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Chapter 1

Introduction

The OCP Modelling Kit provides a full interoperability standard for SystemC models of SOC components with
OCP interfaces. The Kit is built on top of OSCI’s TLM 2.0 technology, adding support for OCP protocol
features and providing a wealth of support for code development and testing. All use cases for TLM modelling
are supported, including verification, architecture exploration and software development.

The combination of a standard TLM interface for the OCP protocol, and the support code provided within
the Kit, permits a major saving in development costs. It reduces the critical time interval between SOC
specification availability and TLM model delivery. Models can be developed faster and better, reused more
effectively, or sourced from external suppliers with confidence.

The Kit is a replacement for previous technology available from OCP-IP. This previous technology is now
deprecated by OCP-IP. The motivation for replacing it with the OCP Modelling Kit is to provide compatibility
with OSCI’s TLM 2.0 technology. Using the OCP Modelling Kit, modules can be created that are fully
interoperable with the OSCI TLM 2.0 Base Protocol, provided the OCP configuration allows this. This direct
binding is only available at TL3. The Kit also includes adapters to enable binding between models using the
legacy OCP-IP technology and models using this new kit.

Key features of the OCP Modelling Kit

• OCP Protocol Support

– Versions 2.0, 2.1, 2.2 and 2.2.1 of OCP-IP supported in full

– All OCP protocol features implemented using OSCI TLM 2.0 Generic Payload extensions

– All OCP flow control options supported

– OCP configuration management

∗ May be hard-coded or supplied to a generic component model at run-time
∗ Run-time resolution of master and slave OCP configurations

• Levels Of Abstraction Supported

– Combined TL3 and TL4: inter-burst or no timing, equivalent to OSCI’s Base Protocol

– TL2: intra-burst timing

– TL1: fully cycle-accurate, including support for clock cycle synchronization and combinatorial paths

• Content of Kit

– Documentation

– Examples

– Performance and trace monitors

– OCP TLM interoperability interface, including

∗ TLM 2.0 extensions
∗ Run-time OCP configuration resolution function

– OCP master and slave sockets, providing

∗ Memory management for extensions and payload objects
∗ Payload event queues for timing annotation support or clock cycle synchronization

1



2 CHAPTER 1. INTRODUCTION

∗ Convenience API for user code
∗ Direct bind to OSCI TLM 2.0 sockets where functionally possible

– Legacy adapters

– RTL adapters

• Open Issues in the Kit

– Polarity of nonposted extension is under review

– TL2 implementation is not included in current release

– API for use of extensions without a socket is not documented

– Restrictions on OCP write response model for TL3 are under review

– MReqInfo, MRespInfo and MDataInfo are not yet supported

– Binding rules for multi-tagged and multi-threaded OCP interfaces are under review

– OCP Reset not yet supported

– Rules for support of streaming bursts at TL3 under review

– This document is expected to grow significantly, including more details of use of the raw interoper-
ability interface, deep dives into examples for each of TL1, TL2 and TL3, and so on.



Chapter 2

Basic Concepts of OCP TLM2

This chapter explains the basic concepts of the OCP Modelling Kit. It explains how to use the TLM-2.0 core
interfaces to simulate OCP communication. It is strongly recommended to read the OSCI TLM-2.0 User Manual
[1], and the Open Core Protocol Specification [2].

In general the rules and guide lines defined in [1] as the base protocol (BP) apply, but there are some
restrictions and additions depending on the TL of the simulated OCP. The reasons for those additions are
founded on the fact that the original OSCI TLM-2.0 kit’s BP aims at TL3/4.

2.1 Simulating TL1 Communication

The rules and restrictions for TL1 are

1. OCP TL1 can use 4 different writes (with respect to phases)

• Request phase with data

• Request phase with data, and response phase

• Request phase, and data handshake phase

• Request phase, data handshake phase and response phase

while the BP knows only a two phase write with a request and a response phase. Hence, within OCP TL1
exist the phases BEGIN DATA and END DATA when data handshake is used.

2. For a single OCP TL1 transaction there can be multiple phases of the same kind, while the BP only allows
a single phase of a kind per transaction. The masters and slaves are obliged to emit/expect the number
of phases (i.e. a BEGIN X and a corresponding END X timing point) per beat of the simulated burst as
defined in [2]. See chapter 5 how to extract the OCP burst length from a transaction.

3. The BP is strictly sequential (for a single transaction), i.e. it does not allow phases to overlap, while
different TL1 phases of a single transaction may overlap as defined in [2].

4. The BP allows to shortcut the protocol via TLM COMPLETED while the TL1 protocol disallows the use
of TLM COMPLETED.

5. The BP allows to skip timing points, e.g. a BEGIN RESP in return to BEGIN REQ implies END REQ.
OCP TL1 does not allow that. It enforces the explicit use END X, when a BEGIN X has been received
(the end may be sent either through the return or the fw/bw path).

6. The use of TLM UPDATED is restricted to returning END X to BEGIN X. You may not return BEGIN Y
or END Y to BEGIN X.

7. The only allowed return to END X is TLM ACCEPTED.

8. For every BEGIN X there has to be an END X even if an OCP flow control is used that does not use
XAccept signals, like thread busy exact or no flow control at all. Furthermore, when no accept flow control
is use, the END X must be returned immediately in response to a BEGIN X via TLM UPDATED.

9. In the presence of data handshake phases the data pointer in a write transaction may be uninitialized or
NULL until the first BEGIN DATA timing point.

3



4 CHAPTER 2. BASIC CONCEPTS OF OCP TLM2

10. In the presence of data handshake phases and with byteen=0 and mdatabyten=1 the byte enable pointer
in a write transaction may be uninitialized or NULL until the first BEGIN DATA timing point.

11. The data array can contain less bytes than the simulated transaction, i.e. the data length of the transaction
may be less than ocp burst length*bus width in bytes. See chapter 5 for more details.

12. The data array must be fully pre-allocated before the transaction starts, but it does not have to be fully
pre-filled. The data array must contain at least the number of bytes so that the current beat can be
successfully extracted from the array (but it may contain more). In other words the content of the data
array is allowed to grow during the lifetime of the transaction. However, once a beat has been emitted
the data associated with that beat may not change later on. See chapter 5 how to calculate the bytes of
the data array that belong to a certain beat on a given point-to-point link.

13. The allocation and filling rules for the data array (see rule 12) do also apply to the byte enable array.

14. Synchronization takes place based on clock boundaries and/or TLM-2.0 interface method calls. If clocked
cycle based synchronization is necessary communicating modules need to have exactly the same under-
standing of what a clock cycle is (see section 3.8 for more details).

15. Synchronization is achieved by time delays. Two modules A and B that are operating with the same real
clock, may still be driven by different simulated clocks that may even appear in different delta cycles of
the same simulated point of time. In other words, in the absence of additional timing information one
must wait at least sc time resolution() to be sure to have received all transport calls for the current cycle.
See section 3.8 for more details.

16. To signal thread busy changes a target may act as an initiator and emit a transaction allocated by
the target (socket). A special phase THREAD BUSY CHANGE is used both by initiators and targets to
transmit the thread busy change information. See section 4.7.3 for more information.

17. For imprecise bursts, the data length of the transaction is meaningless. A burst length extension has to be
used to signal the end of the burst as defined in [2]. However, the rules 12 and 13 still apply. That means
that before starting the burst the master has to pre allocate both a data and a byte enable array large
enough to hold the complete burst. The assumption here is that there is always a known upper bound for
the number of beats of an imprecise burst.

18. All dataflow signals of the OCP (see [2]) have a mapping on TLM-2.0 extensions or phases as defined in
chapter 4.

2.2 Simulating TL2 Communication

2.3 Simulating TL3 Communication

The rules and restrictions for TL3 are

1. The OCP TL3 is designed to have maximum interoperability with OSCI BP. To this end all return codes,
phase skipping etc. are supported.

2. OCP TL3 can use 2 different writes (with respect to phases)

• Request phase

• Request phase, and response phase

while the BP always uses writes with responses, OCP TL3 will only do so if configured with writeresp=1.

3. Without any mandatory extensions, with write responses, and with accept flow control for both request
and response OCP TL3 matches the OSCI BP.

4. For every BEGIN X there has to be an END X even if the OCP is configured not to use accept flow control.
Note that thread busy flow control is not supported for TL3.

5. The data array organization depends on the used burst sequence as described in section 5. Note that the
sequences INCR, WRAP, and XOR are indistinguishable in OCP TL3. The appropriate extension (cmp.
chapter 4) may only be used as a hint to adapters.
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6. Imprecise bursts are of no meaning to TL3, as a transaction is finished in one shot, hence must have a
well known length at the very beginning. The appropriate extension (cmp. chapter 4) may only be used
as a hint to adapters.

7. SRMD bursts are of no meaning to TL3, as a transaction is finished in one shot, hence has only a single
request phase anyway. The appropriate extension (cmp. chapter 4) may only be used as a hint to adapters.

8. Further information about other extension can be found in chapter 4.

9. Synchronization is only achieved via TLM-2.0 interface method calls. Two connected modules do not need
to have the same understanding of clock cycles or advance of time at all, as long as they obey the timing
rules for the TLM-2.0 standard.

10. There are no data handshake phases in TL3.



6 CHAPTER 2. BASIC CONCEPTS OF OCP TLM2



Chapter 3

Using the Sockets

3.1 Directory Structure

The OCP Modelling Kit release is a header only release. Different releases of the kit can be installed in parallel.
Assuming that releases 2.2.0 and 2.2.1 are installed the directory structure will look like shown in figure 3.1.

Figure 3.1: Sample directory structure of the OCP Modelling Kit

The include directory directly contains the files that shall be included by the user: ocpip.h, ocpip 2 2 0.h, and
ocpip 2 2 1.h (see section 3.2 on how to use them). The subdirectory generic contains files that are shared by
all releases, the subdirectory legacy code base contains the sources of OCP-IP SLD r2.2.1, and the subdirectory
legacy support contains the inclusion wrappers needed to compile legacy IP (see chapter 6 for details). The

7
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release version tagged directories ocpip X Y Z contain all the header files for the OCP Modelling Kit release
X.Y.Z. The headers in those directories shall never be included directly, only include the files mentioned in
section 3.2.

The src directory contains (in release tagged subdirectories) the tpp and hpp files for the corresponding
releases. They are included from the main include files and shall never be included directly.

Finally, the mon directory1 contains the monitor package for the various releases. Its subdirectory structure
matches the one of the installation root package as described above. Note that the main include files for the
OCP Modelling Kit releases will include their monitor packages if available. There is no need to include any
file of the mon directory manually.

Note that each release of the OCP Modelling Kit is shipped with the OCP-IP SLD r2.2.1 kit in it. This
kit is considered stable and frozen, so there is no need to version tag it. Given the unlikely case that a bug is
discovered in the OCP-IP SLD r2.2.1 kit, the installation process assumes that the most recent OCP TLM-2.0
release contains the best available legacy code base, hence installing an older release will not replace the legacy
code base. Only the installation of a newer release of the OCP Modelling Kit will overwrite the legacy code
base (this applies both to the socket package and the monitor package).

3.2 Inclusion and namespaces

To use the OCP Modelling Kit in general one files has to be included:

• ocpip.h

Afterwards the OCP sockets and TLM-2.0 extensions are available in the namespace ocpip. Caution is
required when different versions of the OCP Modelling Kit are installed. The files above and the namespace
ocpip always point to the most recent release of the kit (given that all installed version are installed in the same
location2). To include a specific version of the kit, the numbered versions of the include files must be used
(ocpip X Y Z.h). If the numbered versions are used, the sockets and extensions of this version are then available
in the namespace ocpip X Y Z, assuming the use of version X.Y.Z.

Each release contains a sub-namespace infr that encapsulates the infrastructure code (e.g. basic TLM-2.0
sockets) the OCP code is built upon. In general the user of the OCP kit will only be facing this namespace if he
or she is using advanced features of the kit (like defining custom TLM extensions, or replacing the underlying
infrastructure).

Every class or function mentioned in this document resides in namespace ocpip X Y Z (or ocpip), which will
not be explicitly mentioned. However, it will be explicitly stated whenever the sub-namespace infr has to be
used.

Example The user installed releases 2.2.0 and 2.2.2 into location /foo/bar. Then the include path
/foo/bar/include must be provided to the compiler. Afterwards the user can include

ocpip 2 2 2.h

which will make the release 2.2.2 available in namespace ocpip 2 2 2. He may also include

ocpip 2 2 0.h

which will make the release 2.2.0 available in namespace ocpip 3 0 0.

Afterwards he may use sockets of both releases by using the sockets of the according namespaces.

Basically the user could also include

ocpip .h

which will make the release 2.2.2 available in namespace ocpip. This is just a namespace remap, so
ocpip=ocpip 2 2 2 applies. However, it is strictly not recommended to mix numbered include file versions
with the remapped ones. The non-versionized include files should only be used if no other versionized files
are included. The normal case should be to only use the non-versionized include files to make your IP
always use the latest OCP Modelling Kit.

Note that even though different versions can be included within one simulation, you cannot directly connect
a socket of version X.Y.Z to a socket of version A.B.C, because both versions have their own infrastructure code.
However, you may use the infrastructure code of one release with the OCP standard code of another release,
given that the release notes allow that. Otherwise, it just allows to have modules with sockets of different
versions within one simulation and to attach sockets of those versions to it. Also note that in this case a manual
deep copy of the transaction is required when going from a socket to one of a different version.

1Only available if the monitor package is installed
2This is the recommendation. Otherwise support for multiple version of the kit within one simulation is not ensured.
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3.3 Constructing the Sockets

There are socket versions for each TL. To simplify means we will use tlx as a placeholder for tl1, tl2 and tl3. If
some things only apply to a specific TL it will be explicitly mentioned.

3.3.1 Master Socket

The master socket is defined as
template <unsigned int BUSWIDTH=32, unsigned int NUM BINDS=1> class ocp master socket tlx .

The first template argument defines the bus width in bits, and two OCP sockets can only be bound if their
BUSWIDTH parameters match. The second template argument specifies the number of bindings allowed for
the given socket. Note that NUM BINDS=0 means an unlimited number of bindings is allowed for this socket.
There is one constructor available for all TLs:

ocp master socket tlx (const char∗ name,

ocp master socket tlx :: allocation scheme type scheme=ocp master socket tlx::mm txn only())

name The name of the socket.

scheme The allocation scheme used by the transaction pool inside the socket (see section 3.7).

Additionally there is a special constructor for TL1 sockets:

ocp master socket tl1 (const char∗ name, MODULE∗ owner, void (MODULE::∗timing cb)(ocp tl1 slave timing),
ocp master socket tl1 :: allocation scheme type scheme=ocp master socket tl1:: mm txn only())

name The name of the socket.

owner A pointer to an object that owns a member function with the signature void fn( ocp tl1 slave timing ) .

timing cb A member function pointer to a member function of the object pointed to by owner with the given
signature3.

scheme The allocation scheme used by the transaction pool inside the socket (see section 3.7).

3.3.2 Slave Socket

The slave socket is defined as
template <unsigned int BUSWIDTH=32, unsigned int NUM BINDS=1> class ocp slave socket tlx .

The first template argument defines the bus width in bits, and two OCP sockets can only be bound if their
BUSWIDTH parameters match. The second template argument specifies the number of bindings allowed for
the given socket. Note that NUM BINDS=0 means an unlimited number of bindings is allowed for this socket.
There is one constructor available for all TLs:

ocp slave socket tlx (const char∗ name)

name The name of the socket.

Additionally there is a special constructor for TL1 sockets:

ocp slave socket tl1 (const char∗ name, MODULE∗ owner, void (MODULE::∗timing cb)(ocp tl1 master timing),

name The name of the socket.

owner A pointer to an object that owns a member function with the signature void fn(ocp tl1 master timing )
.

timing cb A member function pointer to a member function of the object pointed to by owner with the given
signature3.

3For more information about this callback and its use, first see section 3.5.3, then section 3.8
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3.3.3 Binding two Sockets

To connect an OCP master with an OCP slave, the master socket of the former has to be bound to the slave
socket of the latter. It is not allowed to bind the slave socket to the master socket. Additionally, the sockets
can be bound hierarchically, so that sockets of submodules can be ’forwarded’ to the boundaries of the owning
modules. Examples are:

• Master socket to slave socket binding

Assuming the master is called mst, its socket is called sock, the slave is called slv, and its socket is also
called sock, binding the two is achieved by: mst.sock( slv .sock);

• Master socket hierarchical binding

Assuming there is master module class called top master that owns a submodule instance called sub master.
The top master can forward the socket sub sock of the sub master to its boundaries, by binding it to its
own socket top sock. That will effectively make sub sock and top sock the same socket:

1 // c t o r
2 t o p m a s t e r ( s c c o r e : : s c modu le name name ) : . . . , t o p s o c k ( ”s o c k ”) , . . .
3 {
4 // f o r w a r d s u b s o c k o f s u b ma s t e r t o my own t o p s o c k
5 s u b ma s t e r . s u b s o c k ( t h i s −>t o p s o c k ) ;
6 }

• Slave socket hierarchical binding

Assuming there is slave module class called top slave that owns a submodule instance called sub slave.
The top slave can forward the socket top sock from it boundaries to the socket sub sock of the sub slave,
by binding it to its own socket top sock to the sub sock. That will effectively make sub sock and top sock
the same socket4 :

1 // c t o r
2 t o p s l a v e ( s c c o r e : : s c modu le name name ) : . . . , t o p s o c k ( ”s o c k ”) , . . .
3 {
4 // f o r w a r d my own t o p s o c k t o s u b s o c k o f s u b s l a v e
5 t h i s −>t o p s o c k ( s u b s l a v e . s u b s o c k ) ;
6 }

3.4 Communication Interface

The communication interface is the TLM-2.0 interface. More precisely, for TL1,2 and 3 the non-blocking
(nb transport fw/bw) interface shall be used, while for TL4 the blocking interface (b transport) shall be used.
The direct memory interface and the debug interface are of course part of the OCP sockets, but lie fully within
user responsibility. In other words, the provided kit does not offer any further support for DMI and debug
interfaces apart from allowing to register callbacks and call the appropriate TLM-2.0 functions.

