

1

A SystemC™ Generic
Transaction Level Communication Channel

V2.0 – December 12, 2003

Document version 1.0

2

Revision History

Version Date Comment

1.0 1/15/03 Initial Generic Transaction Channel

1.0.1 3/31/03 First revision for OCP 1.0 channel

1.1 7/18/03 OCP 1.0 Sideband and layer adapters included

2.0 12/12/03 Adds updated request, response, and data handshake phase
methods. Also adds additional sideband single methods. Adds
descriptions of configurable master and slave models. Adds
descriptions of OCP TL1 specific Enum Types and Template
Classes. Updates ParamCl parameter names to conform to the
parameter names in the OCP specification. Adds information
about the TL2 data class and TL2 specific channel model.
Deprecates “*PE” methods.

DISCLAIMER

This OCP-IP document is provided "as is" with no warranties whatsoever, including any
warranty of merchantability, noninfringement, fitness for any particular purpose, or any
warranty otherwise arising out of any proposal, specification or sample. OCP-IP disclaims
all liability for infringement of proprietary rights, relating to use of information in this
document. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

OCP International Partnership (OCP-IP) disclaims all warranties and liability for the use of
this document and the information contained herein and assumes no responsibility for any
errors that may appear in this document, nor does OCP-IP make a commitment to update
the information contained herein.

Contact the OCP-IP office to obtain the latest revision of this document.

Questions regarding this document or membership in OCP-IP may be forwarded to:

 OCP-IP
 www.ocpip.org
 E-mail: admin@ocpip.org
 Phone: +1 503-291-2560
 Fax: +1 503-297-1090

 OCP-IP Technical Support
 techsupport@ocpip.org

All product names are trademarks, registered trademarks, or servicemarks of their
respective owners.

Copyright © 2003 OCP-IP

3

Table of Contents
1. Introduction ...5
2. Channel’s Directory structure and Internal Class Hierachy ..7
3. Transaction Channel...8

3.1. Generic Channel Interfaces ...8
3.2. OCP Specific Transaction Channel and Interfaces..8
3.3. Working with Different Channel Versions...8

4. Base Generic Model Application Interface (API)...9
4.1. Constructor Parameters of the Base Generic Channel..9

4.1.1. Base Generic Class Definition ..10
4.1.2. Generic Master Interface (tl_master_if.h)..10
4.1.3. Generic Slave Interface (tl_slave_if.h) ..16

4.2. OCP TL1 Data Class..21
4.2.1. Enumerator Types...22
4.2.2. Mandatory (and Generic) Data Class Member Functions...22
4.2.3. OCP Request Group Signals ..23
4.2.4. OCP Data Request Group Signals..24
4.2.5. OCP Response Group Signals ...24
4.2.6. Example: Address Transfer Methods..25
4.2.7. TL1 versus RTL...25
4.2.8. Example: Sending and Receiving Write Transactions ..26
4.2.9. Example: Sending and Receiving Read Responses...27

4.3. OCP TL2 Data Class [Initial Draft] ..28
4.3.1. OCP Request Group Signals ..30
4.3.2. OCP Data Request Group Signals..33
4.3.3. OCP Response Group Signals ...33
4.3.4. Example: Sending and Receiving (Burst) Write Transactions36
4.3.5. Example: Sending and Receiving (Burst) Read Responses.....................................37

5. Generic Channel Examples ..39
5.1. Generic Channel TL1 Examples ..39

5.1.1. TL1 Example #0 ..39
5.1.2. TL1 Example #1 ..40
5.1.3. TL1 Example #2 ..40
5.1.4. TL1 Example #3 ..41
5.1.5. TL1 Example #4 ..41

5.2. Generic Channel TL2 Examples ..41
5.2.1. TL2 Example #0 ..41
5.2.2. TL2 Example #1 ..44

5.3. Additional Generic Channel Examples...46
5.3.1. Simple TL1..46
5.3.2. Simple TL2..46
5.3.3. Simple Layer-3 ..46

6. Auxiliary Classes...47
6.1. CommCl (tl_comm_cl.h)...47
6.2. ParamCl (ocp_tl_param.h) ...47

6.2.1. Constructor..47
6.2.2. Parameter Member Variables ...47

4

List of Figures
Figure 1. TL1 Channel Class Hierarchy ...7
Figure 2. OCP TL1 Specific Channel Class Hierarchy (Inherited from TL Channel Class

Hierarchy) Proposed for 1.0.2 ...7
Figure 3. OCP Channel Directory Tree ..7
Figure 4. Usage of the chunk-related data class members ..29
Figure 5. Transactions and RTL Equivalent Timing of Simple TL1 with Asynchronous

SCmdAccept ...46
Figure 6. Transactions and RTL Equivalent Timing of Simple TL1 with Synchronous

SCmdAccept ...46
Figure 7. Transactions and RTL Equivalent Timing of Simple TL2 ..46
Figure 8. Transactions of Simple TL3...46

5

1. INTRODUCTION

This document describes a generic SystemC transaction level communication channel, applied
with Open Core Protocol (OCP). The generic model is an extension to the original SystemC™
Generic Transaction Level Communication Channel specification (See www.systemc.org,
Contributions area for more information). The generic channel is maintained for providing
backward compatibility with models designed with the old generic channel model released by
Open SystemC Initiative (OSCI) and older OCP channel versions released by OCP-IP
(www.ocpip.org). The current release contains an updated channel model and a data class, which
implements data fields required by OCP protocol.

The generic channel contains protocol primitives (functions and events), which can be used to
build protocol-specific channel models. Although OCP protocol support is included in the data
class of the channel, it is not recommended that the naked generic channel be used directly in
new designs. The generic channel is used as a basis for OCP specific transaction channel. This
channel adds an OCP API on the generic channel and OCP data class. The OCP specific channel
models are described in another document: A SystemC™ OCP Transaction Level
Communication Channel specification.

This document categorizes the communication abstraction levels according to those introduced
in the white paper SystemC™ based SoC Communication Modeling for the OCP™ Protocol.
(You can obtain a copy of this paper at www.ocpip.org.) The abstraction levels are as follows:

1. Transaction Level

• Layer-3: Message Layer
Model untimed functionality
Point-point communication

• Layer-2: Transaction Layer

Model/analyze SoC architecture
Start SW development
Estimate timing

6

• Layer-1: Transfer Layer

Cycle true but faster than RTL
Detailed analysis, develop low-level SW

2. Pin Level

• Layer-0: Register Transfer Level

“TLx” and Layer-x are used for Transaction Level, Layer-x interchangeably. For example, the
acronym “TL1” stands for Transaction Level One.

SystemC is a C++ modeling environment designed for both cycle based and higher level
modeling of systems. This document assumes a basic understanding of the SystemC language.
For more information on SystemC, go to www.systemc.org.

The OCP is a non-proprietary, openly licensed, core-centric protocol for on-chip
communications. To use the OCP channel model correctly, the user would be well served to have
a solid understanding of the OCP protocol. The protocol is described in the Open Protocol
Specification manual, which is available at: www.ocpip.org. The chapters on “Overview,”
“Theory of Operation,” “Signals and Encoding,” and “Protocol Semantics” are essential for
understanding the OCP protocol and for using the OCP channel model.

7

2. DIRECTORY STRUCTURE AND CLASS HIERACHY

The generic channel is a SystemC module (sc_module), which uses “request/update” methods
for delta cycle delayed updates of the channel state. The base generic model contains a pointer to
the type of data that moves through the channel. In this case, the data is in the Open Core
Protocol (OCP) Transaction Layer One or Two (TL1, TL2) format. Any type of data, even non-
OCP data, can move through the generic base channel.

The Figure 1 shows the internal class hierarchy for the generic channel, with TL1 data class. The
channel becomes TL2 by using TL2 data class instead.

TL_Channel
<OCP_TL1_DataCl>

sc_module

Virtual
Abstract TLslaveIF

<OCP_TL1_DataCl>

Virtual
Abstract TLmasterIF
<OCP_TL1_DataCl>

SdirectIF
<TL1_DataCl>

MdirectIF
<TL1_DataCl>

Virtual
sc_interface

UpdateCl

sc_prim_channel

ParamCl CommClOCP_TL1_DataCl
<DataType, AddrType>

"ReqEnd"
Method
Process

"ResEnd"
Method
Process

"Update" Method
Process

Figure 1. Generic Channel Class Hierarchy

8

3. TRANSACTION CHANNEL

This section describes the generic channel with the following goal: the channel maintains the
"generic" interface of the OSCI transaction channel and adds the ability to move data in the OCP
format across the channel. The OCP data class is included, since the generic channel does not do
anything as such. The data class can be replaced with another one to support a different interface
protocol.

3.1. Generic Channel Interfaces

The base generic transaction channel (in header file tl_channel.h) is a new version of the
generic OSCI transaction channel, with minor additions explained in the next section. The
channel provides synchronization for transactions, and it is used with all transaction layers. The
channel can support both clocked and event-driven master and slave modules. The channel is
templatized over a data class, which in this case contains member functions for implementing a
version of the OCP protocol (in header files ocp_tl1_data_cl.h and
ocp_tl2_data_cl.h).

The channel synchronization methods and events are visible to the masters and slaves through
SystemC interface definitions (in files tl_master_if.h, tl_slave_if.h and
tl_direct_if.h).

The implementation of the channel is somewhat different from the original generic channel.
There is better support for clocked TL1 masters and slaves. Also, easier integration with RTL
models is provided. The channel implementation is not meant to be user-modifiable and should
not matter to users. For those interested, more information can be found in the channel heading
and in-line comments.

9

4. Generic Model Application Interface (API)

This section describes the API of the generic communication channel. In particular, it describes
the constructor parameters of the channel and the methods of the channel’s master and slave
interface. This is followed by a description of the methods of the data classes for the OCP
protocol.

