) const

Caller:

Purpose:

/1 Proposed for 1.0.2
System side

If the channel signal StatusBusy is false, then this function sets the
passed parameter cur r ent Val ue to the current value of the Status
signal in the channel. Then the event Si debandSt at usRdEvent is
triggered and the function returns true. If the channel signal StatusBusy
is true, the read is not performed, the event

Si debandSt at usRdEvent is not triggered, and the function returns
false.

const sc_event & Si debandSt at usEvent () const

Caller:

Purpose:

/' Proposed for 1.0.2
System side

Returns the event associated with the Status signal. This event is
triggered whenever the Control signal changes to a new value.

9.10. StatusRd Signal

This section describes the methods for the StatusRd Signal.

voi d Sysput St at usRd(bool nextValue) //Proposed for 1.0.2

Caller: System side

Purpose: Changes the next value of the StatusRd signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

bool Cget StatusRd() const [/ Proposed for 1.0.2

Caller: Core side

Purpose: Returns the current value of the StatusRd signal in the channel.

95

const sc_event & Si debandSt at usRdEvent () const
/1 Proposed for 1.0.2

Caller: Core side
Purpose: Returns the event associated with the StatusRd signal. This event is
triggered whenever the ControlWr signal changes to a new value.
9.11. StatusBusy Signal

This section describes the methods for the StatusBusy signal.

voi d Cput St at usBusy(bool nextValue) //Proposed for 1.0.2
Caller: Core side

Purpose: Changes the next value of the StatusBusy signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

bool Sysget St atusBusy() const [/ Proposed for 1.0.2
Caller: System side
Purpose: Returns the current value of the StatusBusy signal in the channel.

const sc_event & Si debandSt at usBusyEvent () const
[/ Proposed for 1.0.2

Caller: System side

Purpose: Returns the event associated with the StatusBusy signal. This event is
triggered whenever the StatusBusy signal changes to a new value. Note
that a call to set St at usBusy() orreset St at usBusy() will not
always result in the event Si debandSt ausBusyEvent occurring. For
example, if the current value of StatusBusy is true and the function
set St at usBusy/() is called, the event
Si debandSt at usBusyEvent will not be triggered because the
current value (true) and the next value (true) are the same.

96