It is very important to note that the signatures of the callbacks differ depending wether the used socket may
be bound to exactly one socket (NUM BINDS==1, hereinafter a single socket), or two more than one socket
(NUM BINDS!=1, hereinafter a multi socket). See below for more details.

3.4.1 Master Socket

A module owning an OCP Modelling Kit socket can both call TLM-2.0 functions on its socket and receive
calls from its socket. Calling TLM-2.0 functions is exactly the same a described in [1]. In other words, use
operatpor->() when performing interface method calls on a single socket, and operator[](unsigned int index) when
performing interface method calls on a multi socket. In the latter case, index determines which bound socket
will receive the interface method call (cmp. multiply bound sc port).

The API to register callbacks is defined as listed below. Each API function is listed twice, once with the
signature it has with a single socket, and once with the signature it has with a multi socket.

Single socket: template<typename MODULE>

void register nb transport bw ( MODULE∗ mod,

tlm :: tlm sync enum (MODULE::∗cb)(tlm::tlm generic payload&, tlm::tlm phase&, sc core::sc time&));

4Note that the hierarchical bindings for master and slave sockets work inversely. As a hint: The master socket’s hierarchical
binding works like hierarchical bindings of sc port, while the hierarchical binding of slave sockets work like hierarchical bindings of
sc export
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Multi socket: template<typename MODULE>

void register nb transport bw ( MODULE∗ mod,
tlm :: tlm sync enum (MODULE::∗cb)(unsigned int,

tlm :: tlm generic payload&, tlm :: tlm phase&, sc core ::sc time&));

mod An object offering the member function that is passed as the second argument.

cb For single sockets: A member function that matches the signature for nb transport as defined in [1].
For multi sockets: A member function that matches the signature for nb transport as defined in [1],
extended by an additional leading unsigned int, that identifies from which rank of a multi socket the call
was received.

Semantic Register a callback that will be called whenever the socket gets a call to nb transport bw from the
slave. If called on a ocp master socket tl1 a PEQ will be automatically inserted, that ensures all callbacks
happen in sync with the simulation time, hence the sc time argument will always be SC ZERO TIME. For
all other TLs no PEQ will be inserted.

Single sockets: template<typename MODULE>

void register nb transport bw ( MODULE∗ mod,
tlm :: tlm sync enum (MODULE::∗cb)(tlm::tlm generic payload&, tlm::tlm phase&, sc core::sc time&),
bool use peq);

Multi sockets: template<typename MODULE>

void register nb transport bw ( MODULE∗ mod,
tlm :: tlm sync enum (MODULE::∗cb)(unsigned int,

tlm :: tlm generic payload&, tlm :: tlm phase&, sc core ::sc time&),
bool use peq);

mod An object offering the member function that is passed as the second argument.

cb For single sockets: A member function that matches the signature for nb transport as defined in [1].
For multi sockets: A member function that matches the signature for nb transport as defined in [1],
extended by an additional leading unsigned int, that identifies from which rank of a multi socket the call
was received.

use peq If true a PEQ will be inserted that syncs the callback with the simulation time, hence the sc time
argument will always be SC ZERO TIME.

Semantic Register a callback that will be called whenever the socket gets a call to nb transport bw from the
slave.

Single socket: template<typename MODULE>

void register invalidate direct mem ptr (MODULE∗ mod,
void (MODULE::∗cb)(sc dt::uint64, sc dt::uint64));

Multi socket: template<typename MODULE>

void register invalidate direct mem ptr (MODULE∗ mod,
void (MODULE::∗cb)(unsigned int, sc dt::uint64, sc dt::uint64));

mod An object offering the member function that is passed as the second argument.

cb For single sockets: A member function that matches the signature for invalidate direct mem ptr as defined
in [1].
For multi sockets: A member function that matches the signature for invalidate direct mem ptr as defined
in [1], extended by an additional leading unsigned int, that identifies from which rank of a multi socket
the call was received.

Semantic Register a callback that will be called whenever the socket gets a call to invalidate direct mem ptr
from the slave.

Note that a runtime error will occur if the slave calls a function for which the master has not registered a
callback.
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3.4.2 Slave Socket

A module owning an OCP Modelling Kit socket can both call TLM-2.0 functions on its socket and receive
calls from its socket. Calling TLM-2.0 functions is exactly the same a described in [1]. In other words, use
operatpor->() when performing interface method calls on a single socket, and operator[](unsigned int index) when
performing interface method calls on a multi socket. In the latter case, index determines which bound socket
will receive the interface method call (cmp. multiply bound sc port).

The API to register callbacks is defined as listed below. Each API function is listed twice, once with the
signature it has with a single socket, and once with the signature it has with a multi socket.

Single socket: template<typename MODULE>

void register nb transport fw ( MODULE∗ mod,

tlm :: tlm sync enum (MODULE::∗cb)(tlm::tlm generic payload&, tlm::tlm phase&, sc core::sc time&));

Multi socket: template<typename MODULE>

void register nb transport fw ( MODULE∗ mod,

tlm :: tlm sync enum (MODULE::∗cb)(unsigned int,

tlm :: tlm generic payload&, tlm :: tlm phase&, sc core ::sc time&));

mod An object offering the member function that is passed as the second argument.

cb For single sockets: A member function that matches the signature for nb transport as defined in [1].

For multi sockets: A member function that matches the signature for nb transport as defined in [1],
extended by an additional leading unsigned int, that identifies from which rank of a multi socket the call
was received.

Semantic Register a callback that will be called whenever the socket gets a call to nb transport fw from the
master. If called on a ocp master socket tl1 a PEQ will be automatically inserted, that ensures all callbacks
happen in sync with the simulation time, hence the sc time argument will always be SC ZERO TIME.

Single socket: template<typename MODULE>

void register nb transport fw ( MODULE∗ mod,

tlm :: tlm sync enum (MODULE::∗cb)(tlm::tlm generic payload&, tlm::tlm phase&, sc core::sc time&),

bool use peq);

Multi socket: template<typename MODULE>

void register nb transport fw ( MODULE∗ mod,

tlm :: tlm sync enum (MODULE::∗cb)(unsigned int,

tlm :: tlm generic payload&, tlm :: tlm phase&, sc core ::sc time&),

bool use peq);

mod An object offering the member function that is passed as the second argument.

cb For single sockets: A member function that matches the signature for nb transport as defined in [1].

For multi sockets: A member function that matches the signature for nb transport as defined in [1],
extended by an additional leading unsigned int, that identifies from which rank of a multi socket the call
was received.

use peq If true a PEQ will be inserted that syncs the callback with the simulation time, hence the sc time
argument will always be SC ZERO TIME.

Semantic Register a callback that will be called whenever the socket gets a call to nb transport fw from the
master.

Single socket: template<typename MODULE>

void register b transport (MODULE∗ mod,

void (MODULE::∗cb)(transaction type&, sc core::sc time&));
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Multi socket: template<typename MODULE>

void register b transport (MODULE∗ mod,

void (MODULE::∗cb)(unsigned int, transaction type&, sc core::sc time&));

mod An object offering the member function that is passed as the second argument.

cb For single sockets: A member function that matches the signature for b transport as defined in [1].

For multi sockets: A member function that matches the signature for b transport as defined in [1], extended
by an additional leading unsigned int, that identifies from which rank of a multi socket the call was received.

Semantic Register a callback that will be called whenever the socket gets a call to b transport from the master.

Single socket: template<typename MODULE>

void register transport dbg (MODULE∗ mod,

unsigned int (MODULE::∗cb)(transaction type& txn));

Multi socket: template<typename MODULE>

void register transport dbg (MODULE∗ mod,

unsigned int (MODULE::∗cb)(unsigned int, transaction type& txn));

mod An object offering the member function that is passed as the second argument.

cb For single sockets: A member function that matches the signature for transport dbg as defined in [1].

For multi sockets: A member function that matches the signature for transport dbg as defined in [1],
extended by an additional leading unsigned int, that identifies from which rank of a multi socket the call
was received.

Semantic Register a callback that will be called whenever the socket gets a call to transport dbg from the
master.

Single socket: template<typename MODULE>

void register get direct mem ptr (MODULE∗ mod,

bool (MODULE::∗cb)(transaction type& txn, tlm::tlm dmi& dmi));

Multi socket: template<typename MODULE>

void register get direct mem ptr (MODULE∗ mod,

bool (MODULE::∗cb)(unsigned int, transaction type& txn, tlm::tlm dmi& dmi));

mod An object offering the member function that is passed as the second argument.

cb For single sockets: A member function that matches the signature for get direct mem ptr as defined in [1].

For multi sockets: A member function that matches the signature for get direct mem ptr as defined in [1],
extended by an additional leading unsigned int, that identifies from which rank of a multi socket the call
was received.

Semantic Register a callback that will be called whenever the socket gets a call to get direct mem ptr from
the master.

Note that a runtime error will occur if the slave calls a function for which the master has not registered a
callback.

3.5 Configuring the Sockets

The sockets can be configured with respect to its OCP configuration, its PEQ utilization and its TL1 timing
sensitivity. The former has to be done for each socket, the latter two are optional.
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3.5.1 OCP Configuration

An OCP socket must have a valid OCP configuration at the end of construction. In general that is done by
assigning an instance of the OCP parameters set to the socket that shall be configured. The OCP parameters
are evaluated by two connected sockets when they get bound. If the OCP parameter sets are incompatible,
runtime errors will appear. Hence prior to the actual configuration API the OCP parameters shall be described.

OCP Parameters Class

The configuration of a socket is captured in the ocp parameters class. The ocp parameters class is defined as
1

2 t y p e d e f s t d : : map<s t d : : s t r i n g , s t d : : s t r i n g > m a p s t r i n g t y p e ;
3

4 c l a s s o c p p a r a m e t e r s
5 {
6 p u b l i c :
7 // C o n s t r u c t o r
8 o c p p a r a m e t e r s ( ) ;
9

10 // The p a r ame t e r myParamValue i s s e t o n l y i f t h e p a r ame t e r i s f o und i n t h e
11 // c o n f i g u r a t i o n map and i f i t i s o f t y p e ’ i ’ f o r i n t e g e r .
12 s t a t i c b o o l
13 g e tBoo lOCPCon f i gVa l u e (
14 c o n s t s t d : : s t r i n g& myPr e f i x ,
15 c o n s t s t d : : s t r i n g& myParamName ,
16 boo l &myParamValue ,
17 m a p s t r i n g t y p e& Map ,
18 s t d : : s t r i n g my name=”” ) ;
19

20 // The p a r ame t e r myParamValue i s s e t o n l y i f t h e p a r ame t e r i s f o und i n t h e
21 // c o n f i g u r a t i o n map and i f i t i s o f t y p e ’ i ’ f o r i n t e g e r .
22 s t a t i c b o o l
23 g e t I n tOCPCon f i gV a l u e (
24 c o n s t s t d : : s t r i n g& myPr e f i x ,
25 c o n s t s t d : : s t r i n g& myParamName ,
26 i n t &myParamValue ,
27 m a p s t r i n g t y p e& Map ,
28 s t d : : s t r i n g my name=”” ) ;
29

30 // The p a r ame t e r myParamValue i s s e t o n l y i f t h e p a r ame t e r i s f o und i n t h e
31 // c o n f i g u r a t i o n map and i f i t i s o f t y p e ’ s ’ f o r s t d : : s t r i n g .
32 s t a t i c b o o l
33 g e t S t r i n gOCPCo n f i g V a l u e (
34 c o n s t s t d : : s t r i n g& myPr e f i x ,
35 c o n s t s t d : : s t r i n g& myParamName ,
36 s t d : : s t r i n g& myParamValue ,
37 m a p s t r i n g t y p e& Map ,
38 s t d : : s t r i n g my name=”” ) ;
39

40 v o i d s e t o c p c o n f i g u r a t i o n ( s t d : : s t r i n g ocp name , m a p s t r i n g t y p e& passedMap ) ;
41

42 // t h i s f u n c t i o n dumps t h e who l e p a r ame t e r s e t i n t o a s t r i n g
43 s t d : : s t r i n g t o s t r i n g ( ) c o n s t ;
44

45 // t h i s f u n c t i o n compa r e s ocp p a r ame t e r s e t p r o v i d e d a s t h e f u n c t i o n a rgument t o
46 // t h e ocp p a r a m e t e r s s e t on wh i ch t h e f u n c t i o n i s c a l l e d
47 // I t r e t u r n s t r u e i f t h e r e i s a d i f f e r e n c e
48 boo l d i f f ( c o n s t o c p p a r a m e t e r s& o t h e r ) ;
49

50 // OCP p a r a m e t e r s
51 f l o a t o c p v e r s i o n ;
52 s t d : : s t r i n g name ;
53 // an e n t r y p e r OCP c o n f i g u r a t i o n p a r ame t e r a s d e f i n e d i n t h e OCP S p e c i f i c a t i o n
54 // t h e names a r e e x a c t matche s o f t h o s e i n t h e OCP S p e c i f i c a t i o n
55 . . .
56 } ;

To create an ocp parameters class it must be instantiated, and afterwards the members of the instance
can be set, since they are all public members. For example if the instance was called my params, then
my params.byteen=true, would set the configuration parameter that enables byte enables. Note that it is ad-
vised to set the member name of the parameters class, since it is used when there occur any problems with the
parameter set, e.g. when binding to another socket.

Building the ocp parameters class from a Parameter Map

The ocp parameters class may also be created using a map object that contains all of the parameter settings.
Use the function in line 40 to assign such a map to an instance of the ocp parameters class.

The map object is a C++ Standard Template Library (STL) object that is an associative array. In this case,
the map is string-to-string with the key string being the name of the parameter and the value string being the
parameter value. This parameter map may be automatically generated by a configuration tool. It may be hand
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coded in the source code for the master or slave, or in the main.cc program, or it may be built by reading in
parameter data from a file.

Each entry in the parameter map is a pair of strings. The left side (the key side) of the pair is the parameter
name. The right side (the value side) is the parameter value. The parameter name is a string, and it must
exactly match the OCP standard parameter name. For example, ”cmdaccept” is the OCP parameter to indicate
that the SCmdAccept signal is part of the OCP channel. You must be careful in the use of case or nonstandard
spellings (such as ”CMDAccept” or ”SCommandAccept”), which will not give you the desired result.

The value side of the parameter map has the following format: type char:value Where type char is a single
character is one of the following:

• ”i” specifies an integer or Boolean

• ”f” specifies a floating point value

• ”s” specifies a string.

Note that a colon (:) is required, and the value is the value of the parameter. Also, the value should not
contain any spaces. For example:

• ”i:1”An integer value 1 or the Boolean value TRUE.

• ”f:3.14159”The floating point value for PI.

• ”s:little”The string value ”little”.

Building the Parameter Map from a File

The ocp parameters class may also be configured by using a text file. Additionally this can be useful because the
file name may be passed to the main program that builds the simulation. Also, the file name may be changed
on the command line so the parameters are changed without having to recompile the model.

In the example below, the parameters are in a file as lines of pairs of space separated strings:
1 ∗ s o f c o n f i g . t x t ∗
2 cmdaccep t i : 1
3 add r wd t h i : 40
4 e n d i a n s : bo th
5 ∗ e o f c o n f i g . t x t ∗

The user’s code then reads the strings from the file and stores them into an STL map. The map is then
passed to the socket’s setConfiguration function.

The Configuration API of the Sockets

The functions available are:

void set ocp config (const ocp parameters& config);

config The OCP parameters class that contains the configuration for the socket.

Semantic Assign the provided set of parameters to the socket.

ocp parameters get ocp config () const;

return value The OCP parameters class that contains the configuration that was provided to the socket via
set ocp config .

Semantic Get the set of OCP parameters from a socket that was originally assigned to the socket.

ocp parameters get resolved ocp config (unsigned int index=0) const;

index The rank of the binding for which the resolved configuration shall be returned. Since the rank of a single
socket is always zero, zero is provided as the default to allow single socket users to simply omit the index.

return value The OCP parameters class that contains the resolved configuration for the (given rank of the)
socket. This may be different from what has originally been assigned to the socket, because during binding
some tie offs can be performed.

Semantic Get the current set of OCP parameters from a socket.
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void make generic();

Semantic Tell the socket to accept every set of OCP parameters when being bound, and to adopt that set
of parameters after binding. This call can only be used before the binding is complete, that means at
construction or before end of elaboration, but not later.

bool is generic (unsigned int& index);

index A reference to an integer. If the function returns true, it will be set to the smallest index of a multi socket
that is generic.

Semantic Ask the socket if it is (still) generic. After binding that will always return false, because the socket
will adopt a configuration during bind, thereby seizing to be generic.

Single socket: template <typename MODULE>

void register configuration listener callback (MODULE∗ owner,

void (MODULE::∗set config cb)(const ocp parameters&, const std::string&));

Multi socket: template <typename MODULE>

void register configuration listener callback (MODULE∗ owner,

void (MODULE::∗set config cb)(const ocp parameters&, const std::string&, unsigned int));

owner A module providing the member function that is passed as the second argument.

set config cb A callback of the given signature.