4.1. Constructor Parameters of the Base Generic Channel

The base generic channel has the following constructor:

TL_Channel(sc_module_name name, bool Synchron = false,
 bool SyncEvent = true, bool DefaultEvent = true)

name specifies the name of the module (channel) instance.

Synchron specifies whether the channel’s internal states and events are updated
synchronously (Synchron = true) or asynchronously
(Synchron = false). OCP users always set Synchron to true.
Asynchronous updating is slightly faster. In some applications, the
update mechanism makes no difference. Synchron = true
should always be used with OCP data classes. Only used for the
generic channel.

SyncEvent specifies whether the channel’s events for the synchronization of
Mput*() and Sget*() as well as Sput*() and Mget*()
methods are triggered (SyncEvent = true) or not (SyncEvent
= false). OCP users always set SyncEvent to true. The channel
may be faster if no synchronization events are used. Use the default
value (= true) unless you know exactly what you are doing.).
SyncEvent is only used for the generic channel.

DefaultEvent specifies whether the channel should trigger the default event. The
channel may be faster if no default event is triggered.
DefaultEvent can be false if none of the attached modules are
sensitive to port events. Use the default value (= true) unless you
know exactly what you are doing.

10

4.1.1. Base Generic Class Definition

The base generic channel is templatized over the data class. The data class itself is templatized
over the data type and the address type. In the following subsections, TdataCl denotes the
template data class argument (template<class TdataCl> class TL_Channel).

4.1.2. Generic Master Interface (tl_master_if.h)

This section describes the interface methods for the master.

TdataCl * GetDataCl()

Purpose: Gets the pointer to the data class of the channel.

Return: Returns the pointer immediately.

bool MgetSbusy()

Purpose: Status of the slave-busy semaphore. getSbusy() indicates whether the
slave has released the previous request.

Return: Immediately returns true if the slave has not responded to the last request
event. Returns false if it has.

Events: No event.

bool MgetSbusyData()

Purpose: Status of the data-busy semaphore. MgetSbusyData() indicates
whether the slave has released the previous data request. Used only with
TL1 protocols, which have separate data and request phases.

Return: Immediately returns true if the slave has not responded to the last data
request event, and false if it has.

Events: No event.

11

bool MputWriteRequestBlocking()

Purpose: Issues a write request to the slave. The master may write to the channel’s
data class any time outside this call by either copying or pointer passing.
MgetSbusy() always returns false when this call is used.

Return: Suspends calling thread. Resumes and returns after the slave has released
the request channel. Returns true at success, false at failure.

Events: Triggers the default event, which can be sensed by the slave (and master).

bool MputWriteRequest()

Purpose: Issues a write request to the slave. MputWriteRequest() should be
called only after MgetSbusy() returns false; that is, the slave is no
longer using the channel data buffer. Both copy and pointer-passing put
data methods can be used, but the master must not reuse the passed data
buffer until MgetSbusy() is false.

Return: Returns immediately. Master must suspend itself to allow slave process to
run. Returns true if channel accepts the request, false if not.

Events: Causes the default event to slave (and master). No event when the return
value is false.

bool MputDataRequestBlocking()

Purpose: Issues a data write request to slave. The master may write to the data
handshake group of the channel’s data class any time outside this call by
either copying, or pointer passing. MgetSbusyData() always returns
false when this call is used. Used only with TL1 protocols, which have
separate data and request phases.

Return: Suspends the calling thread. Returns after the slave has released the data
request channel. Returns true on success, false on failure.

Events: Triggers the default event, which can be sensed by the slave (and master).

12

bool MputDataRequest()

Purpose: Issues a data write request to the slave. MputDataRequest() should
be called only after MgetSbusy() returns false; that is, the slave is no
longer using the channel data buffer. Both copy and pointer-passing put
data methods can be used, but the passed data buffer must not be re-used
by the master until MgetSbusyData() is false.
MputDataRequest() is used only with TL1 protocols, which have
separate data and request phases.

Return: Returns immediately. The master must suspend itself to allow the slave
process to run. Returns true if channel accepts the request, false if not.

Events: Causes the default event to slave (and master). No event when return-
value is false.

bool MputReadRequestBlocking()

Purpose: Issues a read request to the slave. The master may read the response data
only after MgetResponse*() call returns true. MgetSbusy() always
returns false when this call is used.

Return: Returns after the slave has released the request channel. Returns true on
success and false on failure. Suspends calling thread.

Events: Causes the default event to slave (and master).

bool MputReadRequest()

Purpose: Issues a read request to the slave. Should be called only when
MgetSbusy() returns false. The master may read the response data only
after an MgetResponse*() call returns true.

Return: Returns immediately. The master must suspend itself to allow the slave
process to run. Returns true if channel accepts the request, false if not.

Events: Causes the default event to slave (and master). No event if return value is
false.

13

bool MgetResponseBlocking(bool Release)

Purpose: Gets the response from the slave and suspends the calling thread.
MgetResponseBlocking() can only be called after
Mput*Request(). After this command returns, the channel’s data class
will contain the response data.

Parameters: If Release is true, the response channel is released immediately;
otherwise, the response channel is not released until Mrelease() is
called.

Return: Returns true at success and false on failure. Returns after the slave has
called the SputResponse() method.

Events: No event.

bool MgetResponse(bool Release)

Purpose: Gets the response from the slave. MgetResponse() can only be called
after Mput*Request(). If this command returns true, the channel’s
data class will contain the response data.

Parameters: If Release is true, the response channel is released immediately.
Otherwise the response channel is not released until Mrelease() is
called.

Return: Returns immediately. Returns true after the slave has responded to the
read request, false before. master must suspend itself to allow the slave
process to run.

Events: No event.

14

bool MgetResponsePE() deprecated

Purpose: Gets the response from the slave. MgetResponsePE() can only be
called after Mput*Request(). The channel’s data class contains valid
data, and the channel’s data pointer can be used by the master when this
call returns true, and before Mput*Request() is called again. Use only
in conjunction with MreleasePE(). Use only with clocked processes.

Parameters: None.

Return: Returns immediately. Returns true after the slave has responded to the
read request, false before. master must suspend itself to allow the slave
process to run.

Events: No event.

void Mrelease()

Purpose: Releases the response channel. Note that the calling thread is not
suspended, and the slave thread cannot run until the master suspends itself.

Return: Returns immediately. No return value.

Events: No event.

void MreleasePE() deprecated

Purpose: Preemptively release the response channel; that is, without knowing if
there is a response. This is used in fully synchronous TL1 masters, which
do not want to block the response. The primary purpose of this method is
to allow fully synchronous TL1 masters use single-cycle response
handshake (no channel events are needed). This causes SgetMbusy()
return true right after the SputResponse*() call. MreleasePE()
causes MgetRequest() to return false, so the existence of active
response must be tested with MgetRequestPE(). See the examples in
Section 5, “SystemC Examples” for further guidance.

Return: Returns immediately. No return value.

Events: No event.

15

void Mrelease(sc_time Time)

Purpose: Releases the response after Time time units. Note that the calling thread is
not suspended, and the slave thread cannot run until the master suspends
itself. This call is primarily used with TL2 and TL3.

Return: Returns immediately. No return value.

Events: No event.

void MregisterDirectIF(MdirectIF<TdataCl > *MasterDirectIF)

Purpose: This method registers the direct interface of the master at the channel. It
must be called if the master has implemented the SputDirect()
method, which can be used by the slave to directly read or write data to the
master without affecting the timing of the system.

Return: Returns immediately. No return value.

Events: No event.

bool MputDirect(int MasterID, bool IsWrite,
 Td* DataPointer, Ta Address, int NumWords)

Purpose: This method belongs to the direct interface of the slave, and it must be
implemented in the slave. This method allows the master to directly read
or write data to the slave without affecting the timing of the system. If the
slave has implemented this method, the slave must register the method at
the channel by calling the SregisterDirectIF() method of the
channel.

Return: Returns immediately, returning true on success and false on failure. A
return value of false usually means that the slave has not implemented this
method; that is, the slave does not support direct access.

Events: No event.

16

4.1.3. Generic Slave Interface (tl_slave_if.h)

This section describes the methods for the slave’s interface.

TdataCl * GetDataCl()

Purpose: Gets the pointer to the data class of the channel.

Return: Returns the pointer immediately.

bool IsWrite()

Purpose: Indicates whether current request is a read or a write transfer. Other
request types can be communicated over the data class (in case of OCP,
through the MCmd field).

Return: false = Read transfer

 true = Write transfer

bool SgetMbusy()

Purpose: Status of the master busy semaphore. This method indicates whether the
master has released the previous request.

Return: Immediately returns true if master has not received the last response event,
and false if it has.

Events: No event.

bool SgetRequestBlocking(bool Release)

Purpose: Blocks execution until the master signals a request event. Channel data
can be used until the slave thread suspends; that is, meets a wait() call.

Parameters: If Release is true, the request channel is released immediately;
otherwise, the request channel is not released until Srelease() is
called.

Return: Suspends the calling thread. Returns after a read or write event from the
master.

Events: No events.

17

bool SgetRequest(bool Release)

Purpose: Gets a request. If true, channel data can be used until the slave thread
suspends; that is, meets a wait() call.

Parameters: If Release is set true, the request channel is released immediately;
otherwise it is not released until Srelease() is called.

Return: Returns true when the master request is pending, returns immediately.

Events: No events.

bool SgetRequestPE() deprecated

Purpose: Gets a request. If true, channel data can be used until the slave thread
suspends; that is, meets a wait() call. Use only with SreleasePE().
Use only with clocked processes.

Parameters: None.

Return: Returns true when a master request is pending, returns immediately.