Semantic Register the given callback with the socket. As soon as the binding of the socket has successfully
completed the callback will be called. It will provide the resolved (i.e. with tie offs applied) set of
parameters and the name of the socket who has just been bound. This enables to register the same
callback with different sockets of the same module. In case of multi sockets, additionally the rank that
has just been bound will be provided as a third argument.

3.5.2 PEQ Configuration

When registering an nb transport callback for TL1 the default registration functions (see sections 3.4.1 and 3.4.2)
will insert PEQs. For all other TLs the use of PEQs must be explicitly activated.

When PEQs are used the sockets allow to switch them into delta cycle protection mode. That means they
will delay every incoming nb transport call for an additional time resolution unit. Thanks to that, every module
can know that at the time its clocked process executes no nb transport for the current cycle has arrived yet. See
section 3.8 for more details on that topic.

The API for the PEQ configuration is:

void activate delta cycle protection ()

Semantic Activate the delta cycle protection mode of the PEQ within the socket. Note that calling this
function if no PEQ is used will lead to a warning.

3.5.3 TL1 Timing Configuration

TL1 sockets offer the possibility to announce to their connected sockets if they use default timing5 or not. See
section 3.8 for a detailed discussion about TL1 timing.

To do so, timing information classes are exchanged. Those will be explained before the actual API can be
shown.

5that means the execute nb transport calls at the same simulation time at which the clock edge occurs
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Master Timing Class

1 c l a s s o c p t l 1 m a s t e r t i m i n g {
2 p u b l i c :
3 s c c o r e : : s c t im e Requ e s tG r p S t a r tT im e ;
4 s c c o r e : : s c t im e DataHSGrpSta r tT ime ;
5 s c c o r e : : s c t im e MThreadBusySta r tT ime ;
6

7 // d e f a u l t c o n s t r u c t o r f o r s c c o r e : : s c t i m e makes SC ZERO TIME − t h i s i s ” d e f a u l t t i m i n g ”
8

9 // t e s t f o r e q u a l i t y
10 boo l o p e r a t o r == ( c o n s t o c p t l 1 m a s t e r t i m i n g& r h s ) c o n s t ;
11 boo l o p e r a t o r != ( c o n s t o c p t l 1 m a s t e r t i m i n g& r h s ) c o n s t ;
12

13 s t a t i c c o n s t o c p t l 1 m a s t e r t i m i n g& g e t d e f a u l t t i m i n g ( ) ;
14 } ;

The class contains members that indicate at which time (after the clock edge has been seen) the request
group (i.e. nb transport with phase BEGIN REQ), the data group (i.e. nb transport with phase BEGIN DATA),
and the master’s thread busy signal change (i.e. nb transport with phase THREAD BUSY UPDATE and the type
being M THREAD) starts.

Additionally, there are comparison two operators. The first will return false as soon as one of the times
doesn’t match the times in the class that is compared. The second operates inverse to the first. The static
function shall be used to get a master timing class that reflects the default timing (it can be used to test if a
group matches the default timing or not).

Slave Timing Class

1 c l a s s o c p t l 1 s l a v e t i m i n g {
2 p u b l i c :
3 s c c o r e : : s c t im e Re s p o n s eG r pS t a r tT ime ;
4 s c c o r e : : s c t im e STh r e adBu s yS t a r tT ime ;
5 s c c o r e : : s c t im e SDa t aTh r e adBu s yS t a r tT ime ;
6

7 // d e f a u l t c o n s t r u c t o r f o r s c c o r e : : s c t i m e makes SC ZERO TIME − t h i s i s ” d e f a u l t t i m i n g ”
8

9 // t e s t f o r e q u a l i t y
10 boo l o p e r a t o r == ( c o n s t o c p t l 1 s l a v e t i m i n g& r h s ) c o n s t ;
11 boo l o p e r a t o r != ( c o n s t o c p t l 1 s l a v e t i m i n g& r h s ) c o n s t ;
12 s t a t i c c o n s t o c p t l 1 s l a v e t i m i n g& g e t d e f a u l t t i m i n g ( ) ;
13 } ;

The class contains members that indicate at which time (after the clock edge has been seen) the response
group (i.e. nb transport with phase BEGIN RESP), the slave’s thread busy signal change (i.e. nb transport with
phase THREAD BUSY UPDATE and the type being S THREAD), and the slave’s data thread busy signal change
(i.e. nb transport with phase THREAD BUSY UPDATE and the type being S DATA THREAD) starts.

Additionally, there are comparison two operators. The first will return false as soon as one of the times
doesn’t match the times in the class that is compared. The second operates inverse to the first. The static
function shall be used to get a master timing class that reflects the default timing (it can be used to test if a
group matches the default timing or not).

Master Timing Configuration API

The functions available are:

void set master timing (const ocp tl1 master timing& my timing, unsigned int index);

my timing The timing information that the master wants to announce to the slave.

index The rank of the multi socket binding to which to announce the timing information.

Semantic Announce a non default timing to a single connected slave sockets (identified via the rank of the
binding). The call can be performed already in the constructor of the master, the socket will transmit the
information as soon as it is bound to a slave socket.

void set master timing (const ocp tl1 master timing& my timing);

my timing The timing information that the master wants to announce to the slave.

Semantic Announce a non default timing to all connected slave sockets. For single sockets that is equivalent
to using the previous function with index=0. The call can be performed already in the constructor of the
master, the socket will transmit the information as soon as slave sockets are bound to the master socket.
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Constructor with timing callback registration (see section 3.3.1)

Semantic Register a callback with the constructed socket that is called when some non-default timing is
announced by the slave (see section 3.8.2 for more information).

Slave Timing Configuration API

The functions available are:

void set slave timing (const ocp tl1 slave timing & my timing, unsigned int index);

my timing The timing information that the slave wants to announce to the master.

index The rank of the multi socket binding to which to announce the timing information.

Semantic Announce a non default timing to a single connected master socket (identified via the rank of the
binding). The call can be performed already in the constructor of the slave, the socket will transmit the
information as soon as it is bound to a master socket.

void set slave timing (const ocp tl1 slave timing & my timing);

my timing The timing information that the slave wants to announce to the master.

Semantic Announce a non default timing to all connected master sockets. For single sockets that is equivalent
to using the previous function with index=0. The call can be performed already in the constructor of the
slave, the socket will transmit the information as soon master sockets are bound to the slave socket.

Constructor with timing callback registration (see section 3.3.2)

Semantic Register a callback with the constructed socket that is called when some non-default timing is
announced by the master (see section 3.8.2 for more information).

It is important to note that the timing callbacks do NOT inform the owner of the callback from which
multi socket rank the timing was received. The reason for that is that the timing distribution is not performed
using TLM-2.0 interfaces, hence bypasses the sockets and thereby blurs the rank information. Additionally,
always waiting for the latest signal will ensure stable signals on all ranks, so the rank information is not of great
significance. Moreover, multi-sockets are used when there is a reasonable degree of symettry between them,
which is why we do not need separate timing for each one).

3.6 Accessing Extensions

Please refer to chapter 4 and especially section 4.4 for detailed information about extension and how to use
them.

3.7 Using the Memory Management of the Sockets

The OCP sockets offer memory management facilities to the user, the use of the transaction pool within the
master sockets is strongly recommended, although not a strict requirement to use the sockets. However, when
not using the pools memory management of the transactions is fully within user responsibility. The memory
management of the extensions is a given, due to the nature of the extensions and the provided API for extension
accesses. The user is never confronted with the need to allocate or deallocate extensions.
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3.7.1 Transaction Memory Management

The API provided by the master socket for transaction memory management is:

tlm :: tlm generic payload∗ get transaction ();

Semantic Get a memory managed transaction from the pool of a master socket. The transaction is already
acquired on behalf of the master; there is no need to manually acquire this transaction.

void release transaction (tlm :: tlm generic payload∗ txn );

Semantic Release a transaction that was previously taken from a pool of the same socket. The master shall
call this function when he is done with the transaction.

Note that all other modules (Slaves, and modules that possess master sockets, but that do not use their pools
because the only forward transactions from slave to master sockets and vice versa) shall use the transaction
member functions acquire and release as described in [1].

3.7.2 Data and Byte Enable Array Memory Management

The pool within the master sockets knows four different operation modes that are encoded in an enumerated
type. This type is provided as a typedef within the used OCP socket (see line 5 in the listing below), to allow
changes to the type under the hood of the OCP kit. A mode for the pool is set through constructor parameter
scheme of the master sockets (see section 3.3.1). The possible values are provided through static member
functions of the OCP sockets (see lines 6 through 9 of the listing below).

1 t emp la t e <un s i g n e d i n t BUSWIDTH , un s i g n e d i n t NUM BINDS>
2 c l a s s o c p m a s t e r s o c k e t t l x
3 {
4 p u b l i c :
5 t y p e d e f . . . a l l o c a t i o n s c h e m e t y p e ;
6 s t a t i c a l l o c a t i o n s c h e m e t y p e mm txn on l y ( ) ;
7 s t a t i c a l l o c a t i o n s c h e m e t y p e mm t x n w i t h d a t a ( ) ;
8 s t a t i c a l l o c a t i o n s c h e m e t y p e mm txn w i t h b e ( ) ;
9 s t a t i c a l l o c a t i o n s c h e m e t y p e mm t x n w i t h b e a n d d a t a ( ) ;

10 } ;

The different semantics of the modes are:

mm txn only() The pool will only pool transactions. Data and byte enable arrays must be provided/managed
by the master.

mm txn with data() The pool will pool transactions and a data array for each of the transactions. The
data array memory management functions (see below) will be enabled. Byte enable arrays must be
provided/managed by the master.

mm txn with be() The pool will pool transactions and a byte enable array for each of the transactions. The
byte enable array memory management functions (see below) will be enabled. Data arrays must be
provided/managed by the master.

mm txn with be and data() The pool will pool transactions, a byte enable array and a data array for each of
the transactions. The byte enable array and the data array memory management functions (see below)
will be enabled.

Depending on the modes above none, one or both of the following memory management become available:

void reserve data size (tlm :: tlm generic payload& txn, unsigned int size );

txn The transaction for which to reserve a data array.

size The number of byte to reserve for the data array.

Semantic The socket will make the data ptr of the transaction point to the data array that was pooled for this
transaction. If the size is larger than the current size of the pooled array, the array will be enlarged accord-
ingly. If it is larger than or equal to the size no allocation/deallocation will be performed. Additionally,
the socket will set the data length attribute of the transaction to the value of size. If the operation mode of
the socket is not mm txn with data() or mm txn with be and data(), assertions will be triggered. However,
when compiling with -DNDEBUG runtime errors might appear if the function is called on a socket whose
pool is not set to the correct operation mode.
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unsigned int get reserved data size (tlm :: tlm generic payload&);

txn The transaction for which to determine that currently allocated array size.

Return value The number of bytes that are currently allocated.

Semantic The socket will return the size of the data array that is pooled for this transaction. This function
is mainly for debug, but may prove helpful in some occasions. If the operation mode of the socket is not
mm txn with data() or mm txn with be and data(), assertions will be triggered. However, when compiling
with -DNDEBUG runtime errors might appear if the function is called on a socket whose pool is not set
to the correct operation mode.

void reserve be size (tlm :: tlm generic payload& txn, unsigned int size );

txn The transaction for which to reserve a byte enable array.

size The number of byte to reserve for the byte enable array.

Semantic The socket will make the byte enable ptr of the transaction point to the byte enable array that was
pooled for this transaction. If the size is larger than the current size of the pooled array, the array will be
enlarged accordingly. If it is larger than or equal to the size no allocation/deallocation will be performed.
Additionally, the socket will set the byte enable length attribute of the transaction to the value of size. If
the operation mode of the socket is not mm txn with be() or mm txn with be and data(), assertions will
be triggered. However, when compiling with -DNDEBUG runtime errors might appear if the function is
called on a socket whose pool is not set to the correct operation mode.

unsigned int get reserved be size (tlm :: tlm generic payload&);

txn The transaction for which to determine that currently allocated array size.

Return value The number of bytes that are currently allocated.

Semantic The socket will return the size of the byte enable array that is pooled for this transaction. This
function is mainly for debug, but may prove helpful in some occasions. If the operation mode of the
socket is not mm txn with be() or mm txn with be and data(), assertions will be triggered. However, when
compiling with -DNDEBUG runtime errors might appear if the function is called on a socket whose pool
is not set to the correct operation mode.

3.8 TL1 Timing

Level-1 of the OCP TLM model is designed to allow cycle-accurate modelling of bus interfaces. Any OCP
traffic pattern that is possible in hardware should also be possible to model at TL1, without modifications to
the design hierarchy or topology, and in a fully modular manner. This means that the TL1 infrastructure needs
to support, among other things:

• Modules with internal combinatorial paths from one OCP signal to another within a single OCP interface

• Modules with internal combinatorial paths from an OCP signal on one interface to OCP signals on another
interface

• Cascading of modules with OCP interfaces to an arbitrary degree

• Modules that change the values of OCP signals at some time in the middle of a clock cycle rather than at
the clock edges, for example scaled-synchronous clock bridges

As OCP is a synchronous clocked protocol, to model it at a cycle-accurate level means that at very least the
OCP master must understand the location of the clock cycles in time. In fact it is usual that the OCP slave
also needs an understanding of the OCP clock cycles, and when both master and slave have this information, it
must be the same for both of them6, otherwise the connection will not work correctly. Furthermore, there may
be one or more monitors attached to the connection, and these also need to be correctly synchronized with the
OCP master. The section below attempts to explain what is meant by synchronization in this context. This
is followed by a section describing how the OCP-TL1 timing information distribution system can be used to
support non-default cases.

6as mentioned in section 2.1, rule 15, the ’same’ only applies to the point in time a clock edge occurs, not necessarily to delta
cycles
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3.8.1 OCP TL1 Synchronisation

In the OCP protocol time is divided into clock cycles. Clock cycles are generally of a constant duration, the
clock period, but this is not obligatory. In hardware, each clock cycle begins with a rising edge of a single-wire
clock signal. The clock signal returns to zero some time during the cycle and the cycle ends when the following
cycle begins, with the next rising edge.

In SystemC it is usual to define clock cycles in the same way, using an sc channel of type sc signal<bool>
or the convenient library module sc clock. SystemC allows many other ways of defining clock cycles and most
ways are tolerated by the OCP Modelling Kit. However users are warned that exotic or unusual definitions of
clock cycles will greatly reduce the chances of compatibility between modules. For every OCP Modelling Kit
connection in a simulation, there are several other modules associated with it:

• Exactly one module with an OCP master socket, the master

• Exactly one module with an OCP slave port, the slave (which is allowed to be the same module as the
master)

• Optionally one or more monitors

The master and slave may contain processes that access the connection. If so, these processes must be
synchronized with each other, so that they understand the same clock cycle boundaries. As mentioned before
that means they only have to know the point in time at which the clock edge appears. The actual clock edge
event of the clocks that drive master and slave may happen at different delta cycles of that point of time. If any
monitor is clocked, it must be clocked with the a clock whose clock edge happens at the same point of time as
the ones used in the master and slave for OCP clock cycle synchronization (Again: the delta cycles may differ).

There are several cases where the modules do not need to understand the clock cycles. For example:

• An OCP slave can be fully event-driven. It can be implemented as a process which waits for the events
triggered from within its nb transport fw callback function, then calls nb transport bw within the same
clock cycle. This corresponds to a zero-latency (combinatorial) hardware module. Note that such a
module is sensitive to the timing of the master and does not have default timing itself and as such it needs
to use the timing information distribution system described below. In this case the master alone needs to
understand the OCP clock cycle definition.

• A simple combinatorial bridge, for example a bridge to cut INCR burstsÕ lengths to some maximum value
without introducing any latency, has both an OCP master socket and an OCP slave socket. It can be
implemented without any processes. Its nb tranport fw callback will just modify slightly the transaction
and then call nb transport fw on its master socket in the same cycle. Its nb tranport bw callback will
work similarly, and modify slightly the transaction and then call nb transport bw on its slave socket in the
same cycle. Note that such a module is sensitive to the timing of the external OCP master and slave,
and does not have default timing itself and as such it needs to use the timing information distribution
system described below. In this case the external OCP master and possibly the external OCP slave need
to understand the OCP clock cycle definition.

All modules that do need to understand the clock cycle definition need to understand it identically. Note
that:

• In case of default timing

– In the absence of a delta cycle protection PEQ, a module must expect calls to nb transport at any
delta cycle of the time of the clock edge. More precisely, it must tolerate that nb transport executes
before and after the execution of the module’s clocked processes.

– In the presence of a delta cycle protection PEQ, a module can rely on the fact that all calls to
nb transport arrive at least one time resolution unit after the time of the clock edge. Hence, the
module can expect nb transport to execute only after the module’s clocked process.

• In case of non default timing

– In the absence of a delta cycle protection PEQ, a module must expect calls to nb transport at any
delta cycle of the non default time.

– In the presence of a delta cycle protection PEQ, a module can rely on the fact that all calls to
nb transport arrive at least one time resolution unit after the non default time.

Assuming that nb transport calls update the state of some module internal variables, that default timing,
and delta cycle protection PEQs are used, we can say:
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• that in many cases the master and slave modules can be implemented in a fully-synchronous style, having
just a single process sensitive only to the clockÕs rising edge.

• Accesses at the time of the clock edge to the variables that are changed by nb transport return the values
of the previous cycle.

• Accesses at one time resolution unit after the time of the clock edge to the variables that are changed
by nb transport are unsafe7 (there is a race between the module’s internal process and the delta cycle
protection PEQ’s process)

• Accesses at two time resolution units after the clock edge to the variables that are changed by nb transport
return the values of the current cycle.

• Calls to nb transport at a times unequal to the time of the clock are only allowed if it was previously
announced via the timing information distribution as described below.

With non-default timing, and delta cycle protection, we can say:

• Accesses at the time of the clock edge to the variables that are changed by nb transport return the values
of the previous cycle.

• Accesses at or before at the non default time to the variables that are changed by nb transport are unsafe7,
because it is not clear at which exact time the non-default timing call will happen.

• Accesses on time resolution unit after the non default time to the variables that are changed by nb transport
are unsafe7 (there is a race between the module’s internal process and the delta cycle protection PEQ’s
process)

• Accesses at two time resolution units after after the non default time to the variables that are changed by
nb transport return the values of the current cycle.

• Calls to nb transport at a times unequal to the time of the clock are only allowed if it was previously
announced via the timing information distribution as described below.

With default timing, and no delta cycle protection, we can say:

• Accesses at the time of the clock edge to the variables that are changed by nb transport return are unsafe7

(there is a race between the module’s internal process and the sending process)

• Accesses at one time resolution unit after the time of the clock edge to the variables that are changed by
nb transport return the values of the current cycle.

• Calls to nb transport at a times unequal to the time of the clock are only allowed if it was previously
announced via the timing information distribution as described below.

With non-default timing, and no delta cycle protection, we can say:

• Accesses before the non default time to the variables that are changed by nb transport are unsafe 7, because
it is not clear at which exact time the non-default timing call will happen.

• Accesses at the non-default time to the variables that are changed by nb transport are unsafe7 (there is a
race between the module’s internal process and the sending process)

• Accesses at one time resolution unit after the non-default time to the variables that are changed by
nb transport return the values of the current cycle.

• Calls to nb transport at a times unequal to the time of the clock are only allowed if it was previously
announced via the timing information distribution as described below.

7Note that this can be safe if the user added appropriate means to make it safe. But without such means it is unsafe.
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3.8.2 Timing Information Distribution (OCP TL1)

There are certain cases where TL1 models are unable to use only the clock period boundaries as their timing
reference. The underlying reason for this is that the TL1 methodology recommended for OCP does not permit
the retraction of either an OCP request or command accept, or the equivalents for data-handshake and response
phases. These cases include:

• thread-busy-exact OCP interfaces, where the OCP protocol obliges the master (for sthreadbusy exact) to
choose its request only after having seen the SThreadBusy signals from the slave.

• a combinatorial request or response merger (arbiter), which needs to wait for a time long enough for all
inputs to be stable before it chooses one of them. In particular where combinatorial OCP modules are
cascaded some inputs may arrive later than others.

To allow simple management of such cases, a mechanism is provided in the OCP TL1 sockets which allows
distribution of timing information at end-of-elaboration. Only OCP modules that are either ”timing-sensitive”
or ”non-default-timing” need to use this mechanism. All other modules may ignore it completely.

Timing-sensitive Modules

A timing-sensitive module is a module which needs to know when inputs can safely be assumed to be stable,
in order to work correctly (that means it needs to know when nb transport with a certain phase is known to
have been called or not). A non-timing-sensitive module might always use the values of the previous cycle, as
a counter-example.

All OCP masters that are sthreadbusy exact or sdatathreadbusy exact are by definition timing-sensitive (unless
they are using thread-busy-pipelined). All OCP slaves that are mthreadbusy exact are by definition timing-
sensitive (unless they are using thread-busy-pipelined). Timing-sensitive modules register themselves with the
OCP TL1 sockets during construction.

They do this by using special constructors of the sockets (this ensure that the callbacks are registered after
construction time):

• template<typename MODULE>

ocp master socket tl1 (const char∗ name, MODULE∗ owner,

void (MODULE::∗timing cb)(ocp tl1 slave timing),

ocp master socket tl1 :: allocation scheme type scheme=ocp master socket tl1:: mm txn only())

• template<typename MODULE>

ocp slave socket tl1 (const char∗ name, MODULE∗ owner,

void (MODULE::∗timing cb)(ocp tl1 master timing))

depending on whether they are a master or a slave. Here it is suggested that a pointer to the module itself
be passed as parameter. This would mean the module implement a function void fn(ocp tl1 slave timing) (for an
OCP master) or void fn(ocp tl1 master timing) (for an OCP slave). If a module has multiple sockets of the same
kind (master or slave socket), it may either have member variables of classes that implement such functions and
registers a different variable with each socket, or it has a distinct function per socket.

Once the module is registered with the socket as timing-sensitive, the socket will inform it of the timing
parameters of the module on the other side. This may happen several times depending on the order of the
end-of-elaboration calls in the SystemC simulation. The implementation of the registered callbacks must allow
it to be called multiple times during end-of-elaboration.

If the other side of the OCP TL1 connection is a default-timing module, the socket will never call the
callback.

Non-default-timing Modules

A non-default-timing module is a module whose nb transport calls are not performed at the time of the clock
edge. If a clock signal is used to synchronise the OCP master and OCP slave, this means that default-timing
modules call nb transport at the time of the clock rising edge. Non-default timing modules must call the
socket methods void set master timing(const ocp tl1 master timing& my timing); or void set slave timing(const
ocp tl1 slave timing& my timing); (for masters and slaves respectively) during end-of-elaboration, providing
their timing parameters.

A non-default timing module may not know its timing parameters when its own end-of-elaboration method
is called. This is the case for example for a combinatorial module passing OCP requests from a slave port to a
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master port (an address translation bridge for example). A module like this is both timing-sensitive and non-
default-timing. It must register itself as timing-sensitive on its OCP slave socket and send its timing information
to its OCP master socket. It may occur that the module is provided several times with timing information from
the OCP slave socket, and every time that its master timing callback is called from the slave socket, it should
recalculate the timing parameters of its master socket and call the set master timing() method of the master
port if they changed.

To avoid infinite loops at end-of-elaboration it is important that a non-default-timing module only call
set x timing() when necessary. It should not call this method if it has previously been called with the same
parameters.

Start Times

Start times are sc time variables. They indicate when a nb transport call with a certain phase is given to the
socket by the OCP master or slave. The other side of the OCP interface can safely access variables that are
changed by that nb transport call after waiting for the start-time and one time resolution unit. It is then sure
that nb transport call with that phase has happened (if at all) in this cycle and will not happen again.

Start times give duration of simulated time after the start of an OCP clock cycle. It is assumed that the
OCP master and OCP slave are exactly synchronised.

• start time = SC ZERO TIME

This means that the nb transport call is started at the same sc time stamp as the synchronisation event
indicating the start of an OCP cycle. The other side of the OCP interface can access the values changed
by that call safely after waiting one time resolution unit.

• start time > SC ZERO TIME

This means that the nb transport call is started after wait(start time) after the synchronisation event indi-
cating the start of an OCP cycle. Or before. It is not allowed that the nb transport call starts some time af-
ter wait(start time). In this case the other side of the OCP interface must at least
wait(start time+sc get time resolution()) before accessing values changed by the nb transport call.

The most frequent example is a thread-busy-exact OCP. In the simplest case the slave produces SThreadBusy
directly after the start of cycle. It has therefore default timing. The master must wait at least one time resolution
unit before accessing the member that was updated by nb transport with phase THREAD BUSY UPDATE and
starting an OCP request. Therefore the OCP request start time is +1 time resolution unit.

OCP TL1 Timing Example

In the distribution there is an example of how the TL1 timing distribution feature of the OCP TL1 sockets can
be used. It is a simulation of a multi-threaded non-blocking shared bus with zero-cycle minimum round-trip
latency. In this design a request/response transfer can pass through up to 10 cascaded OCP Modelling Kit TL1
connections in the same clock cycle. For more details look in the source code and the readme.txt file, in the
directory examples/supplementary/ocp tl1 timing.

3.9 Helper Functions

Some helper functions and classes are provided within the kit. This section will list them.

3.9.1 Data Class

Mainly for the support of the legacy monitors a data class is provided (see chapter 7). It can be regarded as
a type generator that generates the most appropriate types for given bus and address widths. It exists in two
flavors: once with an unsigned data type, and once with a signed data type.

1 t emp l a t e <un s i g n e d i n t BUSWIDTH , un s i g n e d i n t ADDRWIDTH>
2 s t r u c t o c p d a t a c l a s s u n s i g n e d {
3 . . .
4 t y p e d e f . . . DataType ; // u n s i g n e d i n t h i s c l a s s
5 t y p e d e f . . . AddrType ; // a l w a y s u n s i g n e d
6 . . .
7 } ;
8

9 t emp l a t e <un s i g n e d i n t BUSWIDTH , un s i g n e d i n t ADDRWIDTH>
10 s t r u c t o c p d a t a c l a s s s i g n e d {
11 . . .
12 t y p e d e f . . . DataType ; // s i g n e d i n t h i s c l a s s
13 t y p e d e f . . . AddrType ; // a l w a y s u n s i g n e d
14 . . .
15 } ;
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If users are unsure which unsigned type fits best for a certain bus width may using ocp data class unsigned :: DataType
for that is a good idea.

3.9.2 Burst Length Calculation Functions

As can be seen in chapter 5 extracting the OCP burst length out of a given transaction (in the absence of the
burst length extension) is not totally trivial. Hence helpers are provided that aid the user in this task.

unsigned int calculate ocp address offset (tlm :: tlm generic payload& txn, const unsigned int bus byte width);

txn The transaction from which to extract the address offset.

bus byte width The bus width in bytes of the socket/link.

Semantic Return the offset of the transaction address (see section 5.1, equations 5.2 and 5.3 for a definition).

template <typename Ta> unsigned int calculate ocp burst length ( tlm :: tlm generic payload& txn

, const unsigned int bus byte width

, unsigned int offset

, bool burst aligned INCR

, Ta& new ocp address

, burst sequence∗ b seq)

txn The transaction for which to calculate the burst length

bus byte width The bus width in bytes of the socket/link.

offset The address offset of the transaction address

burst aligned INCR An indicator if the transaction is a burst aligned INCR burst.

new ocp address A reference to a variable that can store an address. Will only be updated when burst aligned INCR
is true.

b seq The pointer to the burst length extension of the transaction. May be NULL if not available.

Semantic Calculate the effective OCP burst length of a given transaction. If the transaction is a burst aligned
incrementing burst, the calculation of the address is also provided by that function and the result is places
into new ocp address. Whenever there is a valid burst sequence extension in the transaction, provide it to
the function so that it can use it to correctly calculate the burst length.

Example: Calculate the burst length for an INCR burst that appeared on a link with BUSWIDTH=32, that
has burst aligned=1 and that can handle INCR, STRM and WRAP bursts:

1

2 t lm : : t lm s y n c e n um n b t r a n s p o r t ( t lm : : t l m g e n e r i c p a y l o a d& gp , t lm : : t l m p h a s e& ph , s c c o r e : : s c t im e& t ){
3 sw i t c h ( ph ){
4 c a s e t lm : : BEGIN REQ :{
5 // g e t p o t e n t i a l a d d r e s s o f f s e t
6 un s i g n e d i n t o f f s e t=c a l c u l a t e o c p a d d r e s s o f f s e t ( gp , 4 ) ; // 4 b y t e bus w i d t h
7 //we g u e s s t h i s i s a STRM b u r s t and pu t t h e bus w i d t h a l i g n e d a d d r e s s i n t o ou r c l a s s member
8 m add r e s s=gp . g e t a d d r e s s ()− o f f s e t ;
9 // t r y t o g e t t h e b u r s t s e q e x t e n s i o n

10 o c p i p : : b u r s t s e q u e n c e b s e q ;
11 i f ( s o c k e t . g e t e x t e n s i o n ( b s eq , gp ) ) m c u r r e n t s e q=b s eq−>v a l u e . s e q u e n c e ; // i f v a l i d remember i t
12 e l s e b s e q=NULL ; // i f no t v a l i d we n e g l e c t t h e p o i n t e r we go t
13 // s t o r e t h e b u r s t l e n g t h i n a c l a s s member
14 // i f t h i s i s a INCR now ou r a d d r e s s m igh t g e t changed b e c a u s e o f b u r s t a l i g n e d=t r u e
15 m b l e n g t h= c a l c u l a t e o c p b u r s t l e n g t h <l ong >(gp , 4 , o f f s e t , t r u e , m add r e s s , b s e q ) ;
16 . . .
17 }
18 b r e ak ;
19 . . .
20 }
21 }
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3.10 Adding Req/Resp/MData/SData-Info extensions

The OCP kit does not (yet) provide pre-defined extensions to transmit req/resp/mdata/sdata-info fields. The
recommendation is that a user should define functional extensions for that manually. Future releases will provide
more sophisticated help for that, offering pre-defined ways how to map the functional extension on bit maps
and vice versa, so that the info fields can e.g. appear in traces generated by the trace monitor.

To simplify the definition of extensions and to make them fit into the memory management policies of the
OCP kit, a set of C++ base classes are provided that help defining extensions. The most important ones are

• namespace infr{ template <typename T> struct ocp guard only extension;}
Derive an empty class or struct from this struct in the following way:

struct my guard ext : public infr :: ocp guard only extension<my guard ext>{};
This will create a ready to use guard extension (see section 4.4).

• namespace infr{ template <typename T, typename VAL> struct ocp single member data;}
Derive an empty class or struct from this struct in the following way:

struct my data ext : public infr :: ocp single member data<my data ext, unsigned int>{};
This will create a ready to use data extension (see section 4.4), with a single member named value, whose
type is VAL (which is unsigned int in the given example).

Note that for monitoring purposes std::ostream& operator<<(std::ostream &, const member type&) has to
be defined for VAL.

• namespace infr{ template <typename T, typename VAL> struct ocp single member guarded data;}
Derive an empty class or struct from this struct in the following way:

struct my guard data ext : public infr :: ocp single member guarded data<my guard data ext, int>{};
This will create a ready to use guarded data extension (see section 4.4), with a single member named
value, whose type is VAL (which is int in the given example).

Note that for monitoring purposes std::ostream& operator<<(std::ostream &, const member type&) has to
be defined for VAL.

There are other base classes that allow for a more fine grained definition of extension, which are documented
in the source file ocp infr extensions.h that contains the macro definitions.

To illustrate the use of such a custom extension and how to use them to as e.g. a reqinfo extension, consider
the following example: A master wants to decorate each read request with the consecutive number of the
read transaction and the beat number of the request within this transaction. In this example this info will be
transmitted as a std::string to illustrate that such info can be any abstract data type.

The extension is defined like this8:
1 // f i l e r e q i n f o e x t e n s i o n . h
2 # i f n d e f r e q i n f o e x t e n s i o n h
3 #d e f i n e r e q i n f o e x t e n s i o n h
4

5 # i n c l u d e ”o c p i p . h ”
6

7

8 s t r u c t r e q i n f o c o n t a i n e r {
9 s t d : : v e c t o r <s t d : : s t r i n g > i n f o s ;

10 } ;
11

12 i n l i n e s t d : : o s t r e am& op e r a t o r << ( s t d : : o s t r e am & os , c o n s t r e q i n f o c o n t a i n e r & r e q i n f o c o n t ){
13 os<<”OStream s e r i a l i z a t i o n o f r e q i n f o c o n t a i n e r no t s u p p o r t e d ” ;
14 r e t u r n o s ;
15 }
16

17 s t r u c t m y r e q i n f o : p u b l i c o c p i p : : i n f r : : o c p s i n g l e m e m b e r g u a r d e d d a t a <m y r e q i n f o , r e q i n f o c o n t a i n e r >{};
18

19 #e n d i f

The pseudo code for the extension ’generated’ by this derivation is therefore:
1 s t r u c t m y r e q i n f o :
2 p u b l i c o c p t l m g u a r d e d d a t a e x t e n s i o n
3 {
4 r e q i n f o c o n t a i n e r v a l u e ;
5 } ;

8To keep the example simple the stream operator << is not generating a reasonable output stream. Real life extensions should
of course try to output information that aids debugging and monitoring.
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Due to this structure you could now add more members to req info container, and still use the same simple
base class ocp single member guarded data.

The master can now add reqinfo to requests like that:
1 i f ( r eq−>get command ( ) == t lm : : TLM WRITE COMMAND){
2 // . . .
3 }
4 e l s e { // r e a d
5 // c n t i s t h e o v e r a l l c o un t o f e m i t t e d r e q u e s t b e a t s
6 un s i g n e d i n t b u r s t c n t=c n t&0x7 ;
7 m y r e q i n f o ∗ r e q i n f o ;
8 i pP . g e t e x t e n s i o n <m y r e q i n f o >( r e q i n f o , ∗ r e q ) ;
9 s t d : : s t r i n g s t r e a m s ;

10 s<<”Th i s i s t h e r e q i n f o f o r b e a t ”<<b u r s t c n t
11 <<” o f r e a d t r a n s a c t i o n no . ”<<((cnt >>4)+1)<<” f rom ”<<s c modu l e : : name ( ) ;
12 r e q i n f o −>v a l u e . i n f o s [ b u r s t c n t ]= s . s t r ( ) ;
13 }

And the slave can access the reqinfo like this:
1 m y r e q i n f o ∗ r e q i n f o ;
2 // r e q c n t i s t h e c oun t o f r e c e i v e d r e q u e s t s f o r t h e c u r r e n t MRMD b u r s t ( s t a r t i n g a t 1 )
3 i f ( tpP . g e t e x t e n s i o n <m y r e q i n f o >( r e q i n f o , ∗ r e q ) ){
4 // t h e r e q ha s an i n f o f i e l d
5 s t d : : cout<<”S l a v e go t i n f o f o r a r e q u e s t ! ”<<s t d : : e n d l
6 <<”The i n f o i s : ”<<s t d : : e n d l
7 <<” ”<< r e q i n f o −>v a l u e . i n f o s [ r e q c n t −1]<< s t d : : e n d l ;
8 }

The whole example with all the surrounding code can be found in the ocp tl1 imprecise burst profile with req info
directory of the examples shipped together with the OCP kit.