Events: No events.

bool SgetDataRequest(bool Release)

Purpose: Gets a data request. If true, channel data can be used until the slave thread
suspends; that is, it meets a wait() call.

Parameters: If Release is set to true, the data request channel is released
immediately; otherwise, it is not released until SreleaseData() is
called. Used only with TL1 protocols, which have separate data and
request phases.

Return: Returns true when master data request is pending, returns immediately.

Events: No events.

18

bool SgetDataRequestPE() deprecated

Purpose: Gets a data request. If true, channel data can be used until the slave thread
suspends; that is, it meets a wait() call. Use this method only with
SreleaseDataPE(). Use only with clocked processes.

Parameters: None.

Return: Returns true when a master data request is pending, returns immediately.

Events: No events.

bool SgetDataRequestBlocking(bool Release)

Purpose: Blocks execution until the master signals a data request event. Channel
data can be used until the slave thread suspends; that is, meets a wait()
call.

Parameters: If Release is true, the request channel is released immediately;
otherwise, the data request channel is not released until
SreleaseData() is called. Used only with TL1 protocols, which have
separate data and request phases.

Return: Suspends calling thread. Returns after read or write event from the master.

Events: No events.

bool SputResponseBlocking()

Purpose: Issues a response to the master. SputResponseBlocking() can be
called only after a request is detected by SgetRequest(). The response
data can only be written between these get and put calls.

Return: Suspends calling thread. Returns after the master called Mrelease().
Returns true at success and false at failure.

Events: Causes a response event to master.

bool SputResponse()

Purpose: Issues a response to the master. SputResponse() can be called only
after a request is detected by SgetRequest() or

19

SgetRequestBlocking(). The response data can only be written
between these get and put calls.

Return: Returns immediately. Returns true if channel accepts the response, false if
not.

Events: Causes a response event to master. No event if return value is false.

void Srelease()

Purpose: Releases the request channel. Note that the calling thread is not suspended,
and the master thread cannot run until the slave suspends itself.

Return: Returns immediately. No return value.

Events: No events.

void SreleasePE() deprecated

Purpose: Releases request channel preemptively. See MreleasePE().

Return: Returns immediately. No return value.

Events: No events.

void Srelease(sc_time Time)

Purpose: Releases the request channel after Time time units. Note that the calling
thread is not suspended, and the master thread cannot run until the slave
suspends itself.

Return: Returns immediately. No return value.

Events: No events.

void SreleaseData()

Purpose: Releases the data request channel. Note that the calling thread is not
suspended, and the master thread cannot run until the slave suspends itself.
Used only with TL1 protocols, which have separate data and request
phases.

Return: Returns immediately. No return value.

Events: No events.

20

void SreleaseDataPE() deprecated

Purpose: Releases the data request channel preemptively. Used only with TL1
protocols, which have separate data and request phases. See
MreleasePE().

Return: Returns immediately. No return value.

Events: No events.

void SreleaseData(sc_time Time)

Purpose: Releases the data request channel after Time time units. Note that the
calling thread is not suspended, and the master thread cannot run until the
slave suspends itself. Used only with TL1 protocols, which have separate
data and request phases.

Return: Returns immediately. No return value.

Events: No events.

void SregisterDirectIF(SdirectIF<TdataCl > *SlaveDirectIF)

Purpose: Registers the direct interface of the slave at the channel. This method must
be called if the slave has implemented the MputDirect() method,
which can be used by the master to directly read or write data to the slave
without affecting the timing of the system

Return: Returns immediately. No return value.

Events: No event.

21

bool SputDirect(int SlaveID, bool IsWrite, Td* DataPointer,
 Ta Address, int NumWords)

Purpose: This method belongs to the direct interface of the master and must be
implemented in the master. This method allows the slave to directly read
or write data to the master without affecting the timing of the system. If
the master has implemented this method, the master must register the
method at the channel by calling the MregisterDirectIF() method
of the channel.

Return: Returns immediately, returning true on success and false on failure. A
return of false usually means that the master has not implemented this
method; that is, the master does not support direct access.

Events: No event.

4.2. OCP TL1 Data Class

An OCP TL1 channel can be created by using the generic channel class template with an
argument of the OCP_TL1_DataCl class, which is provided in the
tl_sc/ocp_tl1_data_cl.h header file. The OCP_TL1_DataCl class contains private
member variables and public access methods such that, by using them, OCP dataflow
transactions and sideband signals1 can be exchanged between the master and slave ports.

The generic channel with the OCP_TL1_DataCl described in this section is not the same as the
OCP specific TL1 channel. The purpose of the generic channel with OCP data class is to provide
a generic channel that can move data in the OCP format. This would be very useful if one
wanted to connect a generic core to one that used the OCP interface. Like the base generic
channel, the generic channel with OCP_TL1_DataCl has no notion of time or cycles. The OCP
specific TL1 channel, on the other hand, strives to be both OCP correct and nearly cycle-
accurate. For more information on the OCP TL1 specific channel, see the document A
SystemC™ OCP Transaction Level Communication Channel.

In general, for each master-driven OCP signal, M*, there is a corresponding MputM*() driving
method. In addition, SgetM*() methods also exist for those signals and can be used by the
slave to sample the signals. Similarly for slave-driven OCP signals, S*, corresponding
SputS*() and MgetS*() methods are provided. As for the OCP control and status sideband
signals, access methods for the system side and the core side are distinguished by having the
“Sys” prefix and the “C” prefix, respectively.

This naming scheme makes the behavior of most of the channel methods obvious. For those that
are not, some explanation is given in the following sections.

1 An early version of the access methods for handling OCP sideband signals are included in the provided OCP TL1
data class, but may change in the future releases. There is no support for OCP test signals at this time.

22

4.2.1. Enumerator Types

Two enumerator types OCPMCmdType and OCPSRespType are defined in the header file with
the encoding as specified for the OCP MCmd signal and SResp signal, respectively. The
encodings are named according to the OCP specification (See www.ocpip.org).

The MCmd signal is encoded as follows:

 enum OCPMCmdType {
 OCP_MCMD_IDLE = 0,
 OCP_MCMD_WR,
 OCP_MCMD_RD,
 OCP_MCMD_RDEX,
 OCP_MCMD_RESERVED4,
 OCP_MCMD_WRNP,
 OCP_MCMD_RESERVED6,
 OCP_MCMD_BCST
 };

The SResp signal is encoded as follows:

 enum OCPSRespType {
 OCP_SRESP_NULL = 0,
 OCP_SRESP_DVA,
 OCP_SRESP_RESERVED2,
 OCP_SRESP_ERR
 };

4.2.2. Mandatory (and Generic) Data Class Member Functions

There are several methods used by the channel itself and hence must always be defined. These
methods do not follow the general naming scheme described in the previous subsection because
they are not used through masters or slaves. The private member variable m_MCmd[1 –
m_ReqToggle] carries the value shown on the OCP MCmd signal at the beginning of a cycle (or
transaction). The three toggle methods ToggleRequest(), ToggleDataRequest(), and
ToggleResponse() trigger an update process of the data class’ private member variables of
the OCP request phase, data phase, and response phase, respectively. The update process can be
either an inertial update or an immediate update, depending on the setting of the m_Synchron
variable. The inertial update ensures that current data members are never updated at the same
clock edge they are read. This is required in TL1 for independence of thread execution order.
The methods are

 bool IsWriteRequest()
 {
 return((m_MCmd[1 – m_ReqToggle] == OCP_MCMD_WR) ? true : false);
 }

 void SetWriteRequest()
 {
 m_MCmd[m_ReqToggle] = OCP_MCMD_WR;
 }

23

 void SetReadRequest()
 {
 m_MCmd[m_ReqToggle] = OCP_MCMD_RD;
 }

4.2.3. OCP Request Group Signals

The request group signals can be written by the master (Mput*) when the MgetSbusy()
channel call returns false before Mput*Request*(). Typically, the request group signals are
written at a rising clock edge or a small delay later (the latter one with RTL/TLM cosimulation).

The signals can be read by the slave (Sget*) when the SgetRequest() channel function
returns true at a clock rising edge or at channel default event. The methods for the OCP request
group signals are as follows:

 void MputMAddr(Ta a)
 Ta SgetMAddr()

 void MputMAddrSpace(int a)
 int SgetMAddrSpace()

 void MputMBurst(OCPMBurstType a)
 OCPMBurstType SgetMBurst()

 void MputMByteEn(int a)
 int SgetMByteEn()

 void MputMCmd(OCPMCmdType a)
 OCPMCmdType SgetMCmd()

 void MputMConnID(int a)
 int SgetMConnID()

 void MputMData(Td d)
 void SgetMData(Td &d)
 Td SgetMData() // This is a different form of SgetMData()

 void MputMThreadID(int a)
 int SgetMThreadID()

Warning: SgetMCmd() returns the OCP MCmd field and resets the MCmd
signal; that is, the SgetMCmd() is not persistent. This behavior,
although different from the OCP MCmd signal in the RTL level, is
alright because the data class calls are not used for synchronization.

24

4.2.4. OCP Data Request Group Signals

The data request group signals can be written by the master (Mput*) when the
MgetSbusyData() channel call returns false before MputDataRequest*(). Typically,
the request group signals are written at a rising clock edge or a small delay later (the latter one
with RTL/TLM co-simulation). These signals are to be used with OCP interfaces, which have
data handshake enabled. Notice that the MputMDataHS() and SgetMDataHS() are used
instead of MputMData() and SgetMData(). Those calls should not be intermixed.