28 CHAPTER 3. USING THE SOCKETS



Chapter 4

TLM-2.0 extensions for OCP

This chapter will name all the TLM extension for OCP, and defines their mutabilities, bindabilities, phase asso-
ciations, extension types and semantics. Prior to that mutability, bindability, phase association and extension
types will be defined.

4.1 Phase association

A certain extension is always associated with a (set of) phase(s). It cannot be considered valid when receiving
a phase it is not associated with.

4.2 Mutability

OCP TLM distinguishes between three different mutabilities: end-to-end invariant, point-to-point invariant, and
point-to-point variant. The mutability of an extension determines if and when an extension may be changed as
well as the validity.

1. End-to-end invariant (E2E)

E2E extensions may be set once with the very first associated phase by an end-to-end module and may not
be changed until the transaction’s lifetime has finished. In other words, an E2E extension is temporally
and spatially1 invariant. It is valid with every subsequent associated phase of the transaction.

2. Point-to-point invariant (X2X)

X2X extensions may be set/changed once with the very first associated phase by an end-to-end module or
intermediate module and may not be changed later by the same module. That means, if an intermediate
module receives a transaction for the first time with an associated phase it may change an X2X extension,
but may not change it later on. Consequently, X2X extensions are only valid with the very first associated
phase. The value cannot be considered valid in subsequent associated phases of the transaction. Hence,
if a module needs access to an X2X extension in subsequent phases it has to make a local copy of it, e.g.
it can put it into an instance specific extension. Note that this also applies to the original setter of the
extension.

More formally, an X2X extension is spatially variant, but temporally invariant on a given point-to-point
link.

3. Point-to-point variant (P2P)

P2P extensions may be set/changed with every associated phase by every module. They have to be
evaluated/set with every reception/sending of an associated phase. They are valid only in the very call
that delivers the transaction with an associated phase. Consequently, when delaying a transaction that
carries a P2P extension, the value of the P2P extension must be saved within the function that delivers
the transaction (the extension is valid only at this time), because the value inside the transaction may
have changed during the delay. In case the transaction shall be passed on after the expiration of the delay
with the P2P extension carrying the value it had at reception, the value must be copied back into the
extension before it is passed on (we denote that as save-and-restore of an extension).

More formally, a P2P extension is both temporally and spatially variant.

1The space of a transaction is the set of all point-to-point links it passes on its way from the master to the slave.

29
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4.3 Bindability

OCP TLM distinguishes between three different bindability levels (BL): mandatory, optional and rejected. The
BL of an extension is not defined for an extension alone. It can only be defined for an extension in conjunction
with an OCP role2. Hence, for each BL we define bindability rules against other BLs.

The use of extensions and their respective BLs is extracted from the OCP configuration of a given socket.

1. Mandatory

Meaning: The extension is vital for the correct operation of the module.

Bindability rules: If the other module’s BL for the extension is rejected, the bind attempt will fail. If the
other module’s BL for the extension is optional or mandatory, the bind attempt will succeed.

2. Optional

Meaning: The module can operate correctly with or without the extension.

The bind attempt will always succeed.

3. Rejected

Meaning: The module is unable to handle the extension.

If the other module’s BL for the extension is mandatory, the bind attempt will fail. If the other module’s
BL for the extension is optional or rejected, the bind attempt will succeed.

4.4 Extension types

OCP TLM distinguishes between three (it’s always three, isn’t it?) extension types: guard extensions, data
extension and guarded data extensions.

1. Guard extension

A guard extension does not carry any value, the information carried by the extension is its mere extension
in a transaction. Assuming there is a guard extension foo and a transaction txn, we call foo validated in
txn if foo is part of txn. If it is not part of txn it is called invalidated.

A transaction taken from a pool that is part of an OCP socket will always have all guard extensions
invalidated.

Since guard extensions do not carry values, there is no need to handle explicit objects of guard extension,
only the type is of interest. The API provided by the OCP sockets for working with guard extensions is:

(a) template <typename EXT> bool validate extension(tlm generic payload& txn);
This call will validate the guard extension type EXT in txn. The return value is true if there was a
memory manager in txn, and false otherwise. In TL1 the return value can be ignored, since there has
to be a memory manager inside a TL1 transaction. It might be of importance at higher abstraction
layers that work with and without memory management. Depending on if there was a memory
manager or not, the caller is responsible for invalidating the extension.
Example:
tlm generic payload txn;
my socket.validate extension<foo>(txn);

(b) template <typename EXT> void invalidate extension(tlm generic payload& txn);
This call will invalidate the guard extension type EXT in txn.
Example:
tlm generic payload txn;
my socket.validate extension<foo>(txn);

(c) template <typename EXT> EXT∗ get extension(tlm generic payload& txn);
This call will test if the guard extension type EXT is in txn. If so, it will return a non-NULL pointer,
otherwise it will return the NULL pointer.
Example:
if (my socket.get extension<foo>(txn)) do stuff with foo (); else do stuff without foo ();

2Master or Slave
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2. Data extension

A data extension carries a value whose validity is indeterminable. That means out of any given transaction
the data can be extracted. The question whether this value can be trusted or not cannot be derived
from the transaction itself, it must have been negotiated prior to the transaction exchange. E.g. if a
protocol goo requires extension bar in any conceivable communication, bar can be a data extension if both
communication partners agreed to talk goo only.

The API provided by the OCP sockets for working with data extensions is:

(a) template <typename EXT> EXT∗ get extension(tlm generic payload& txn);
This call always returns a valid pointer to the data extension of type EXT of txn. There is no way
to determine whether someone else accessed the extension before. Note that any given transaction
can be considered to carry all data extensions, i.e. the call will never return the NULL pointer.
The extension is ’added’ to the transaction by just calling this function and assigning a value to the
extension.
Example:
my socket.get extension<foo>(txn)->value=3; //set the value of a data extension
my val=my socket.get extension<foo>(txn)->value; //get the value of a data extension

3. Guarded data extension

A guarded data extension carries a value whose validity is determinable. That means out of any given
transaction the data can be extracted. The question whether this value can be trusted or not can be
derived from the transaction itself. A guarded data extension foo is basically two extensions: a data
extension (denoted as the data part of foo) that carries the value and a guard extension (denoted as the
guard of foo) that signals the validity, however the provided API will hide this distinction from the user.

Assuming there is a guarded data extension foo and a transaction txn, we call foo validated in txn if the
guard of foo is part of txn. If the guard is not part of txn it is called invalidated.

A transaction taken from a pool that is part of an OCP socket will always have all guards of guarded data
extensions invalidated.

(a) template <typename EXT> bool validate extension(tlm generic payload& txn);
This call will validate the guard of guarded data extension type EXT in txn. The return value is true
if there was a memory manager in txn, and false otherwise. In TL1 the return value can be ignored,
since there has to be a memory manager inside a TL1 transaction. It might be of importance at
higher abstraction layers that work with and without memory management. Depending on if there
was a memory manager or not, the caller is responsible for invalidating the extension.
Note that a guard of a guarded data extension may only be validated after the data part of the
extension has been accessed before (not shown in the example below).
Example:
tlm generic payload txn;
my socket.validate extension<foo>(txn);

(b) template <typename EXT> void invalidate extension(tlm generic payload& txn);
This call will invalidate the guard of guarded data extension type EXT in txn.
Example:
tlm generic payload txn;
my socket.validate extension<foo>(txn);

(c) template <typename EXT> bool get extension(EXT∗& ext, tlm generic payload& txn);
This call will test if the guard of guarded extension type EXT is in txn. If so, it will return true,
otherwise it will return false. After the call ext will always have a valid pointer to the data part
of guarded data extension type EXT. To ’add’ a guarded data extension to a transaction just call
this function (it should return false, otherwise it was already added and validated by someone else),
assign a value to it and validate the extension.
Example1 (setup):

f oo ∗ p foo ;
t lm g e n e r i c p a y l o a d txn ;
// i g n o r e r e t u r n va lue , because we know i t i s f a l s e
// s i n c e txn i s f r e s h and new
my socket . g e t e x t e n s i o n <foo >(p foo , txn ) ;
p foo−>v a l u e =10; // s e t the v a l u e
my socket . v a l i d a t e e x t e n s i o n <foo >( txn ) ; //mark the data as v a l i d
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Example2 (test):

f oo ∗ p foo ;
i f ( my socket . g e t e x t e n s i o n <foo >(p foo , txn ) )

d o s t u f f w i t h f o o ( p foo−>v a l u e ) ;
e l s e

d o s t u f f w i t h o u t f o o ( ) ;

Please note that none of the types requires the user to allocate any extensions. Extensions can always be
’taken’ from the transactions directly.



4.5. EXTENSION LIST 33

4.5 Extension List

OCP TLM uses several extensions. Using the definitions above, this section will now characterize all of them
one by one. They appear in alphabetic order.

4.5.1 address space

Extension type : guarded data

Definiton :
1 s t r u c t a d d r e s s s p a c e :
2 p u b l i c o c p t l m g u a r d e d d a t a e x t e n s i o n
3 {
4 un s i g n e d i n t v a l u e ;
5 } ;

Phase association : BEGIN REQ

Mutability : X2X

Bindability :

OCP Abstraction OCP Configuration Bindability
layer parameter: addrspace Master Slave

TL1 1 mandatory optional
0 optional rejected

TL2 1 mandatory optional
0 optional rejected

TL3 1 mandatory optional
0 optional rejected

That means for TL1, TL2 and TL3 a master that uses the extension can only connect to a slave that
understands the extension, while a slave that understands the extension can connect to both a master
that does and a master that does not use the extension.

Semantics : The value of the extension has the same semantic as the OCP signal named MAddrSpace. Since
the extension is a guarded data extension, the value may only be considered valid if the extension is
validated.

4.5.2 atomic length

Extension type : guarded data

Definiton :
1 s t r u c t a t o m i c l e n g t h :
2 p u b l i c o c p t l m g u a r d e d d a t a e x t e n s i o n
3 {
4 un s i g n e d i n t v a l u e ;
5 } ;

Phase association : BEGIN REQ

Mutability : X2X

Bindability :

OCP Abstraction OCP Configuration Bindability
layer parameter: atomiclength Master Slave

TL1 1 mandatory optional
0 optional rejected

TL2 1 mandatory optional
0 optional rejected

TL3 1 optional optional
0 optional optional
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That means for TL1, and TL2 a master that uses the extension can only connect to a slave that understands
the extension, while a slave that understands the extension can connect to both a master that does and
a master that does not use the extension.

For TL3 the atomic length is not of great value since TL3 keeps phases completely atomic. So both master
and slave don’t mind seeing this extension. It is only important if bursts are segmented at TL3, and in
this case the receiver can check if there is atomic length information by testing the existince of the guarded
data extension.

Semantics : The value of the extension has the same semantic as the OCP signal named MAtomicLength.
Since the extension is a guarded data extension, the value may only be considered valid if the extension
is validated.

4.5.3 broadcast

Extension type : guard

Definiton :
1 s t r u c t b r o a d c a s t :
2 p u b l i c o c p t l m g u a r d e x t e n s i o n
3 {
4 } ;

Phase association : BEGIN REQ

Mutability : E2E

Bindability :

OCP Abstraction OCP Configuration Bindability
layer parameter: broadcast enable Master Slave

TL1 1 mandatory optional
0 optional rejected

TL2 1 mandatory optional
0 optional rejected

TL3 1 mandatory optional
0 optional rejected

That means for TL1, TL2 and TL3 a master that uses the extension can only connect to a slave that
understands the extension, while a slave that understands the extension can connect to both a master
that does and a master that does not use the extension.

Semantics : If this extension is validated in conjunction with a write command, the command has to be
interpreted like an BCST command (cmp. OCP Specification). It must not be validated in conjunction
with read commands.

4.5.4 burst length

Extension type : guarded data

Definiton :
1 s t r u c t b u r s t l e n g t h :
2 p u b l i c o c p t l m g u a r d e d d a t a e x t e n s i o n
3 {
4 un s i g n e d i n t v a l u e ;
5 } ;

Phase association : BEGIN REQ

Mutability : Imprecise burst: P2P, Otherwise: X2X

Bindability :
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OCP Abstraction OCP Configuration Bindability
layer parameter: burstlength Master Slave

TL1 1 optional optional
0 optional optional

TL2 1 optional optional
0 optional optional

TL3 1 optional optional
0 optional optional

That means for TL1, TL2 and TL3 the burst length extension is ignorable. Any master can connect to
any slave (with respect to their use of the extension), because TLM 2.0 mandates the use of the data
length field of the generic payload from which the burst length can be derived.

Semantics : The value of the extension has the same semantic as the OCP signal named MBurstLength. Since
the extension is a guarded data extension, the value may only be considered valid if the extension is
validated. For precise burst, if the extension is not used, but the data length exceeds the width of the
connection, the function

unsigned int ocpip::calculate ocp burst length(tlm::tlm generic payload& txn, unsigned int buswidth)

can be used to calculate the OCP burst length.

For imprecise burst the burst length cannot be computed, so in this case it has to be provided by the
master. It is considered an error if the master does not provide the burst length for an imprecise burst.

Note that in the imprecise case the burst length is P2P, i.e. it changes with every beat on every hop, while
for precise bursts it is X2X.

4.5.5 burst sequence

Extension type : guarded data

Definiton :
1 enum b u r s t s e q s {
2 INCR = OCP MBURSTSEQ INCR ,
3 DFLT1 = OCP MBURSTSEQ DFLT1 ,
4 WRAP = OCP MBURSTSEQ WRAP ,
5 DFLT2 = OCP MBURSTSEQ DFLT2 ,
6 XOR = OCP MBURSTSEQ XOR ,
7 STRM = OCP MBURSTSEQ STRM ,
8 UNKN = OCP MBURSTSEQ UNKN ,
9 BLCK = OCP MBURSTSEQ BLCK

10 } ;
11

12 s t r u c t b u r s t s e q i n f o {
13 b u r s t s e q s s e q u e n c e ;
14 un s i g n e d i n t b l o c k h e i g h t ;
15 un s i g n e d i n t b l o c k s t r i d e ;
16 un s i g n e d i n t b l c k r o w l e n g t h i n b y t e s ;
17

18 s c d t : : u i n t 6 4 x o r w r a p a d d r e s s ;
19

20 un s i g n e d i n t u n k n d f l t b y t e s p e r a d d r e s s ;
21 boo l u n k n d f l t a d d r e s s e s v a l i d ;
22 s t d : : v e c t o r <s c d t : : u i n t 64 > u n k n d f l t a d d r e s s e s ;
23

24 } ;
25

26 s t r u c t b u r s t s e q u e n c e :
27 p u b l i c o c p t l m g u a r d e d d a t a e x t e n s i o n
28 {
29 b u r s t s e q i n f o v a l u e ;
30 } ;

Phase association : BEGIN REQ

Mutability :

sequence, block height, block stride, xor wrap address X2X

unkn dflt addresses, blck row length in bytes, unkn dflt bytes per address, unkn dflt bytes per address valid
E2E

Bindability :
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OCP Abstraction OCP Configuration Bindability
layer parameter: burstseq Master Slave

TL1
1* mandatory optional
1** optional optional
0 optional rejected

TL2
1* mandatory optional
1** optional optional
0 optional rejected

TL3
1*** mandatory optional
1**** optional optional

0 optional rejected

*) (burstseq dflt1 enable | burstseq dflt2 enable | burstseq unkn enable | burstseq wrap enable | burstseq xor enable |
burstseq blck enable)==1

**) (burstseq dflt1 enable | burstseq dflt2 enable | burstseq unkn enable | burstseq wrap enable | burstseq xor enable |
burstseq blck enable)==0

***) (burstseq dflt1 enable | burstseq dflt2 enable | burstseq unkn enable | burstseq blck enable)==1

****) (burstseq dflt1 enable | burstseq dflt2 enable | burstseq unkn enable | burstseq blck enable)==0

That means for TL1 and TL2 a master that uses sequences other than INCR or STRM can only connect
to a slave that understands the extension, while a slave that understands the extension can connect to
both a master that does and a master that does not use the extension.

For TL3 a master that uses sequences other than INCR, WRAP, XOR or STRM can only connect to a
slave that understands the extension, while a slave that understands the extension can connect to both
a master that does and a master that does not use the extension. The reason for the difference to TL1
is that at TL3 INCR, WRAP, and XOR are indistinguishable, hence there is no need to check the actual
burst sequence code if only those four are supported.

Semantics : The member sequence of the extension has the same semantic as the OCP signal named MBurst-
Seq, and the members block height and block stride have the same semantics as the OCP signals named
MBlockHeight and MBlockStride. They are only valid if the sequence is BLCK.

The member xor wrap address is the ’entry’ point into the data array, the vector unkn dflt addresses carries
the un- or user-defined address sequences, and unkn dflt bytes per address valid indicates if the vector is
valid or not. The members unkn dflt bytes per address is required when accessing the data array of UNKN,
DFLT1 or DFLT2 bursts, and member blck row length in bytes is required to access the data array of BLCK
bursts. For a detailed description of the members see chapter 5.

Since the extension is a guarded data extension, all members may only be considered valid if the extension
is validated. If the extension is invalid, a slave has to use the tlm generic payload members to distinguish
between streaming or incrementing bursts. That’s why a master that just uses INCR or STRM is free to
decide whether or not to use the extension.

Note that a master is always obliged to set up the tlm generic payload members properly, even if it uses
the extension to signal INCR or STRM.

4.5.6 conn id

Extension type : guarded data

Definiton :

1 s t r u c t c o n n i d :
2 p u b l i c o c p t l m g u a r d e d d a t a e x t e n s i o n
3 {
4 un s i g n e d i n t v a l u e ;
5 } ;

Phase association : BEGIN REQ

Mutability : X2X

Bindability :
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OCP Abstraction OCP Configuration Bindability
layer parameter: connid Master Slave

TL1 1 mandatory optional
0 optional rejected

TL2 1 mandatory optional
0 optional rejected

TL3 1 mandatory optional
0 optional rejected

That means for TL1, TL2 and TL3 a master that uses the extension can only connect to a slave that
understands the extension, while a slave that understands the extension can connect to both a master
that does and a master that does not use the extension.

Semantics : The value of the extension has the same semantic as the OCP signal named MConnID. Since the
extension is a guarded data extension, the value may only be considered valid if the extension is validated.

4.5.7 imprecise

Extension type : guard

Definiton :
1 s t r u c t i m p r e c i s e :
2 p u b l i c o c p t l m g u a r d e d e x t e n s i o n
3 {
4 } ;

Phase association : BEGIN REQ

Mutability : X2X

Bindability :

OCP Abstraction OCP Configuration Bindability
layer parameter: burstprecise Master Slave

TL1 1 mandatory optional
0 optional rejected

TL2 1 mandatory optional
0 optional rejected

TL3 1 optional optional
0 optional optional

That means for TL1 and TL2 a master that uses the extension can only connect to a slave that understands
the extension, while a slave that understands the extension can connect to both a master that does and
a master that does not use the extension.

For TL3 a master or slave doesn’t care about the extension as at TL3 there is always only one phase of a
kind, hence there is no way to model imprecise burst. However, the existence of the extension won’t hurt.

Semantics : If the extension is validated the given transaction is considered an imprecise burst, if invalidated
it is considered precise.

4.5.8 lock

Extension type : guarded data

Definiton :
1 s t r u c t l o c k o b j e c t b a s e {
2 v i r t u a l ˜ l o c k o b j e c t b a s e ( ){}
3 v i r t u a l v o i d a t o m i c t x n c o m p l e t e d ()=0;
4 boo l l o c k i s u n d e r s t o o d b y s l a v e ;
5 un s i g n e d i n t n u m b e r o f t x n s ;
6 } ;
7

8 s t r u c t l o c k :
9 p u b l i c o c p t l m g u a r d e d d a t a e x t e n s i o n

10 {
11 l o c k o b j e c t b a s e ∗ v a l u e ;
12 } ;
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Phase association : BEGIN REQ

Mutability : Validity: X2X, Value E2E

Bindability :

OCP Abstraction OCP Configuration Bindability
layer parameter: readex enable Master Slave

TL1 1 mandatory optional
0 optional rejected

TL2 1 optional optional
0 optional optional

TL3 1 optional optional
0 optional optional

That means for TL1 a master that uses the extension can only connect to a slave that understands the
extension, while a slave that understands the extension can connect to both a master that does and a
master that does not use the extension.

For TL2 and TL3 the extension is basically ignorable, because extension is designed so that it can cross
lock-unaware interconnect and still have the correct effect at a lock-aware slave (see below). Hence the
successful understanding of the lock will be checked at runtime by the master not at bind time by the
sockets.

Semantics : The lock extension allows to lock an arbitrary group of transactions together, as long as one
of them is a read transaction. The idea is that the initiator owns (a pool of) a lock object derived from
lock object base. To lock transactions together, the value of the lock extensions of all transactions will point
to the same lock object. The bool lock is understood by slave has to be set to false, and number of txns
shall identify the number of transactions that are locked together.

Later on, the transactions will arrive at the slave. If the slave knows about the lock extension it will set
the bool lock is understood by slave to true when sending the response for a read. Additionally, whenever
the slave finished a transaction that carried a valid lock extension with BEGIN REQ, it shall count it as
belonging to the locked group with lock ID value. When the slave has processed number of txns transactions
with lock ID value it shall call atomic txn completed on the lock object pointed to by the value of the lock
extension. At this time the lock is released at the slave.

By that, the master can identify if the lock succeeded when looking at the bool lock is understood by slave
when getting the a read response (a transaction with a read response can be trusted to have arrived at the
slave, while a posted write response cannot). If it is true the slave understood the lock (it may understand
and reply with an error if it was unable to perform the lock, though), if it is false it did not and the master
should take the appropriate actions (Note that the lock object will never get a call to atomic txn completed
in this case).

When the lock object gets the call to atomic txn completed, it knows the it may now be reused (from
a memory management perspective) even if there were posted writes or writes without responses in the
locked group, because the virtual call will always short cut from the final slave to the initial master.

The lock extensions is designed so that at higher abstraction layers, interconnects need not to understand
the lock, as long as the final slave does. The final slave can distinguish transactions that belong to the
locked group from transactions that do not belong to the locked group by just looking at/comparing
the lock object pointers in the lock extension. It knows when the lock can be released by counting the
transactions of the locked group and comparing against the number of expected transactions that were
transmitted in the extension.

For OCP, number of txns is always 2: One is the locking RDEX, the other is the unlocking write. If the
extension is validated in conjunction with a read command the command has to be interpreted as a RDEX
command (cmp. OCP Specification). If the extension is valid for a write is can be considered an unlocking
write for a prior RDEX. After the unlocking write has finished the slave has to call atomic txn completed.
If the slave supports RDEX it has to set bool lock is understood by slave to true when sending the response
for the RDEX.

4.5.9 nonposted

Extension type : guard
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Definiton :
1 s t r u c t nonp o s t e d :
2 p u b l i c o c p t l m g u a r d e x t e n s i o n
3 {
4 } ;

Phase association : BEGIN REQ

Mutability : X2X

Bindability :

OCP Abstraction OCP Configuration Bindability
layer parameter: writenonpost enable Master Slave

TL1 1 mandatory optional
0 optional rejected

TL2 1 mandatory optional
0 optional rejected

TL3 1 mandatory optional
0 optional rejected

That means for TL1, TL2 and TL3 a master that uses the extension can only connect to a slave that
understands the extension, while a slave that understands the extension can connect to both a master
that does and a master that does not use the extension.

Semantics : If the extension is validated in conjunction with a write command the command has to be
interpreted as a WRNP command (cmp. OCP Specification). It must not be validated in conjunction with
read commands.

4.5.10 semaphore

Extension type : guarded data

Definiton :
1 s t r u c t s emapho r e :
2 p u b l i c o c p t l m g u a r d e d d a t a e x t e n s i o n
3 {
4 boo l v a l u e ;
5 } ;

Phase association : Validity: BEGIN REQ Value: BEGIN RESP

Mutability : X2X

Bindability :

OCP Abstraction OCP Configuration Bindability
layer parameter: rdlwrc enable Master Slave

TL1 1 mandatory optional
0 optional rejected

TL2 1 mandatory optional
0 optional rejected

TL3 1 mandatory optional
0 optional rejected

That means for TL1, TL2 and TL3 a master that uses the extension can only connect to a slave that
understands the extension, while a slave that understands the extension can connect to both a master
that does and a master that does not use the extension.

Semantics : If the extension is validated in conjunction with a read command the command has to be inter-
preted as a RDL command (cmp. OCP Specification). If the extension is validated in conjunction with a
write command the command has to be interpreted as a WRC command (cmp. OCP Specification). The
value of the extension is only of interest for the WRC case. It shall be initialized by the master to false,
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and set by the slave to true in case of a failure of the WRC. In other words, the value does not need to be
touched by the slave in case of successful WRC.

Note that the value is undefined in fresh and new transactions so the master always needs to initialize it.
Also note that the validity of the extension is only related to BEGIN REQ, because the validity is used to
identify the command type, while the value is considered valid at BEGIN RESP no matter if the extension
is still validated.

4.5.11 srmd

Extension type : guard

Definiton :
1 s t r u c t srmd :
2 p u b l i c o c p t l m g u a r d e x t e n s i o n
3 {
4 } ;

Phase association : BEGIN REQ

Mutability : X2X

Bindability :

OCP Abstraction OCP Configuration Bindability
layer parameter: burstsinglereq Master Slave

TL1 1 mandatory optional
0 optional rejected

TL2 1 mandatory optional
0 optional rejected

TL3 1 optional optional
0 optional optional

That means for TL1 and TL2 a master that uses the extension can only connect to a slave that understands
the extension, while a slave that understands the extension can connect to both a master that does and
a master that does not use the extension.

For TL3 srmd is ignorable, because at TL3 MRDM and SRMD transfers are indistinguishable.

Semantics : If the extension is validated the transaction is considered to be an single request multiple data
burst, otherwise it is considered to be a multiple request multiple data burst.

4.5.12 tag id

Extension type : guarded data

Definiton :
1 s t r u c t srmd :
2 p u b l i c o c p t l m g u a r d e d d a t a e x t e n s i o n
3 {
4 un s i g n e d i n t v a l u e ;
5 } ;

Phase association : BEGIN REQ

Mutability : X2X

Bindability :

OCP Abstraction OCP Configuration Bindability
layer parameter: tags>1 Master Slave

TL1 1 optional optional
0 optional rejected

TL2 1 optional optional
0 optional rejected

TL3 1 optional optional
0 optional rejected
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That means for TL1, TL2 and TL3 a masters and slave can always connect, no matter how they treat the
tag IDs.

Semantics : The validity of the extension inversely maps onto the OCP signal MTagInOrder. That means if
the extension is validated MTagInOrder is considered invalid, and therefore the tag ID must be used. If
the extension is not validated MTagInOrder is considered to be true, so that the tag ID is don’t care.

The value of the extension represents the tag ID of a transaction. It is only valid with the first BEGIN REQ
of a transaction, hence can be considered a replacement for MTagID. To get MDataTagID and STagID a
module shall place the value of the tag id extension into an instance specific extension (or other appropriate
storage) with the first BEGIN REQ, so it can be extracted from there when data or response phases arrive.

4.5.13 thread busy

Extension type : data

Definiton :
1 enum t h r e a d b u s y i d {
2 M THREAD ,
3 S THREAD ,
4 S DATA THREAD
5 } ;
6

7 s t r u c t t h r e a d b u s y u p d a t e {
8 t h r e a d b u s y i d t y p e ;
9 un s i g n e d i n t mask ;

10 } ;
11

12 s t r u c t t h r e a d b u s y :
13 p u b l i c o c p t l m d a t a e x t e n s i o n
14 {
15 t h r e a d b u s y u p d a t e v a l u e ;
16 } ;

Phase association : THREAD BUSY CHANGE

Mutability : N/A (see semantics)

Bindability :

OCP Abstraction OCP Configuration Bindability
layer parameter Master Slave

TL1
xthreadbusy exact* mandatory mandatory

!xthreadbusy exact* & xthreadbusy* optional optional
!xthreadbusy exact* & ! xthreadbusy* rejected rejected

TL2
xthreadbusy exact* mandatory mandatory

!xthreadbusy exact* & xthreadbusy* optional optional
!xthreadbusy exact* & ! xthreadbusy* rejected rejected

TL3 1 rejected rejected
0 rejected rejected

*) x is sthread, sdatathread and/or mthread

That means for TL1 a module that depends on thread busy flow control (exact), can only bind to a module
that supplies the thread busy information. Additionally, modules that provide thread busy information
as a hint (not exact) can bind to both modules that require thread busy and those who don’t.

TL3 modules reject the extension, hence will not bind to modules that use it, as at TL3 a module cannot
react to thread busy correctly.

Semantics : Thread busy information is exchanged via dedicated thread busy transaction that are part of each
OCP socket. Since those transaction are not allowed to pass more than one point-to-point link, mutability
does not apply to the thread busy extension. It is a data only extension that is considered valid whenever
the phase THREAD BUSY CHANGE is transferred.

The member type of the value identifies which thread busy signal is changed, the member mask carries
the bit mask of busy threads as described in the OCP specification.
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4.5.14 thread id

Extension type : guarded data

Definiton :
1 s t r u c t srmd :
2 p u b l i c o c p t l m g u a r d e d d a t a e x t e n s i o n
3 {
4 un s i g n e d i n t v a l u e ;
5 } ;

Phase association : BEGIN REQ

Mutability : X2X

Bindability :

OCP Abstraction OCP Configuration Bindability
layer parameter: threads>1 Master Slave

TL1 1 mandatory optional
0 optional rejected

TL3 1 mandatory optional
0 optional rejected

TL3 1 mandatory optional
0 optional rejected

That means for TL1, TL2 and TL3 a master that uses the extension can only connect to a slave that
understands the extension, while a slave that understands the extension can connect to both a master
that does and a master that does not use the extension.

Semantics : The value of the extension has the same semantic as the OCP signal named MThreadID. Since the
extension is a guarded data extension, the value may only be considered valid if the extension is validated.

4.5.15 tl2 timing

Extension type : data

Definiton :
1 s t r u c t t l 2 m a s t e r t i m i n g g r o u p {
2 un s i g n e d i n t RqSndI ; // Requ e s t Send I n t e r v a l
3 un s i g n e d i n t DSndI ; // Data Send I n t e r v a l
4 un s i g n e d i n t RpAL ; // Re s pon s e Acc ep t L a t e n c y
5 } ;
6

7 s t r u c t t l 2 s l a v e t i m i n g g r o u p {
8 un s i g n e d i n t RqAL ; // Requ e s t Ac c ep t L a t e n c y
9 un s i g n e d i n t DAL ; // Data Acc ep t L a t e n c y

10 un s i g n e d i n t RpSndI ; // Re s pon s e Send I n t e r v a l
11 } ;
12

13 enum t l 2 t i m i n g t y p e {
14 MASTER TIMING ,
15 SLAVE TIMING
16 } ;
17

18 s t r u c t t l 2 t i m i n g g r o u p {
19 t l 2 m a s t e r t i m i n g g r o u p m a s t e r t i m i n g ;
20 t l 2 s l a v e t i m i n g g r o u p s l a v e t i m i n g ;
21

22 t l 2 t i m i n g t y p e t y p e ;
23 } ;
24

25 s t r u c t t h r e a d b u s y :
26 p u b l i c o c p t l m d a t a e x t e n s i o n
27 {
28 t l 2 t i m i n g g r o u p v a l u e ;
29 } ;

Phase association : TL2 TIMING CHANGE

Mutability : N/A (see semantics)

Bindability :
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OCP Abstraction Bindability
layer Master Slave
TL1 rejected rejected
TL2 mandatory mandatory
TL3 reject reject

That means a TL2 socket can only bind to another TL2 socket. Cross abstraction rules will defined later.

Semantics : This extension is for TL2 only. It transmits the TL2 timing information. It is exchanged via
dedicated timing information transactions that are part of each TL2 OCP socket. Since those transac-
tion are not allowed to pass more than one point-to-point link, mutability does not apply to the TL2
timing information extension. It is a data only extension that is considered valid whenever the phase
TL2 TIMING CHANGE is transferred.
The member type of the value identifies which timing group has been changed, the member master timing
carries the master timing information, while the member slave timing carries the slave timing information.

4.5.16 word count

Extension type : guarded data

Definiton :
1 s t r u c t t l 2 b u r s t w o r d c o u n t {
2 un s i g n e d i n t r e q u e s t w c ;
3 un s i g n e d i n t da t a wc ;
4 un s i g n e d i n t r e s p o n s e w c ;
5 } ;
6

7 s t r u c t wo r d c o un t :
8 p u b l i c o c p t l m g u a r d e d d a t a e x t e n s i o n
9 {

10 t l 2 b u r s t w o r d c o u n t v a l u e ;
11 } ;

Phase association : BEGIN REQ, BEGIN DATA, BEGIN RESP

Mutability : P2P

Bindability :

OCP Abstraction Bindability
layer Master Slave
TL1 rejected rejected
TL2 mandatory mandatory
TL3 rejected rejected

That means a TL2 socket can only bind to another TL2 socket. Cross abstraction rules will be defined
later.

Semantics : This extension is for TL2 modeling only. It transmits information about how many beats of a cer-
tain phase are transmitted in a single nb transport call. When this extension is present, the nb transport
implementation must look up the matching phase word count member:

Phase word count member
BEGIN REQ request wc
BEGIN DATA data wc
BEGIN RESP response wc

When the master initiates a BEGIN REQ (resp. BEGIN DATA) phase, it may extend the transaction
with a word count setting request wc (resp. data wc). This word count is expressed in OCP data words,
the same unit as the burst length extension. The slave will interpret such a phase as a TL2 request
(resp. data handshake) phase containing request wc (resp. data wc) individual burst beats. Conversely, a
slave may initiate a BEGIN RESP phase with a word count setting response wc to represent that number
of response burst beats. The word count is cumulative across subsequent similar phases of the same
transaction. The total word count set across similar phases must equal the total burst length of the
transaction. For example, if a master wishes to initiate a TL2 transaction representing a 12-word OCP
burst, it may issue multiple BEGIN REQ phases with a word count extension such that the total of the
request wc values is exactly equal to 12. For example, the following:
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1 BEGIN REQ wo r d c o un t . r e q u e s t w c=3 ( c u m u l a t i v e 3)
2 BEGIN REQ wo r d c o un t . r e q u e s t w c=5 ( c u m u l a t i v e 8)
3 BEGIN REQ wo r d c o un t . r e q u e s t w c=4 ( c u m u l a t i v e 12= b u r s t l e n g t h )

would constitute a valid sequence of TL2 request phases for a 12-word OCP burst. For phases with asso-
ciated data words (BEGIN DATA or BEGIN RESP for a READ transaction) the cumulative word count
must be available in the payload’s data array. The receiver of the phase must keep track of the cumulative
word count in order to access the data array. Although the transaction’s data buffer may be pre-allocated,
the receiver should never access data beyond te current cumulative word count for the phase in progress.