The signals can be read by the slave (Sget*) when the SgetDataRequest() channel
function returns true, at a clock rising edge, or at channel default event. The methods for the
OCP data request group signals is as follows:

 void MputMDataHS(Td d)
 void SgetMDataHS(Td &d)
 Td SgetMDataHS()

 void MputMDataValid(bool a)
 bool SgetMDataValid()

 void MputMDataThreadID(int a)
 int SgetMDataThreadID()

Warning: SgetMDataValid() returns the OCP MDataValid field and
resets the master’s MDataValid signal; that is, the
SgetMDataValid() is not persistent. This behavior, although
different from OCP MDataValid signal in RTL level, is all right
because the data class calls are not used for synchronization.

4.2.5. OCP Response Group Signals

The response group signals can be written by the slave (Sput*) when the SgetMbusy()
channel call returns false, before Sput*Response*(). Typically, the request group signals
are written at a rising clock edge or a small delay later (the latter one with RTL/TLM co-
simulation).

The signals can be read by the master (Mget*) when the MgetResponse() channel function
returns true, at a clock rising edge, or at channel default event. The methods for the OCP
response group signals is as follows:

 void SputSData(Td d)
 void MgetSData(Td &d)
 Td MgetSData()

 void SputSResp(OCPSRespType a)
 OCPSRespType MgetSResp()

25

 void SputSThreadID(int a)
 int MgetSThreadID()

Warning: MgetSResp() returns the OCP SResp field and changes the slave’s
SResp signal; that is. MgetSResp() is not persistent. This
behavior, although different from OCP SResp signal in the RTL
level, is alright because the data class calls are not used for
synchronization.

4.2.6. Example: Address Transfer Methods

The address transfer methods are shown here as an example to illustrate how the private member
variables, m_MAddr[0] and m_MAddr[1], are set when their access methods are called. The
MputMAddr() method is used to drive a new address onto the OCP MAddr signal. The
SgetMAddr() method is used to sample the OCP MAddr signal. Note that the data class is
templatized over the address type (Ta). This allows switching between, for example, 32-bit
addresses and 64-bit addresses without rewriting code. The toggling happens at least one delta
cycle after the transaction is initiated through the channel. This provides the necessary inertia so
that data does not just trickle through the channel. The following are the example methods.

void MputMAddr(Ta a)
 {
 m_MAddr[m_ReqToggle] = a;
 }

 Ta SgetMAddr()
 {
 return m_MAddr[1 – m_ReqToggle];
 }

4.2.7. TL1 versus RTL

The TL1 protocol sequences are similar to RTL sequences, with only small differences. It is
possible to recreate accurate OCP timing diagrams with correctly constructed masters and slaves.
The OCP fields internal to the data class do not follow OCP timing accurately because the
generic channel synchronization must be combined with the data class in order to implement the
full protocol. For example, the MCmd field is reset when SgetMCmd() is called. Therefore, to
recreate the MCmd signal for RTL, SgetRequest(), Srelease(), and the clock must be
used.

Because the TL1 event model is far simpler than the RTL event model for purposes of simulation
speed, arbitrary RTL delays and signal glitches cannot be fed into TL1 channel. The data fields
must remain stable once the transaction is committed. This causes extra difficulties for creating
RTL-TLM converters similar to cosimulation of RTL and cycle-based models. The difficulties
arise from the very essence of the abstraction levels and are unavoidable in our opinion. The
RTL side of the RTL-TLM converter must take care of glitch removal.

26

4.2.8. Example: Sending and Receiving Write Transactions

The following pseudo-code segments show, as an example, how an OCP write transaction can be
sent over an OCP channel using the OCP_TL1_DataCl class’ public methods. It is assumed
that this is a posted write transaction, thus, no response is sent.

 // ----------------------------
 // on the master sending side
 // ----------------------------
 wait(); // Wait for clock rising edge

 MputMConnID(0);
 MputMThreadID(0);
 MputMAddr(0x30);
 MputMData((Td)wr_data);

 MputWriteRequest();

 // ----------------------------
 // on the slave receiving side
 // ----------------------------

 wait(); // Wait for clock rising edge

 if (SgetRequest(1)) {
 int mconnid = SgetMConnID();
 int mthreadid = SgetMThreadID();
 Ta address = SgetMAddr();
 OCPMCmdType mcmd = SgetMCmd();
 Td wr_data = SgetMData();
 }

Calling the MputMConnID(), MputMThreadID(), and MputMAddr() methods sets the
OCP MConnID, MThreadID, and MAddr signals, respectively. The address passed into the
MputMAddr() method should be on an OCP-word boundary. The MputWriteRequest()
call indicates that an OCP write transaction is going to be delivered. The MputMData()
method is used to send the write data onto the OCP channel.

On the slave side, the SgetMConnID(), SgetMThreadID(), SgetMAddr(), and
SgetMCmd() methods are called to retrieve values of the OCP MConnID, MThreadID,
MAddr, and MCmd signals, respectively. The SgetMData()method is used to receive the
write data.

Note that the slave sees the request at the next clock edge after the master has called
MputWriteRequest().

27

4.2.9. Example: Sending and Receiving Read Responses

The following pseudo-code segments show, as an example, how a single-OCP-word read
transaction can be exchanged between the master and slave of an OCP connection.

 // ----------------------------
 // on the master sending side
 // ----------------------------
 // sending a read request

 wait(); // Wait for rising clock edge

 MputMAddr(0x30);
 MputReadRequest();
 …..

 // receiving a read response and data
 if (MgetResponse(1)) {
 OCPSRespType sresp = MgetSResp();
 if (sresp == OCP_SRESP_DVA) {
 Td rd_data = MgetSData();
 }
 }

28

 // ----------------------------
 // on the slave side
 // ----------------------------
 wait(); // Wait for rising clock edge

 if (SgetRequest(1)) {
 Ta address = SgetMAddr();
 OCPMCmdType mcmd = SgetMCmd();
 if (mcmd == OCP_MCMD_RD) {
 // Response code (data valid)
 SputSResp(OCP_SRESP_DVA);
 SputSData(rd_data);
 SputResponse();
 }
 }

This time the MputMCmd() and MputBurstLen() calls together send a single-OCP-word
read request to the OCP channel. When the slave receives a request, it first checks whether it is a
read request. In this example, after the read data is obtained, the slave sends back an OCP DVA
response and the single-OCP-word read data by calling the SputSResp() and SputSData()
methods, respectively.

On the master side, when a read response has arrived, the master uses the MgetSResp() and
MgetSData() methods to retrieve the status of the response and the read data, respectively.

4.3. OCP TL2 Data Class [Initial Draft]

An OCP TL2 channel can be created by using the generic channel class template with an
argument of the OCP_TL2_DataCl class, which is provided in the
tl_sc/ocp_tl2_data_cl.h header file. The OCP_TL2_DataCl class contains private
member variables and public access methods such that, by using them, OCP dataflow
transactions and sideband signals2 can be exchanged between the master and slave ports. Three
enumerator types, OCPMCmdType, OCPSRespType, and OCPMBurstType, are also defined
in the header file, with the encoding as specified for the OCP MCmd signal, the SResp signal,
and the MBurst signal3, respectively. (See section 4.2 “OCP TL1 Data Class.”)

In general, for each master-driven OCP signal, M*, there is a corresponding MputM*() driving
method. In addition, SgetM*() methods also exist for those signals and can be used by the
slave to sample the signals. Similarly for slave-driven OCP signals, S*, corresponding
SputS*() and MgetS*() methods are provided. As for the OCP control and status sideband
signals, the access methods for the system side signals are distinguished with “Sys” prefix, and
the core side signals are distinguished with a “C” prefix. This naming scheme makes the
behavior of most of the channel methods obvious. For those that are not, some explanation is
given in the following sections.

2 The access methods for handling OCP sideband signals are included in the provided OCP TL2 data class but may
change in the future. There is no support for OCP test signals at this time.
3 The current definition follows the OCP-IP 1.0 specification.

29

In general, to the user, the TL2 data class looks very similar as the TL1 with a few additional
members. The TL2 transaction typically contains a full OCP burst. The data fields are set at the
beginning of the burst and stay constant during the burst. For example, the address field of the
transaction is the first address of the burst, and the slave derives the other addresses from the
MBurstSeq field.

Because some fields, like byte enable, may change at each transfer of a burst, it is possible to
break the burst into several transactions (sometimes called “chunks”) when necessary. To do so,
four additional data class members that are TL2-specific have been added: MreqChunkLen,
SrespChunkLen, MreqChunkLen, MReqChunkLast, and ‘SrespChunkLen. The
MreqChunkLen and SrespChunkLen members are used to specify the chunk length for both
request and response transfers. The MReqChunkLast and SRespChunkLast members
indicate if the current chunk is the last one of a complete OCP request/response burst or not.
Usage of these members is illustrated on Figure 4.

Master sending an OCP request burst (BurstLength=’10’):
3 request chunks with different ‘MReqInfo’ values

Slave sending an OCP response burst (BurstLenght=’10’):
2 response chunks with different ‘SRespInfo’ values

Chunk 1 Chunk 2 Chunk 3

• MReqInfo = ‘0x41 ’
• MReqChunkLen = 4
• MReqChunkLast = false

• MReqInfo = ‘0x63 ’
• MReqChunkLen = 4
• MReqChunkLast = false

• MReqInfo = ‘0x12 ’
• MReqChunkLen = 4
• MReqChunkLast = true

Chunk 1 Chunk 2

• SRespInfo = ‘0x52 ’
• SRespChunkLen = 5
• SRespChunkLast = false

• SRespInfo = ‘0x37 ’
• SRespChunkLen = 5
• SRespChunkLast = true

Figure 2. Usage of the chunk-related data class members

30

4.3.1. OCP Request Group Signals

The request group signals can be written by the master (Mput*) right before the
Mput*Request*() call. The data protection toggle switches state at each request. The slave
may read the signals (Sget*) right after the SgetRequest*() returns true.