OCP’s phase ordering rules must also be respected. This means that during any phase of the transaction,
the cumulative response wc may not be greater than the cumulative request wc. For a WRITE with
data handshake, the cumulative response wc may not be greater than the cumulative data wc and the
cumulative data wc may not be greater than the cumulative request wc.

If a phase is presented with an invalid word count extension, it is considered as the only phase of its type
for the entire burst. As a corollary to the rule that the cumulative word count must equal the OCP burst
length, a phase of a burst following another similar phase where a word count was valid must have a valid
word count extension as well.

4.6 Multi beat semantics of generic payload members

Since the TLM 2.0 standard, especially the base protocol, does not deal with multi beat transactions OCP TLM
explicitly defines the multi beat semantics of the generic payload members.

4.6.1 address

Phase association : BEGIN REQ

Mutability : P2P

Remarks : The address is totally mutable as defined by OSCI. For OCP X2X mutability would suffice. Note
that for burst sequences that do not allow to calculate the address of a beat from the beat number and
the first address, the address vector extension has to be used.

4.6.2 command

Phase association : All

Mutability : E2E

Remarks : The command is always valid, just as defined by OSCI TLM 2.0.

4.6.3 data/byte enable pointer

Phase association :

Type of transaction Phase association
Read All

Write without data handshake All
Write with data handshake First BEGIN DATA and all following

Mutability : E2E

Remarks : Once set the data/byte enable pointers cannot change anymore. Given that OSCI BP is only read
or write without data handshake, OSCI BP compatible OCP transactions match the OSCI definitions for
the data/byte enable pointers.
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4.6.4 data/byte enable length

Phase association :

Type of transaction Phase association
Read All

Write without data handshake All
Write with data handshake First BEGIN DATA and all following

Mutability : precise bursts: E2E, imprecise: special

Remarks : For precise bursts the data/byte enable length is fixed as soon as the data pointer is fixed, and since
OSCI BP only supports precise burst, OSCI BP compatible OCP transactions match the OSCI definitions
for the data/byte enable length. Imprecise bursts are very special. The master has to guess up front the
maximum size of its imprecise transfer to be able to allocate a large enough buffer for the transaction
data. It will then set the data length to the size of that buffer. Usually that buffer is too large, which is
uncritical because the OCP modules will only use the burst length extension and not the data length. At
the time the final beat of the imprecise burst is done, the master may now reduce the data length to the
real length of the transfer.

If the master mis-guessed the buffer size (i.e. it is too small) it cannot do anything else but start a new
transaction, because a reallocation would mean a change to the data pointer.

If each word of an imprecise burst has a unique byte enable mask, the mechanism described for the data
length also applies to the byte enable length, otherwise (in case of a repeated byte enable mask) the byte
enable length is fixed with the first data or request phase.

4.6.5 response status

Phase association : BEGIN RESP

Mutability : P2P

Remarks : The response status could change for every response beat in a read or write burst, hence it can
have different values on different hops in the system at a time, and it can have different values for different
beats on a single point-to-point link. Consequently, it has to be considered P2P. However, for single
beat transfers this degenerates to X2X, and assuming a response is not changed by interconnects this
degenerates to E2E, thereby matching the OSCI BP definition, because OSCI BP is single beat only.

For OCP a TLM OK RESPONSE is to be treated as DVA or FAIL3. Every other TLM-2.0 response code
maps on the OCP ERR response code.

4.6.6 streaming width

Phase association : BEGIN REQ

Mutability : E2E

Remarks : The streaming width is always valid, just as defined by OSCI TLM 2.0. Since streaming OCP
burst are not packing, and the structure of the TLM generic payload is a packet a width conversion for
streaming bursts will require a deep copy, when going converting from wide to narrow. Narrow to wide
conversion do not require a change to the streaming width and do not require a deep cop Hence, the
streaming width can be E2E.

4.6.7 dmi hint

Phase association : All

Mutability : E2E

Remarks : OCP TLM does not differ in its use of the dmi hint from OSCI BP.

4.7 Extended phases

Finally OCP TLM has defined some additional phases. This section lists their names and semantics.
3depends on the state of the appropriate extension
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4.7.1 BEGIN DATA

This tlm phase marks the begin of a data phase. When a BEGIN DATA has crossed a given point to point
link, we say there is an outstanding data phase on that link. The outstanding data phase is removed when a
END DATA crosses the same point to point link. There may only be one oustanding data phase on a given point
to point link.

Assuming that a M byte wide TL1 target counts data phases, and this count is currently at N , then
BEGIN DATA indicates that now at least (N +1)∗M bytes are valid in the data array of the tlm generic payload.

Assuming that a M byte wide TL2 target sums up the word counts it has seen so far and that count is at
N , then BEGIN DATA with a data word count (data wc) of L indicates that at least (N +L)∗M bytes are valid
in the data array of the tlm generic payload.

4.7.2 END DATA

This tlm phase marks the end of a data phase. This phase may only occur if there is an outstanding data phase
that will be finished by END DATA.

4.7.3 THREAD BUSY CHANGE

This phase marks the change of a thread busy signal on the point to point link it crosses. It may only be
used in conjunction with dedicated thread busy transactions that can be obtained from OCP sockets and which
must not be forwarded from one point-to-point link to another. The phase must not be used with any other
transaction.

4.7.4 TL2 TIMING CHANGE

This phase marks the change of a TL2 timing group on the point to point link it crosses. It may only be used in
conjunction with dedicated tl2 timing transactions that can be obtained from OCP sockets and which must not
be forwarded from one point-to-point link to another. The phase must not be used with any other transaction.



Chapter 5

TLM transaction data interpretation
within OCP

In general the data array is organized as defined by the TLM 2.0 standard. However, OCP knows much more
sophisticated burst sequences than what is covered by the TLM 2.0 standard. This chapter will explain the
data array organization for all burst sequences supported by OCP. For completeness reasons that will also cover
sequences already covered by the TLM 2.0 standard.

5.1 Terminology

To fully understand the explanations in the following sections, reading the TLM 2.0 reference manual is strongly
recommended. Some recurring terms are:

Data array :

This term refers to the unsigned char* m data member of the tlm::tlm generic payload. Its elements will be
denoted as D[0], D[1], D[2], ... throughout the section.

Data size :

This term refers to the unsigned int m length member of the tlm::tlm generic payload. Its identifies last
integer i with i = data size− 1 for which D[i] will access valid memory.

Transaction address :

This term refers to the sc dt::uin64 m address member of the tlm::tlm generic payload.

Bus width :

This term refers to the next largest power of two of the template argument BUSWIDTH of two connected
sockets divided by 8. In other words it is the bus width of the connection in full bytes.

bus width = bBUSWIDTH + 7
8

c (5.1)

Address offset :

This term refers to the difference between an address and next smallest address aligned to the current bus
width.

offset(address) = address− (address mod bus width) (5.2)

To simplify some of the following equations, we define

Toffset = offset(transaction address) (5.3)

Streaming width :

This term refers to the unsigned int m streaming width member of the tlm::tlm generic payload.
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Beat number :

In TL1 the beat number is obtained by either counting the request phase (write without data phase), the
data phases (write with data phase) or the response phases (read). In TL2 the current beat number is
calculated by accumulating the word count of request phases (write without data phase), of data phases
(write with data phase), or the response phases (read).

The first beat number of a burst is 1.

Burst sequence extension This term refers to the value of the burst sequence extension (see. section 4.5.5.
If the following sections mention setting a member of this extensions it always implies a subsequent
validation of the extension. Additionally when getting a member of this extension is mentioned, validity
of the extension is assumed.

5.2 Incrementing burst: INCR

The incrementing burst is the simplest conceivable burst. To mark a transaction as INCR, the streaming width
has to be set to a value equal to or larger than the data size. The burst sequence extension may either be
invalidated (or kept invalid) or the member sequence of the burst sequence extension may be set to INCR.

The transaction address identifies the address of byte D[0]. There are no obligations concerning the offset
of the transaction address. The address of each succeeding byte of the data array can be calculated by

address(D[i]) = transaction address + i (5.4)

In the absence of a valid burst length extension the OCP burst length of a given INCR transaction can be
calculated by

burst length = bdata size + Toffset + bus width− 1
bus width

c (5.5)

Note that the burst length extension always takes precedence over equation 5.5.
The bytes that form the word for beat number b are part of the set Word(b)

Word(b) =


b == 1

∣∣ D[i] : 0 ≤ i < bus width− Toffset

b > 1
∣∣ (b− 1) ∗ bus width− Toffset

D[i] : ≤ i <
min(b ∗ bus width− Toffset, data size)

 (5.6)

If for a given b equation 5.6 cannot yield any valid i (because each i > data size) the set Word(b) is
considered the empty set. Note that the definition of equation 5.6 explicitly allow the data array to end at an
intermediate byte of any word of the burst. In other words, just like the first word, the word at which the data
array ends can be transmitted partially without explicitly using the byte enable array.

Data setters1 must ensure that at the time they emit data beat b2 the data array bytes that form Word(b)
are properly filled. Data readers can rely on the validity of data bytes in Word(b) when receiving data beat b.

To actually form a word out of such a set Word(b) the data array bytes D[i] have to be mapped on word
bytes W [j]

j = address(D[i]) mod bus width (5.7)

If a set does not contain any or enough bytes to form a word, the missing bytes in that word are considered
disabled3, regardless if there is a byte enable array or not. Note that the order of the word bytes W [j] depends
on the host endianess.

5.2.1 Burst Aligned Incrementing Burst

The burst aligned incrementing burst is a very special restricted variant of the INCR burst. The burst length
must be a power of two and the address must be aligned to the burst length and data width. However, those
restrictions only apply to the simulated burst not to the transaction that simulates the burst. Hence, there
must be rules how to extract the simulated burst length and address from the transaction for burst aligned
incrementing bursts.

1For writes that is the master, for reads that is the slave
2For writes that is either a request or data phase, depending if there are data phases or not. For reads that is a response phase
3If the OCP configuration lacks byte enables, such implicit encoding of byte enables is not allowed
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Just like for normal INCR bursts the address of byte D[0] is identified by the transaction address, and
equation 5.4 applies. In the presence of burst length extension the following euqation must be fulfilled

burst length = 2x ∧ x ∈ IN (5.8)

To determine the burst length of the burst aligned INCR burst, we first define

words in txn = bdata size + Toffset + bus width− 1
bus width

c (5.9)

min pow two = 2dlog2(words in txn)e (5.10)

aligned address(bytes) = b transaction address

bytes
c ∗ bytes (5.11)

where words in txn is the minimal number of full bus words needed to transmit the bytes that are (will be)
part of the transaction; min pow two is the next largest power of two compared to words in txn. aligned adress(bytes)
is a function that aligns the transaction address to the given number of bytes.

With the help of those definitions we can define a function to determine the shortest possible burst aligned
INCR burst for a given transaction.

Listing 5.1: Algorithm to determine the minimal burst aligned INCR for a transaction on a given link
f unct ion d e t e rm i n e m i n a l i g n e d b u r s t l e n g t h ;

i n t ege r b u r s t l e n g t h=min pow two ;
i n t ege r by t e s=b u r s t l e n g t h ∗ bus w id th ;
whi le ( a l i g n e d a d d r e s s ( by t e s )+bytes<t r a n s a c t i o n a d d r e s s+d a t a s i z e ) ;
do

b u r s t l e n g t h=b u r s t l e n g t h ∗2 ;
by t e s=b u r s t l e n g t h ∗ bus w id th ;

done
output ( bu r s t l e n g t h , a l i g n e d a d d r e s s ( by t e s ) ) ;

endfunct ion ;

The basic idea is that the algorithm in listing 5.1 first aligns the transaction address to the minimal power
of two burst length that is long enough to transmit all words in the transaction (min pow two). If after the
alignment the final address of the transaction (transaction address+data size) lies not within that burst aligned
burst, the algorithm will increase the burst length to the next power of two and test again. As soon as the loop
is done, the algorithm will return both the burst length and the base address of the transaction4.

As already shown in the plain INCR sequence a transaction can have empty trailing beats. That means one
can receive a data beat, whose associated data array entries lie outside the data size. Then the data beat is
considered to be transmitted with all bytes disabled (of course this is an error on links that do not use byte
enables).

In contrast to that, the burst aligned INCR sequence can have empty leading beats. The reason is that the
bytes of the data array can lie somewhere in the middle of the simulated transaction, whereas with a plain INCR
the transaction address always lies within the first beat.

Assuming the burst length is known, either by the burst length extension or by using the algorithm in listing
5.1, the number of empty leading beats is given by

empty leading beats =
transaction address− aligned address(burst length ∗ bus width)

bus width
(5.12)

The bytes that form the word for beat number c is given by the set Word(b) as defined in equation 5.6, and
c maps on b via

b =
{

(c− empty leading beats) < 1 | words in txn + 1
(c− empty leading beats) ≥ 1 | c− empty leading beats

(5.13)

The equation 5.13 makes sure that an empty leading beat c is mapped on a beat b that completely lies
outside the data array and whose set Word(b) will therefore evaluate to the empty set.

4That is the address that would be transmitted for the first beat in hardware.
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5.3 Wrapping incrementing burst: WRAP

The wrapping burst is a special variant of the INCR burst. To mark a transaction as WRAP, the streaming
width has to be set to a value equal to or larger than the data size. The member sequence of the burst sequence
extension has to be set to WRAP.

The addresses of the data array bytes are calculated following equation 5.4. Just like for INCR the OCP
burst length is calculated by equation 5.5, and the burst length extension takes precedence over the result of
that calculation as well.

The difference from WRAP to INCR is that the data array is not filled starting at the lowest address of the
data array, but somewhere in between, and that when the data filling hits the highest addressable byte of the
burst, it continues at the lowest address.

To indicate at which address the WRAP burst starts the user must set the member xor wrap address of the
burst sequence extension. Since the transaction address (the member of the generic payload) always points to
the first byte of the data array, the xor wrap address must always be greater or equal to the transaction address.

If that address is unequal to the transaction address, it has to be aligned to the bus width of the current
link, because it points to an intermediate word of a consecutive data array, hence the intermediate word cannot
be partially in the data array.

The base address of a WRAP sequence is given by

base address = transaction address− Toffset (5.14)

Assuming the existence of a function wrap address(c, burst length, xor wrap address) that calculates the
address of beat c for a given WRAP burst, the bytes that form the word for beat number c are part of the set
Word(b), where the set Word(b) is defined as in equation 5.6, and c maps on b via

b =
wrap address(c, burst length, xor wrap address)− base address

bus width
(5.15)

5.4 Critical-word first cache line burst: XOR

The critical-word first cache line burst burst is a special variant of the INCR burst. To mark a transaction as
XOR, the streaming width has to be set to a value equal to or larger than the data size. The member sequence
of the burst sequence extension has to be set to XOR.

The addresses of the data array bytes are calculated following equation 5.4. Just like for INCR the OCP
burst length is calculated by equation 5.5, and the burst length extension takes precedence over the result of
that calculation as well.

The difference from XOR to INCR is that the data array is not filled starting at the lowest address of the
data array, but somewhere in between, and that it does not fill the bytes consecutively but it ’jumps’ through
the data array, following the rules for XOR addressing.

To indicate at which address the XOR burst starts the user must set the member xor wrap address of the
burst sequence extension. Since the transaction address (the member of the generic payload) always points to
the first byte of the data array, the xor wrap address must always be greater or equal to the transaction address.

If that address is unequal to the transaction address, it has to be aligned to the bus width of the current
link, because it points to an intermediate word of a consecutive data array, hence the intermediate word cannot
be partially in the data array.

The base address of a XOR sequence is given by equation 5.14
Assuming the existence of a function xor address(c, burst length, xor wrap address) that calculates the

address of beat c for a given XOR burst, the bytes that form the word for beat number c are part of the set
Word(b), where the set Word(b) is defined as in equation 5.6, and c maps on b via

b =
xor address(c, burst length, xor wrap address)− base address

bus width
(5.16)

5.5 Streaming burst: STRM

A streaming burst is a burst that repeats a certain address sequence to feed its data to e.g. a fifo. The
transaction address identifies the address of byte D[0]. There are no obligations concerning the offset of the
transaction address. The address of each succeeding byte of the data array can be calculated by

address(D[i]) = transaction address + (i mod streaming width) (5.17)
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To mark a transaction as STRM, the streaming width has to be set to a value smaller than the data size.
The burst sequence extension may either be invalidated (or kept invalid) or the member sequence of the burst
sequence extension may be set to STRM. Note that it is considered an error to send a transaction over a link
with the streaming width + Toffset > bus width.

In the absence of a valid burst length extension the OCP burst length of a given INCR transaction can be
calculated by

burst length = bdata size + streaming width− 1
streaming width

c (5.18)

Note that the burst length extension always takes precedence over equation 5.18.
The bytes that form the word for beat number b are part of the set Word(b)

Word(b) = {D[i]|(b− 1) ∗ streaming width ≤ i < min(b ∗ streaming width, data size)} (5.19)

If for a given b equation 5.19 cannot yield any valid i (because each i > data size) the set Word(b) is
considered the empty set. Note that the definition of equation 5.19 explicitly allows the data array to end at
an intermediate byte of any word of the burst. In other words, just like the first word, the word at which the
data array ends can be transmitted partially without explicitly using the byte enable array.