The following are the methods for the OCP request group signals:

void MputMAddr(Ta a)
Ta SgetMAddr()

void MputMAddrSpace(unsigned int a)
unsigned int SgetMAddrSpace()

void MputAtomicLen(unsigned int a)

Purpose: Sets Request Transaction data length. Can be used in lieu of w-parameter
of MputMData() function. Not part of OCP 1.0 but necessary for TL2 to
work.

unsigned int SgetAtomicLen()

Purpose: Returns the Request Transaction data length. Can be used in lieu of w-
parameter of SgetMData() function. Not part of OCP 1.0, but
necessary for TL2 to work.

void MputMBurstSeq(OCPMBurstType a)
OCPMBurstSeqType SgetMBurstSeq()

void MputMByteEn(int a)
int SgetMByteEn()

void MputMCmd(OCPMCmdType a)
OCPMCmdType SgetMCmd()

void MputMConnID(int a)
int SgetMConnID()

void MputMThreadID(unsigned int a)
unsigned int SgetMThreadID()

void MputMBurstLength(unsigned int a)
unsigned int SgetMBurstLength()

void MputMBurstPrecise (bool a)
bool SgetMBurstPrecise ()

31

void MputMBurstSingleReq(bool a)
bool SgetMBurstSingleReq()

void MputMReqInfo (unsigned int a)
unsigned int SgetMReqInfo ()

void MputMReqLast(bool a)
bool SgetMReqLast()

void MputMData(Td* d, unsigned int w = 1,
 bool last_of_a_burst = true)

Parameters:

 d is the pointer to data array
 w is the data array length (request chunk length)
 last_of_a_burst is the last datum of a burst transfer is sent with this

transaction

Td* SgetMData(unsigned int& w, bool& last_of_a_burst)

Parameters:

 w is the data array length (request chunk length)
 last_of_a_burst is the last datum of a burst transfer is sent with this

chunk.

Return: Pointer to data array

Td* SgetMData(int& w)

Parameters: w is the data array length (request chunk length)

Return: Pointer to data array

void MputMReqChunkLen(unsigned int w)

Purpose: Sets the request chunk length. MputMReqChunkLen() can be used in
instead of w parameter of the MputMData() function (for example,. to
send a multiple-chunk READ request). This method is not part of OCP
2.0, but necessary for TL2 to work.

32

unsigned int SgetMReqChunkLen()

Purpose: Returns the request chunk length. SgetMReqChunkLen() can be used
instead of w parameter of the SgetMData() function (for example, to get a
multiple-chunk READ request). This method is not part of OCP 2.0 but is
necessary for TL2 to work.

void MputMReqChunkLast(bool w)

Purpose: Useful for informing a slave that this chunk is the last of a complete
request burst. MputMReqChunkLast() can be used instead of the
last_of_a_burst parameter of the MputMData() function (for
example, to send a multiple-chunk READ request). This method is not
part of OCP 2.0 but is necessary for TL2 to work.

unsigned int SgetMReqChunkLast()

Purpose: Determine if this chunk is the last of a complete request burst. Can be used
in lieu of last_of_a_burst-parameter of SgetMData() function (e.g. to get a
multiple-chunk READ request). This method is not part of OCP 2.0 but is
necessary for TL2 to work.

Notes: SgetMCmd() returns the OCP MCmd field and resets the MCmd signal;
that is, SgetMCmd() is not persistent. This behavior, although different
from the OCP MCmd signal in the RTL level, is alright because the data
class calls are not used for synchronization

 MputMCmd() should only be used in conjunction with
MputMRequest() channel call because MputMWriteRequest()
or MputReadRequest() calls overwrite the MCmd signal.

4.3.1.1. Timestamp Methods

These methods can be used by a master to indicate duration of a request packet. The
MputEndTime() method simulates the time it takes the master to output the current
transaction. In other words, the end time is the earliest time that the request packet is
completely through the interface if the slave does not perform any throttling. The time
stamps do not delay channel events. They are meant for additional information so that the
master can calculate the release time instant. The timestamp methods are as follows:

 void MputEndTime(sc_time tt)
 {
 ReqEndTime = tt;
 }

33

 sc_time SgetEndTime()
 {
 return ReqEndTime;
 }

4.3.2. OCP Data Request Group Signals

At the TL2 level, Request and Data Request phases are merged, hence most of the data request
signals are redundant and do no need to be accessed. However, users could use the two following
methods to model the special MDataInfo signal that may be different from the MReqInfo in
some implementations.

 void MputMDataInfo(unsigned int a)
 unsigned int SgetMDataInfo()

4.3.3. OCP Response Group Signals

The response group signals can be written by the slave (Sput*) right before the
Sput*Request*() call. The data protection toggle switches the state at each response. The
master may read the signals (Mget*) right after the MgetRequest*() returns true.

34

The methods for the OCP response group signals are as follows:

void SputSDataInfo (unsigned int a)
unsigned int MgetSDataInfo ()

void SputSResp (OCPSRespType a)
OCPSRespType MgetSResp ()

void SputSRespInfo (unsigned int a)
unsigned int MgetSRespInfo ()

void SputSRespLast(bool a)
bool MgetSRespLast()

void SputSThreadID (unsigned int a)
unsigned int MgetSThreadID ()

void SputSData(Td* d, unsigned int w = 1,
 bool last_of_a_burst = true)

Parameters: d is the pointer to data array.
 w is the data array length (response chunk length).
 last_of_a_burst is the last datum of a burst transfer is sent with this
transaction.

Td* MgetSData(int& w, bool& last_of_a_burst)

Parameters: w is the data array length (response chunk length)
last_of_a_burst is the last cell of a burst transfer sent with this
transaction

Return: Pointer to data array

Td* MgetSData(unsigned int& w)

Parameters: w is the data array length (response chunk length)

Return: Pointer to data array

35

void SputSRespChunkLen(unsigned int w)

Purpose: Sets the response chunk length. SputSRespChunkLen() can be used
instead of the w parameter of the SputSData() function (for example,
to send a multiple-chunk WRITE non-post response). This method is not
part of OCP 2.0 but is necessary for TL2 to work.

unsigned int SgetSRespChunkLen()

Purpose: Returns the response chunk length. SgetSRespChunkLen() can be
used instead of the w parameter of the MgetSData() function (for
example, to get a multiple-chunk WRITE non-post request). This method
is not part of OCP 2.0 but is necessary for TL2 to work.

void SputSRespChunkLast(bool w)

Purpose: Useful for informing a master that this chunk is the last of a complete
response burst. SputSRespChunkLast() can be used instead of the
last_of_a_burst parameter of the SputSData() function (for
example,. to send a multiple-chunk WRITE non-post response). This
method is not part of OCP 2.0 but is necessary for TL2 to work.

unsigned int MgetSRespChunkLast()

Purpose: Determines if this chunk is the last of a complete response burst.
MgetSRespChunkLast() can be used instead of the
last_of_a_burst parameter of MgetSData() function (for
example, to get a multiple-chunk WRITE non-post response). This method
is not part of OCP 2.0 but is necessary for TL2 to work.

36

4.3.3.1. Timestamp Methods

These methods can be used by the slave to indicate duration of response packet. The
SputEndTime() method simulates the time it takes the slave to output the current
transaction. In other words, the end time is the earliest time the response packet is completely
through the interface, if the master does not do any throttling. The time stamps do not delay
channel events. They are meant for additional information so that the master can calculate the
release time instant. The timestamp methods are as follows:

 void SputEndTime(sc_time tt)
 {
 ResEndTime = tt;
 }

 sc_time MgetEndTime()
 {
 return ResEndTime;
 }

4.3.4. Example: Sending and Receiving (Burst) Write Transactions

The following pseudo-code segments are an example of how a 16-OCP-word write burst
transaction (made of only one chunk in this case) can be sent from (received by) the master
(slave) of an OCP channel using the public methods of the OCP_TL2_DataCl class. Assuming
this is a posted write transaction, thus, no response is exchanged.

// ----------------------------
// on the master sending side
// ----------------------------
MputMConnID(0);
MputMThreadID(0);
MputMAddr(0x30);
MputMCmd(OCP_MCMD_WR); //Not mandatory since MputWriteRequestBlocking()
 //is used

// assuming wr_data_ptr is pointed to the 16-word write data
unsigned int chunk_length = 16;
bool last_chunk_of_a_burst=true; // Burst is made of only one chunk
MputMData(wr_data_ptr, chunk_length, last_chunk_of_a_burst);

// the wr_data_ptr and its contest can only be changed after the transaction
// is committed
…..
MputWriteRequestBlocking();

// ----------------------------
// on the slave receiving side
// ----------------------------
if (SgetRequestBlocking(1)) {
 int mconnid = SgetMConnID();
 int mthreadid = SgetMThreadID();
 Ta address = SgetMAddr();

37

 OCPMCmdType mcmd = SgetMCmd();
 Td* wr_data_ptr = SgetMData(chunk_length,last_chunk_of_a_burst);

 // after done with the data pointer, need to commit this write transaction
 …
}

Calling the MputMConnID(), MputMThreadID(), and MputMAddr() methods sets up the
OCP MConnID, MThreadID, and MAddr signals, respectively. The address passed into the
MputMAddr() method should be on an OCP-word boundary. The MputMCmd() call indicates
that an OCP write transaction is going to be delivered. The MputMData() method is used to
send a 16-OCP-word chunk of write data of the write burst transaction onto the OCP channel;
plus, it is the last chunk of the burst transfer. (This is indicated by setting the last actual argument
to “true.”)

On the slave side, the SgetMConnID(), SgetMThreadID(), SgetMAddr(), and
SgetMCmd() methods are called to retrieve values of the OCP MConnID, MThreadID,
MAddr, and MCmd signals, respectively. The SgetMData() method is used to receive the
write data chunk pointer, plus, the data word length, and to tell whether or not this is the last
chunk of the current write burst transaction.

Note that for the MputMData() method and the SgetMData() method, only pointer passing
is allowed in this version. Therefore, the data pointer and its content should not be changed until
the transaction is committed (that is, released). This does not cause any problems because the
channel uses data toggling for protection. Copying transactions execute considerably slower and
require dynamic memory allocation in the channel.

4.3.5. Example: Sending and Receiving (Burst) Read Responses

The following pseudo-code segments show as an example how a single-OCP-word read
transaction can be exchanged between the master and slave of an OCP connection. It is also
assumed that this OCP connection is configured without the MConnID and MThreadID signals.

// ----------------------------
// on the master sending side
// ----------------------------
// sending a read request
MputMAddr(0x30);
MputMCmd(OCP_MCMD_RD);
MputMReqChunkLen(1); // chunk length
MputMReqChunkLast(true); Burst is made of only one chunk
MputReadRequest();
…..

// receiving a read response and data
if (MgetResponseBlocking(1)) {
 OCPSRespType sresp = MgetSResp();
 if (sresp == OCP_SRESP_DVA) {
 Td* rd_data_ptr = MgetSData(chunk_length,last_chunk_of_a_burst);
 }

38

}

// ----------------------------
// on the slave receiving side
// ----------------------------
if (SgetRequestBlocking(1)) {
 Ta address = SgetMAddr();
 OCPMCmdType mcmd = SgetMCmd();
 if (mcmd == OCP_MCMD_RD) {
 int chunk_length = SgetMReqChunkLen();
 bool last_chunk_of_a_burst = SgetMReqChunkLast();

 // returning a read response and data
 SputSResp(OCP_SRESP_DVA);

 // assuming rd_data_ptr is pointed to the single-word data
 SputSData(rd_data_ptr, chunk_length, last_chunk_of_a_burst);
 SputResponseBlocking()l
 }
}

This time the MputMCmd() and MputBurstLen() calls together send a single-OCP-word
read request to the OCP channel. When the slave receives a request, it checks whether it is a read
request first. If a read request is received, the slave retrieves the word length of this read request
using the SgetMGreqChunkLen() method. In this example, after the read data is obtained,
the slave sends back an OCP DVA response and the single-OCP-word read data by calling the
SputSResp() and SputSData() methods, respectively.

On the master side, when a read response arrives, the master uses the MgetSResp() and
MgetSData() methods to retrieve the status of the response and the read data, respectively.

Note that for the SputSData() method and the MgetSData() method, only pointer passing
is allowed for now.

39

5. GENERIC CHANNEL EXAMPLES

This section presents examples for each transaction layer. The implementations of the examples
can be found in the directories tl_sc/examples/generic_ocp_tl1 and
tl_sc/examples/generic_ocp_tl2. Except for the OCP_TL2_Bus, the examples
focus on the usage of the communication methods of the channel, not on functionality inside the
master/slave modules. The OC_TL2_Bus is an example implementation of a non-cycle-true bus.

The code of the example descriptions is not duplicated. Explanations are focused on the different
concepts. The code can be accessed in the directories mentioned above. The code for the generic
TL channel can be found in the root directory (tl_sc/include). The file names in that
directory start with “tl_”, indicating that this is generic code common to all layers. The user-
written and protocol-specific files start with “ocp_tlx_”, where “x” is 1, 2, or 3 depending on the
transaction layer of the example. The top level C++ files are named top_x.cpp. The C++ files for
the example master and slaves have a description at the beginning, which is worth reading.

5.1. Generic Channel TL1 Examples

TL1 examples are characterized by masters and slaves that have clock ports and use non-
blocking methods.

5.1.1. TL1 Example #0

The top level C++ file is called top_async.cpp. The example master and slave files are
ocp_tl1_master_async.cpp and ocp_tl1_slave_async.cpp. The example
illustrates a simple point-to-point connection involving one master, one channel instance, and
one slave.

Note: This example is for illustration purposes only. There is no guarantee that it
will behave as expected. Use at your own risk.

5.1.1.1. Master implementation

The master uses two threads: a request sending thread and a response receiving thread. The
request thread is clock driven and issues requests at pre-defined clock cycles. It uses the non-
blocking calls MputReadRequest() and MputWriteRequest(). The master’s
response thread is sensitive to the master port and is triggered once the slave has issued the
response. The response channel is released immediately, and because the thread is event-
triggered, this results to a single-cycle response. The response thread can be thought to be
level-triggered in RTL terms, sensitive to the SResp signal, and with the assumption that the
response group is stable once the response is issued. If you want to sample the response data
at the clock edge but handle the release mechanism asynchronously, see example #3
described in section 5.1.4.

40

5.1.1.2. Slave Implementation

The slave uses two threads: one request receiving thread and one response sending thread.
The request thread is sensitive to the default event of the channel. This is an asynchronous
response mechanism, allowing for responses in the same cycle as the request was issued.
Once the master has sent a request, the slave gets triggered. The slave retrieves the request
data and parameter. It stores them in a FIFO queue so that it can receive more than one
request before issuing a response. The request thread releases the request channel using the
Srelease(Time) call. The time between receiving the request and releasing the request
channel models the slave’s request acknowledge delay. Because the acknowledge delay is
modeled through a channel method (as opposed to an explicit wait() call in the request
thread), the slave request thread can continue execution. For read requests, the request thread
computes the response time (based on the time it acknowledged the request) and activates the
response thread. The request thread then waits for a new request. The response thread is
activated by an event triggered in the request thread. Additionally, the response thread has a
state variable indicating whether or not the event was triggered while the thread was busy
(for example, sending the response). Once the response thread has been activated, it checks
for correct timing and sends the response to the master.

This slave is totally asynchronous. It can be used as a model for implementing asynchronous
RAM modules.

5.1.2. TL1 Example #1

The top level C++ file is called top_async_hs.cpp. The example master and slave files are
ocp_tl1_master_async_hs.cpp and ocp_tl1_slave_async_hs.cpp. This
example is nearly identical with the previous one. The only difference is that here a data
handshake channel is used for transferring write data in a different phase from write commands.
Both master and slave have an extra thread for this purpose. The data handshake is similar to
request (command) handshake. This example uses asynchronous slave and separate threads, but
the data handshake can also be implemented completely synchronously and with a single thread.

Note: This example is for illustration purposes only. There is no guarantee that
it will behave as expected. Use at your own risk.

5.1.3. TL1 Example #2

The top level C++ file is called top_sync.cpp. The example master and slave files are
ocp_tl1_master_sync.cpp and ocp_tl1_slave_sync.cpp.

5.1.3.1. Master implementation

The master uses two threads: a request sending thread and a response receiving thread. The
request thread is clock driven and issues requests at pre-defined clock cycles. It uses non-
blocking MputReadRequest() and MputWriteRequest() calls. The master’s

41

response thread is also clocked. The master releases the response channel before as knows
there is a request. This results to a two-cycle response.

5.1.3.2. Slave Implementation

The slave uses two threads: one request receiving thread and one response sending thread.
The request thread is sensitive to the clock and works in the same manner as the master’s
response thread. The response thread is activated through an event the request thread throws.
The request thread tests if the master is ready for the response and waits for the next clock
edge if it is not. The response thread could also be completely clocked, resulting to an extra
cycle response delay.

5.2. Generic Channel TL2 Examples

TL2 examples are characterized by the following features:

 No clock ports

 Time is estimated

 Mostly blocking methods are used

There are two layer-2 examples: a point-to-point connection example and a 3-masters-1-bus-4-
slaves system. Note that the point-to-point connection is produced by the same master and slave
modules that are also used in the master-bus-slave system, proving that no bus is needed to
connect masters with slaves.

5.2.1. TL2 Example #0

The top level C++ file is called ocp_tl2_top0.cpp. The example master and slave files are
ocp_tl2_master.cpp and ocp_tl2_slave.cpp, respectively. The example has a
simple point-to-point connection involving one master, one channel instance, and one slave.
Depending on a random number, the master sends either read or write requests for a burst of data
to the slave.

5.2.1.1. Master Implementation

The master has the following constructor:

 OCP_TL2_Master(sc_module_name name,
 int ID,
 int Priority,
 bool Pipelined = false,
 bool WriteResponse = true,
 int ReadAcceptCycles = 0,

42

 int WriteAcceptCycles = 0,
 int ReadResponseCycles = 0,
 int WriteResponseCycles = 0)

 ID is a number identifying the master. ID must be unique among all masters attached to
the same bus.

 Priority is a positive number specifying the priority for bus access relative to the
other masters. Higher numbers means higher priority. Masters can have the same priority.

 Pipelined is a switch to change between non-pipelined and pipelined operation mode
of the bus.

 WriteResponse is a switch to enable/disable the sending of a response to a master’s
write request. Note that all modules involved in a system must use the same value.

 ReadAcceptCycles, WriteAcceptCycles, ReadResponseCycles, and
WriteResponseCycles specify the number of waiting cycles per OCP word by
which the master delays the acceptance of a response or the sending of a request,
respectively.

The master can be pipelined or non-pipelined, depending on a constructor parameter. In the
non-pipelined case, the master uses one thread, which handles request sending and response
receiving. In that case, a new request can only be sent if the response of the previous request
has been received. In the pipelined case, the master uses two threads: a request sending
thread and a response receiving thread. Sending requests and receiving responses are
completely independent from each other. The master sends requests at predefined time
instances and accepts responses whenever the slave sends one. Because blocking methods are
used, no sensitive list is needed. Time delays between sending two consecutive requests are
modeled through wait() statements. The same holds true for responses. The wait cycles
are configurable through constructor parameters.

The example master has an additional thread, called MasterD, which shows how to use the
direct access methods. To execute this thread, use the constructor of the master accordingly.

43

The master has the following timing:

 Write request transfer:

o Accept: wait NumWords * WriteAcceptCycles cycles

o Response: wait WriteResponseCycles cycles

 Read request transfer:

o Accept: wait ReadAcceptCycles cycles

o Response: wait NumWords * ReadResponseCycles cycles

Note that in the non-pipelined case the response is started after the request, while in the
pipelined case request and response are started in parallel.

5.2.1.2. Slave Implementation

The slave has the following constructor:

 OCP_TL2_Slave(sc_module_name name,
 int ID,
 Ta StartAddress,
 Ta EndAddress,
 bool Pipelined = false,
 bool WriteResponse = true,
 int ReadAcceptCycles = 0,
 int WriteAcceptCycles = 0,
 int ReadResponseCycles = 0,
 int WriteResponseCycles = 0)

 ID is a number identifying the slave. ID must be unique among all slaves attached to the
same bus.

 StartAddress is the start address of the slave’s memory region.

 EndAddress is the end address of the slave’s memory region. The bus requires 1K-
address alignment.

 Pipelined is a switch to change between non-pipelined and pipelined operation mode
of the bus.

 WriteResponse is a switch to enable/disable the sending of a response to a master’s
write request. Note that all modules involved in a system must use the same value.

 ReadAcceptCycles, WriteAcceptCycles, ReadResponseCycles, and
WriteResponseCycles specify the number of waiting cycles per OCP word that the
slave delays the acceptance of a request or the sending of a response, respectively.

44

The slave can be pipelined or non-pipelined, depending on a constructor parameter. In the
non-pipelined case, the slave uses one thread, which handles request receiving and response
sending. In that case, a new request can only be received after the response of the previous
request has been sent. In the pipelined case, the slave uses two threads: a request receiving
thread and a response sending thread. The slave uses blocking methods in both cases, so no
sensitivity list is necessary. In the pipelined case, the request thread accepts a request
whenever the master sends one. It then activates the response thread and is ready to receive
another request. Because requests and responses are not synchronized, the request parameters
are stored in a FIFO. This enables the slave to process several requests before sending a
response. If the FIFO is full, the request thread is suspended until a couple of responses have
been sent, and the FIFO is ready to store the new request parameters. The response thread
checks a state variable, indicating whether or not there are pending responses. If there are
none, the response thread waits for an event triggered by the request thread. Otherwise, the
response thread keeps sending responses.

The slave has the following timing:

 Write request transfer:

o Accept: wait NumWords * WriteAcceptCycles cycles

o Response: wait WriteResponseCycles cycles

 Read request transfer:

o Accept: wait ReadAcceptCycles cycles

o Response: wait NumWords * ReadResponseCycles cycles

Note that in the non-pipelined case the response is started after the request, while in the
pipelined case request and response are started in parallel.

5.2.2. TL2 Example #1

The top level C++ file is called ocp_tl2_top1.cpp. The example master and slave files are
again ocp_tl2_master.cpp and ocp_tl2_slave.cpp, respectively, which are
described in the previous section. Additionally, there is an example bus (file
ocp_tl2_bus.cpp). Example #1 models a master-bus-slave system with three master
instances and four slave instances. Depending on a random number, the masters send either read
or write requests for a burst of data to the slave. The master ID is a constructor parameter, which
controls the random number, the address that the masters send the requests to, and the burst
length.

45

5.2.2.1. Bus Implementation

The bus has the following constructor:

 OCP_TL2_Bus(sc_module_name name,
 int BusID,
 bool Pipelined = false,
 bool WriteResponse = true,
 int ReadWaitCycles = 0,
 int WriteWaitCycles = 0)

 BusID is a number identifying the bus. BusID must be unique among all busses in a
system.

 Pipelined is a switch that changes between non-pipelined and pipelined operation
mode of the bus.

 WriteResponse is a switch to enable/disable the sending of a response to a master’s
write request. Note that all modules involved in a system must use the same value.

 ReadWaitCycles specifies the number of waiting cycles per OCP word by which the
bus delays the transport of the read request/response.

 WriteWaitCycles specifies the number of waiting cycles per OCP word by which
the bus delays the transport of the write request/response.

The bus is a module that acts as master and slave. For the masters attached to the bus, the bus
is a slave. For the slaves attached to the bus, the bus is a master. The bus can be pipelined or
non-pipelined, depending on a constructor parameter. In the non-pipelined case, the bus uses
one thread that handles the receiving of requests from the master, sending requests to the
slave, receiving responses from the slave, and sending responses to the master. In that case, a
new request from a master can only be processed after the response of the previous request
has been sent to the master. In the pipelined case, the bus uses two threads: a request thread
which handles receiving requests from the master and sending requests to the slave and a
response thread that performs receiving responses from the slave and sending responses to
the master. These two threads are not synchronized, so the bus can process several requests
before sending a response. The basic functionality of the pipelined bus is as follows:

 Masters send requests to bus.

o The master-bus request channels are locked.

o The bus is triggered that there are pending requests.

46

 Bus collects all pending requests.

o Bus performs arbitration to select one master.

o Bus performs address decoding to select the addressed slave.

o Bus copies the data from the master-bus request channel to the bus-slave request
channel.

o Bus sends request to the addressed slave and locks the bus-slave-request channel.

o Bus frees the master-bus request channel.

o Bus waits for an answer coming from a slave.

 The slaves send responses and unlock the corresponding bus-slave request channel.

o Bus-slave response channel is locked.

o Bus is triggered that there are pending responses.

 The bus collects all pending responses.

o Bus selects the first pending response.

o Bus copies the data from the bus-slave response channel to the master-bus response
channel.

o Bus sends response to the master.

o Bus frees the bus-slave response channel.

 master processes the response data and frees the master-bus response channel.

The functionality in the non-pipelined case is similar.

The bus uses a two-tier arbitration scheme. The first tier arbitration scheme selects the master
with the highest priority. If there is more than one master with the highest priority, the second
tier arbitration scheme is performed. That is a fair-among-equals algorithm based on the
number of processed requests for each master.

The timing of the bus is as follows:

 Write request transfer: wait NumWords * WriteWaitCycles cycles

 Read request transfer: wait 1 * ReadWaitCycles cycles

 Write response transfer: wait 1 * WriteWaitCycles cycles

 Read response transfer: wait NumWords * ReadWaitCycles cycles

47

6. AUXILIARY CLASSES

6.1. CommCl (tl_comm_cl.h)

This class contains the states and events used by the communication mechanism of the Channel.
Access is provided to this class for base generic channel users. Users of OCP specific commands
never need to worry about the CommCl class because their commands handle all interactions for
them.

The states and events in the CommCl class must not be changed by masters and slaves, although
the generic channel gives full access to this class. The purpose of exporting these states and
events is to give masters and slaves read access. Again, these accesses must be read only. For the
intended normal use of the Channel, this class should not be changed.

6.2. ParamCl (ocp_tl_param.h)

The ParamCl class is a Transaction Level parameter class. This parameter class provides a
means for storing parameters like master priorities or slave addresses. When the channel is used
for OCP commands, the parameter class also stores all of the OCP parameter settings for the
channel. Its basic usage model is to write values to this class in the elaboration phase and read
these values from the parameter class at the beginning of the simulation.

Note: These parameter names exactly match those described in the Open Channel
Protocol Specification. For more detail and information about these
parameters, refer to the specification.

6.2.1. Constructor

The ParamCl() constructor takes no arguments and is called automatically by the channel
when a new channel is created. When a new ParamCl object is created, all of the OCP
parameters are set to their default values as defined by the Open Core Protocol Specification
document. When the channel's setConfiguration() function is called, it uses the passed
parameter map to set the values in the ParamCl object. The constructor is defined as

 ParamCl()

6.2.2. Parameter Member Variables

The master or slave can read the parameters of the channel by issuing the command:

 ParamCl<TdataCl> *GetParamCl()

This returns the ParamCl object used to hold the channel's parameters. To be compatible with
the base generic class, this is a non constant pointer. As a result, the core write operation could
use this pointer to change the parameter values of the channel. However, you should avoid this,

48

especially during the simulation run. The values in the ParamCl object should be considered to
be read-only by the core.

The current parameters include the following.

string name

Purpose: The name of the OCP channel. Set, but not used, by the OCP specific TL1
channel. May be used by the cores to identify the channel they are
attached to.

Default: "unnamed_ocp20_channel"

int MasterID

Purpose: A non-negative integer, which indicates the identification number of the
master core that is connected to an OCP channel. In generic TL2 example
#1 (see section 5.1.2), which models a multi-master-single-bus-and-multi-
slave system, the MasterID parameter is set by a master module and is
used by the bus module to identify its master-core interfaces.

Default: -1 (which is illegal)

int Priority

Purpose: A non-negative integer (higher value means higher priority), which
indicates the bus arbitration priority for the master core that is connected
to an OCP channel. In generic TL2 example #1 (see section 5.2.2), which
models a multi-master-single-bus- and-multi-slave system, the
Priority parameter is set by a master module and is used by the slave
bus module during arbitration.

Default: -1 (which is illegal)

int SlaveID

Purpose: A non-negative integer, which indicates the identification number of the
slave core that is connected to an OCP channel. In generic TL2 example
#1 (see section 5.2.2), which models a multi-master-single-bus-and-multi-
slave system, the SlaveID parameter is set by a slave module and is used
by the master bus module to identify its slave-core interfaces.

Default: -1 (which is illegal)

49

Ta StartAddress

Purpose: Indicates the beginning of the address space (region) of the slave core that
is connected to an OCP channel. In the generic TL2 example #1 (see
section 5.2.2, which models a multi-master-single-bus-and-multi-slave
system, the StartAddress and EndAddress parameters are set by a
slave module, and they are used by the master bus module for address
decoding; that is, to dispatch requests to their proper slave-core interfaces
(based on each request’s MAddr value). No address regions of slave-core
interfaces on the bus module can overlap with each other.

Default: 0

Ta EndAddress

Purpose: Indicate the end of the address space (region) of the slave core that is
connected to an OCP channel. In the generic TL2 example #1 (see section
5.2.2, which models a multi-master-single-bus-and-multi-slave system, the
StartAddress and EndAddress parameters are set by a slave
module, and they are used by the master bus module for address decoding;
that is, to dispatch requests to their proper slave-core interfaces (based on
each request’s MAddr value). No address regions of slave-core interfaces
on the bus module can overlap with each other.

Default: 0

float ocp20version

Purpose: Specifies the version of OCP.

Default: 2.0

bool broadcast_enable

Purpose: Enables the broadcast command when set to true.

Default: false

bool burst_aligned

Purpose: Forces burst to be aligned by a power of two when set to true.

Default: false

50

bool burstseq_dflt1_enable

Purpose: Enables DFLT1 burst mode.

Default: false

bool burstseq_dflt2_enable

Purpose: Enables DFLT2 burst mode.

Default: false

bool burstseq_incr_enable

Purpose: Allows incrementing bursts.

Default: true

bool burstseq_strm_enable

Purpose: Allows streaming bursts.

Default: false

bool burstseq_unkn_enable

Purpose: Enables UNKN burst mode.

Default: false

bool burstseq_wrap_enable

Purpose: Enables WRAP burst mode.

Default: false

bool burstseq_xor_enable

Purpose: Enables XOR burst.

Default: false

51

string endian

Purpose: Specifies the endianess of the channel. The values for this parameter are:
“little”, “big”, “both”, and “neutral”.

Default: “little”

bool force_aligned

Purpose: Forces the byte-enable patterns to be powers of two.

Default: false

bool mthreadbusy_exact

Purpose: Specifies that the slave must use the MTheadbusy signal to send
responses, and the master must accept immediately on non-busy threads.

Default: false

bool rdlwrc_enable

Purpose: Enables both the ReadLinked command and the
WriteConditional command on the channel.

Default: false

bool read_enable

Purpose: Enables support of the Read command.

Default: true

bool readex_enable

Purpose: Enables support of the ReadEx command.

Default: false

52

bool sdatathreadbusy_exact

Purpose: Specifies that the master must use SDataThreadBusy signal to send new
data, and the slave must accept new data immediately on non-busy
threads.

Default: false

bool sthreadbusy_exact

Purpose: Specifies the master must use SThreadBusy signal to send a new request,
and the slave must accept new request immediately on non-busy threads.

Default: false

bool write_enable

Purpose: Enables support of the Write command.

Default: true

bool writenonpost_enable

Purpose: Enables support of the WriteNonPost command.

Default: false

bool datahandshake

Purpose: Indicates whether there is a separate channel for request data when set to
true.

Default: false

bool reqdata_together

Purpose: Specifies whether the master always puts a request and data in the same
cycle, and the slave always accepts them together in the same cycle.

Default: false

53

bool writeresp_enable

Purpose: Indicates whether responses are sent for write commands

Default: false

bool addr

Purpose: Indicates whether MAddr (Request Address) is part of the OCP.

Default: true

int addr_wdth

Purpose: The user must set the address width if the addr parameter is set to true.

Default: None.

bool addrspace

Purpose: Indicates whether the MAddrSpace signal is part of the OCP.

Default: None

int addrspace_wdth

Purpose: Indicates the width of the address space.

Default: None.

bool atomiclength

Purpose: Specifies whether there are a minimum number of transfers to hold
together during a burst.

Default: false

int atomiclength_wdth

Purpose: Specifies the minimum number of transfers to be held together during a
burst when the atomiclength parameter is set to true.

Default: None.

54

bool burstlength

Purpose: Specifies whether there is a set number of transfers in a burst

Default: false

int burstlength_wdth

Purpose: Specifies the number of transfers in a burst.

Default: None.

bool burstprecise

Purpose: Specifies whether the length of a burst is known at the start of the burst.

Default: false

bool burstseq

Purpose: Specifies whether there is a sequence of addresses in a burst

Default: false

bool burstsinglereq

Purpose: Specifies whether a single request is allowed to generate multiple data
transfers in a burst.

Default: false

bool byteen

Purpose: Specifies whether MByteEn is part of the OCP.

Default: false

bool cmdaccept

Purpose: Specifies whether the slave accepts commands.

Default: true

55

bool connid

Purpose: Specifies whether the MConnID connection identifier is part of the
Request group.

Default: 0

int connid_wdth

Purpose: Specifies the width of MConnID.

Default: None

bool dataaccept

Purpose: Specifies whether the slave accepts data handshakes.

Default: true

bool datalast

Purpose: Specifies whether the MDataLast burst signal is part of the OCP.

Default: false

int data_wdth

Purpose: Specifies the width of MData.

Default: None

bool mdata

Purpose: Specifies whether MData is part of the OCP.

Default: true

bool mdatabyteen

Purpose: Specifies whether the MDataByteEn signal is in the OCP

Default: false

56

bool mdatainfo

Purpose: Specifies whether the MDataInfo signal is in the OCP

Default: false

int mdatainfo_wdth

Purpose: Specifies the width of the MDataInfo signal when the mdatainfo
parameter is true.

Default: None

int mdatainfobyte_wdth

Purpose: Specifies the number of bits of MDataInfo that are associated with each
data byte of MData.

Default: 1

bool sdatathreadbusy

Purpose: Specifies whether SDataThreadBusy is part of the OCP channel.

Default: false

bool mthreadbusy

Purpose: Specifies whether the MThreadBusy signal is part of the OCP channel.

Default: false

bool reqinfo

Purpose: Specifies whether the MReqInfo signal is part of the OCP channel.

Default: false

int reqinfo_wdth

Purpose: Specifies the width of MReqInfo signal.

Default: None.

57

bool reqlast

Purpose: Specifies whether the MReqLast burst signal part of the OCP channel.

Default: false

bool resp

Purpose: Specifies whether the SResp signal part of the OCP channel.

Default: true

bool respaccept

Purpose: Specifies whether the master accepts responses with the MRespAccept
signal.

Default: false

bool respinfo

Purpose: Specifies whether the SRespInfo signal is part of the OCP channel.

Default: false

int respinfo_wdth

Purpose: Specifies the width of the SRespInfo signal.

Default: None

bool resplast

Purpose: Specifies whether the SRespLast burst signal is part of the OCP channel.

Default: false

bool sdata

Purpose: Specifies whether the SData signal part of the OCP channel.

Default: false

58

bool sdatainfo

Purpose: Specifies whether the SDataInfo signal is supported.

Default: false

int sdatainfo_wdth

Purpose: Specifies the width of SDataInfo signal.

Default: None. The OCP specification states that the user must set this parameter;
however, if the user does not specify a value, the channel will set it to 1.

int sdatainfobyte_wdth

Purpose: Specifies the number of bits in the SDataInfo signal devoted to each byte
of SData.

Default: None. The OCP specification requires that the user set this parameter.
Thus, there is no standard default value; however, if the user fails to
provide a value for this parameter, the channel will set it to 1.

bool sthreadbusy

Purpose: Specifies whether the SThreadBusy signal is supported

Default: false

int threads

Purpose: Specifies the number of threads allowed.

Default: 1

bool control

Purpose: Specifies whether the sideband Control signal is supported.

Default: false

59

bool controlbusy

Purpose: Specifies whether the sideband ControlBusy signal supported.

Default: false

int control_wdth

Purpose: Specifies the width of the ControlBusy signal.

Default: None. The OCP specification requires that the user set this parameter.
Thus, there is no standard default value; however, if the user fails to
provide a value for this parameter, the channel will set it to 1.

bool controlwr

Purpose: Specifies whether the sideband ControlWr signal is supported

Default: false

bool interrupt

Purpose: Specifies whether the sideband SInterrupt signal supported.

Default: false

bool merror

Purpose: Specifies whether the sideband MError signal is supported.

Default: false

bool mflag

Purpose: Specifies whether the sideband MFlag signal is supported.

Default: false

60

int mflag_wdth

Purpose: Specifies the width of sideband MFlag signal.

Default: None. The OCP specification requires that the user set this parameter.
Thus, there is no standard default value; however, if the user fails to
provide a value for this parameter, the channel will set it to 1.

bool mreset

Purpose: Specifies whether the sideband MReset signal supported.

Default: None. The OCP specification requires that the user set this parameter.
Thus, there is no standard default value; however, if the user fails to
provide a value for this parameter, the channel will set it to false.

bool serror

Purpose: Specifies whether the sideband SError signal is supported.

Default: false

bool sflag

Purpose: Specifies whether the sideband SFlag signal is supported.

Default: false

int sflag_wdth

Purpose: Specifies the width of the sideband SFlag signal.

Default: None. The OCP specification requires that the user set this parameter.
Thus, there is no standard default value; however, if the user fails to
provide a value for this parameter, the channel will set it to 1.

bool sreset

Purpose: Specifies whether the SReset signal is part of the OCP channel.

Default: None. The OCP specification does not specify a default value. However, if
the user does not specify a value, the channel sets it to false.

61

bool status

Purpose: Specifies whether the sideband Status signal is supported.

Default: false

bool statusbusy

Purpose: Specifies whether the sideband StatusBusy signal is supported

Default: false

bool statusrd

Purpose: Specifies whether the sideband StatusRd signal supported.

Default: false

int status_wdth

Purpose: Width of the Status signal.

Default: None. The OCP specification requires that the user set this parameter.
Thus, there is no standard default value; however, if the user fails to
provide a value for this parameter, the channel will set it to 1.