Data setters5 must ensure that at the time they emit data beat b6 the data array bytes that form Word(b)
are properly filled. Data readers can rely on the validity of data bytes in Word(b) when receiving data beat b.

To actually form a word out of such a set Word(b) the data array bytes D[i] have to be mapped on word
bytes W [j]

j = address(D[i]) mod bus width (5.20)

If a set does not contain any or enough bytes to form a word, the missing bytes in that word are considered
disabled7, regardless if there is a byte enable array or not. Note that the order of the word bytes W [j] depends
on the host endianess.

5.6 Two dimensional burst: BLCK

As defined in the OCP specification the BLCK burst is a set of chained BLCK bursts. To mark a transaction
as BLCK, the streaming width has to be set to a value equal to or larger than the data size, and the member
sequence of the burst sequence extension must be set to BLCK. The members block height, block stride and
blck row length in bytes of the burst sequence extension must be set as well. The two former members have
the same semantics as the OCP signals MBlockHeight and MBlockStride, the latter member specifies how many
bytes of the data array belong to a row of the BLCK burst.

The transaction address identifies the address of byte D[0]. There are no obligations concerning the offset
of the transaction address.

The row number a byte D[i] of the data array belongs to can be calculated by

row(i) = b i

blck row length in bytes
c (5.21)

The address of each succeeding byte of the data array can be calculated by

address(D[i]) = transaction address + row(i) ∗ block stride + (i mod blck row length in bytes) (5.22)

In the absence of a valid burst length extension the OCP burst length of a given BLCK transaction can be
calculated by

burst length = bblck row length in bytes + Toffset + bus width− 1
bus width

c (5.23)

Note that the burst length extension always takes precedence over equation 5.23.
The first byte of a row r is given by

rs(r) = r ∗ blck row length in bytes (5.24)

5For writes that is the master, for reads that is the slave
6For writes that is either a request or data phase, depending if there are data phases or not. For reads that is a response phase
7If the OCP configuration lacks byte enables, such implicit encoding of byte enables is not allowed
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The row number rn, the beat number relative to a row rb, and the first byte relative to the first byte of a
row fb for a given beat b are defined as

rn(b) = b b

burst length
c (5.25)

rb(b) = b− rn(b) ∗ burst length (5.26)
fb(b) = rb(b) ∗ bus width− Toffset (5.27)

The bytes that form the word for beat number b are part of the set Word(b) (Note that blck row length in bytes
is abbreviated with row bytes)

Word(b) =



rb(b) == 1
∣∣ rs(rn(b))

D[i] : ≤ i <
min(rs(rn(b)) + buswidth− Toffset, data size)

1 < rb(b) ∧
fb(b) < row bytes

∣∣∣∣ rs(rn(b)) + (rb(b)− 1) ∗ bus width− Toffset
D[i] : ≤ i <

min(rs(rn(b)) + rb(b) ∗ buswidth− Toffset, data size)

otherwise
∣∣ ∅


(5.28)

If for a given b equation 5.28 cannot yield any valid i (because each i > data size) the set Word(b) is
considered the empty set. Note that with fn(b) = 0 equation 5.28 degenerates to equation 5.6, which is correct
as simple INCR is of course a subset of a set of INCR. Data setters8 must ensure that at the time they emit
data beat b9 the data array bytes that form Word(b) are properly filled. Data readers can rely on the validity
of data bytes in Word(b) when receiving data beat b.

To actually form a word out of such a set Word(b) the data array bytes D[i] have to be mapped on word
bytes W [j]

j = address(D[i]) mod bus width (5.29)

If a set does not contain any or enough bytes to form a word, the missing bytes in that word are considered
disabled10, regardless if there is a byte enable array or not. Note that the order of the word bytes W [j] depends
on the host endianess.

5.7 Non-predefined burst: UNKN

The UNKN burst follows an address sequence that cannot be calculated or at least the receiving slave is unknow-
ing of how to calculate it. This requires to explicitly associate an address with every word to be transmitted.

To mark a transaction as UNKN, the streaming width has to be set to a value equal to or larger than the
data size, and the burst sequence extension the member sequence of the burst sequence extension must be set to
UNKN. Additionally the member unkn dflt bytes per address must be set to the bus width of the initial master
and the member unkn dflt addresses valid must be set to true to indicate that the member unkn dflt addresses
can be safely accessed. When setting up the UNKN burst, the vector has to be large enough to hold an address
per beat the master wants to transmit, but its size does not need to reflect the exact number of beats. Whenever
the initial master emits a request beat it must ensure that the associated entry of the address vector is filled.

The addresses in the vector must be aligned to unkn dflt bytes per address, offsets are not allowed. The
transaction address must match the first entry of the address vector. There is no way to calculate the global
address sequence, but local subsections are considered calculable: Assume unkn dflt bytes per address = n,
bus width = w and a beat b.

n ≤ w
∣∣ ∀D[i], (b− 1) ∗ n ≤ i < min(b ∗ n, data size) :

address(D[i]) = address vector[b] + (i mod n) (5.30)

n > w ∧
n
w = f ∧

f = 2x, x ∈ IN

∣∣∣∣∣∣ ∀D[i], (b− 1) ∗ w ≤ i < min(b ∗ w, data size) :
address(D[i]) = address vector[b b

f c] + (i mod n) (5.31)

8For writes that is the master, for reads that is the slave
9For writes that is either a request or data phase, depending if there are data phases or not. For reads that is a response phase

10If the OCP configuration lacks byte enables, such implicit encoding of byte enables is not allowed
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As can be seen in equation 5.30 , when the bus width is larger than or equal to the bytes per UNKN address
the burst is considered non packing, while with the bytes per address larger than the bus width (equation 5.31)
it is considered packing.

Note that unkn dflt bytes per address > bus width is only permitted if the fraction is a power of two.
Hence, if a UNKN sequence is packing when going narrow to wide, if it is non-packing when going wide to
narrow, or if the fraction of bytes per address and bus width is not a power of two a deep copy is required.

In the absence of a valid burst length extension the OCP burst length of a given UNKN transaction can be
calculated by

burst length = bdata size + unkn dflt bytes per address− 1
unkn dflt bytes per address

c∗bunkn dflt bytes per address + bus width− 1
bus width

c

(5.32)
Note that the burst length extension always takes precedence over equation 5.32.
The set Word(b) that contains the bytes for data beat b with unkn dflt bytes per address = n and

bus width = w is given by

Word(b) =


n ≤ w

∣∣ D[i] : (b− 1) ∗ n ≤ i < min(b ∗ n, data size)

n > w ∧
n
w = f ∧

f = 2x, x ∈ IN

∣∣∣∣∣∣ D[i] : (b− 1) ∗ w ≤ i < min(b ∗ w, data size)

 (5.33)

To actually form a word out of such a set Word(b) the data array bytes D[i] have to be mapped on word
bytes W [j]

j = address(D[i]) mod bus width (5.34)

If a set does not contain any or enough bytes to form a word, the missing bytes in that word are considered
disabled11, regardless if there is a byte enable array or not. Note that the order of the word bytes W [j] depends
on the host endianess.

5.8 User defined packing burst: DFLT1

The DFLT1 burst follows an address sequence that can be calculated in a user defined way. However, some
modules may not be in possession of knowledge about how to calculate it. To this end, the sender may explicitly
associate an address with every word to be transmitted, but he does not have to. If a functional module is not
in possession of knowledge about how to calculate the sequence and receives a DFLT1 burst, it should raise an
error as it cannot sensibly process the burst. If a non-functional module (like a monitor) is not in possession of
knowledge about how to calculate the sequence and receives a DFLT1 burst it shall use the transaction address
as the address of each beat and raise a warning that it did so.

To mark a transaction as DFLT1, the streaming width has to be set to a value equal to or larger than the
data size, and the burst sequence extension the member sequence of the burst sequence extension must be set to
DFLT1. Additionally the member unkn dflt bytes per address must be set to the bus width of the initial master
and the member unkn dflt addresses valid must indicate whether there is an explicit address for each word or
not. When setting up the DFLT1 burst with explicit address information, the vector has to be large enough to
hold an address per beat the master wants to transmit, but its size does not need to reflect the exact number of
beats. Whenever the initial master emits a request beat it must ensure that the associated entry of the address
vector is filled.

The addresses in the vector must be aligned to unkn dflt bytes per address, offsets are not allowed. The trans-
action address must match the first entry of the address vector. Without knowledge of the address sequence
calculation there is no way to calculate the global address sequence, but local subsections are considered calcula-
ble when explicit address information isn available: Assume unkn dflt bytes per address = n, bus width = w
and a beat b.

n ≤ w ∧
w
n = f ∧

f = 2x, x ∈ IN

∣∣∣∣∣∣
b = 1 : ∀D[i], 0 ≤ i < min(w − Toffset, data size) :

address(D[i]) = address vector[0] + i
b > 1 : ∀D[i], (b− 1) ∗ w − Toffset ≤ i < min(b ∗ w − Toffset, data size) :

address(D[i]) = address vector[b ∗ f − Toffset
n ] + ((i + Toffset) mod w)

(5.35)

11If the OCP configuration lacks byte enables, such implicit encoding of byte enables is not allowed
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n > w ∧
n
w = f ∧

f = 2x, x ∈ IN

∣∣∣∣∣∣ ∀D[i], (b− 1) ∗ w ≤ i < min(b ∗ w, data size) :
address(D[i]) = address vector[b b

f c] + (i mod n) (5.36)

As can be seen in equations 5.35 and 5.36, the burst is always considered packing.
Note that unkn dflt bytes per address > bus widthorunkn dflt bytes per address < bus width is only

permitted if the fraction is a power of two. Hence, if the fraction of bytes per address and bus width is not a
power of two a deep copy is required.

In the absence of a valid burst length extension the OCP burst length of a given DFLT1 transaction can be
calculated by equation 5.5. Note that the burst length extension always takes precedence over equation 5.5.

The set Word(b) that contains the bytes for data beat b with unkn dflt bytes per address = n and
bus width = w is given by

Word(b) =



n ≤ w ∧
w
n = f ∧

f = 2x, x ∈ IN

∣∣∣∣∣∣∣∣∣∣
b = 1|D[i] : 0 ≤ i < min(w − Toffset, data size)

b > 1

∣∣∣∣∣∣
(b− 1) ∗ w − Toffset

D[i] : ≤ i <
min(b ∗ w − Toffset, data size)

n > w ∧
n
w = f ∧

f = 2x, x ∈ IN

∣∣∣∣∣∣ D[i] : (b− 1) ∗ w ≤ i < min(b ∗ w, data size) :


(5.37)

To actually form a word out of such a set Word(b) the data array bytes D[i] have to be mapped on word
bytes W [j]

j = address(D[i]) mod bus width (5.38)

If a set does not contain any or enough bytes to form a word, the missing bytes in that word are considered
disabled12, regardless if there is a byte enable array or not. Note that the order of the word bytes W [j] depends
on the host endianess.

5.9 User defined non-packing burst: DFLT2

The DFLT2 burst follows an address sequence that can be calculated in a user defined way. However, some
modules may not be in possession of knowledge about how to calculate it. To this end, the sender may explicitly
associate an address with every word to be transmitted, but he does not have to. If a functional module is not
in possession of knowledge about how to calculate the sequence and receives a DFLT2 burst, it should raise an
error as it cannot sensibly process the burst. If a non-functional module (like a monitor) is not in possession of
knowledge about how to calculate the sequence and receives a DFLT2 burst it shall use the transaction address
as the address of each beat and raise a warning that it did so.

To mark a transaction as DFLT2, the streaming width has to be set to a value equal to or larger than the
data size, and the burst sequence extension the member sequence of the burst sequence extension must be set to
DFLT2. Additionally the member unkn dflt bytes per address must be set to the bus width of the initial master
and the member unkn dflt addresses valid must indicate whether there is an explicit address for each word or
not. When setting up the DFLT2 burst with explicit address information, the vector has to be large enough to
hold an address per beat the master wants to transmit, but its size does not need to reflect the exact number of
beats. Whenever the initial master emits a request beat it must ensure that the associated entry of the address
vector is filled.

The addresses in the vector must be aligned to unkn dflt bytes per address, offsets are not allowed. The trans-
action address must match the first entry of the address vector. Without knowledge of the address sequence
calculation there is no way to calculate the global address sequence, but local subsections are considered calcula-
ble when explicit address information isn available: Assume unkn dflt bytes per address = n, bus width = w
and a beat b.

n ≤ w
∣∣ ∀D[i], (b− 1) ∗ n ≤ i < min(b ∗ n, data size) :

address(D[i]) = address vector[b] + (i mod n) (5.39)

12If the OCP configuration lacks byte enables, such implicit encoding of byte enables is not allowed
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As can be seen in equations 5.39 the DFLT2 sequence is not packing. Moreover, it is an error to transmit a
DFLT2 burst with unkn dflt bytes per address > bus width.

In the absence of a valid burst length extension the OCP burst length of a given DFLT2 transaction can be
calculated by

burst length = bdata size + unkn dflt bytes per address− 1
unkn dflt bytes per address

c (5.40)

Note that the burst length extension always takes precedence over equation 5.40.
The set Word(b) that contains the bytes for data beat b with unkn dflt bytes per address = n and

bus width = w is given by

Word(b) = {n ≤ w|D[i] : (b− 1) ∗ n ≤ i < min(b ∗ n, data size)} (5.41)

To actually form a word out of such a set Word(b) the data array bytes D[i] have to be mapped on word
bytes W [j]

j = address(D[i]) mod bus width (5.42)

If a set does not contain any or enough bytes to form a word, the missing bytes in that word are considered
disabled13, regardless if there is a byte enable array or not. Note that the order of the word bytes W [j] depends
on the host endianess.

5.10 Byte Enables

Independent of the burst sequence for every set Word(b) applies that all bytes in the set are enabled if the
byte enable ptr of the transaction is NULL. In the presence of a byte enable ptr the following equations determines
the set of valid bytes of the bytes in set Word(b)

V alid(Word(b)) = {D[i]|D[i] ∈ Word(b) ∧ byte enable ptr[i mod byte enable length] = 0xFF} (5.43)

13If the OCP configuration lacks byte enables, such implicit encoding of byte enables is not allowed
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Chapter 6

Connecting legacy IP

The OCP Modelling Kit release is radically different from the previous OCP kits up to OCP-IP SLD r2.2.1.
However, there is still a large number of IP models available that use the OCP TLM interfaces of OCP-IP SLD
r2.2.1. To allow a seamless and smooth migration from OCP-IP SLD r2.2.1 to OCP Modelling Kit, the OCP
Modelling Kit contains the whole OCP-IP SLD r2.2.1 kit and adapters that allow connecting OCP Modelling
Kit IP to OCP-IP SLD r2.2.1 IP and vice versa.

6.1 Including the Legacy Support Classes

Normally the inclusion of the legacy support classes (the complete OCP-IP SLD r2.2.1kit and the legacy
adapters) is deactivated to minimize the number of files that are included by ocpip.h. To activate the legacy
support the compile time switch OCP USE LEGACY has to be set.

For example, if you are using gcc then the compile time switch has to be set via the command line argument
-DOCP USE LEGACY. Afterwards, the complete OCP-IP SLD r2.2.1kit is available in namespace ocpip legacy,
and legacy channels, ports, classes, etc. can be used through this namespace.

If legacy IP shall be included in a system together with the OCP Modelling Kit the include path
ocp installation path/include/legacy support has to be provided to the compiler. By that all header files of
the OCP-IP SLD r2.2.1kit will be available. To avoid changes to the legacy IP the namespace ocpip legacy will
be opened globally (via using namespace ocpip legacy;).

Afterwards, both legacy IP as well as the adapters can be instantiated and used. There is no need to change
the legacy code in any way. However, if the legacy code is written for a release version that is not compatible
to 2.2.1 you are basically on your own...

6.2 Instantiating and Connecting Adapters

After setting OCP USE LEGACY and providing the include path include/legacy support to the compiler as de-
scribed above, legacy IP can be compiled with the OCP Modelling Kit and can be connected to OCP Modelling
Kit IP via adapters.

There are mutliple adapters available, which will be explained in the following subsections.

6.2.1 TL1 master legacy adapter

This adapter has a OCP-IP SLD r2.2.1 TL1 slave port, and an OCP Modelling Kit TL1 master socket. Hence,
you can connect an an OCP-IP SLD r2.2.1 TL1 master to this adapter via an OCP-IP SLD r2.2.1 TL1 channel,
and you can connect an OCP Modelling Kit TL1 slave to the adapter’s master socket.

The conversion it pretty straight forward, the only noticeable property of the adapter is that it has to bridge
from the time unit based delta cycle protection of the OCP Modelling Kit to the delta cycle based delta cycle
protection of the OCP-IP SLD r2.2.1 kit. As described in section 3.8, in the OCP Modelling Kit with default
timing a call to nb transport may happen at any delta cycle of the time of the clock cycle. However, this can be
non-default in the OCP-IP SLD r2.2.1 kit (if the calls do not happen in the same delta as the event that marks
the start of the OCP cycle). The same applies to non-default timing. In the OCP-IP SLD r2.2.1 kit, when a
start time is set to X, then waiting for X and an additional delta cycle will suffice. In the OCP Modelling Kit,
a start time being set to X means that the according nb transport call can start at any delta (not the very first)
of the given time.
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Hence, the adapter will use a delta cycle protection PEQ, thereby ensuring that every call to nb transport
arrives at the very first delta cycle of the time that is one time resolution after the according start time. By
that the adapter ensures:

• It is always non-default towards the legacy IP.

• It will always update the legacy channel at the very first delta of a non-default timing point.

Given that, the legacy reaction to that non-default timing (wait for the start time and a delta cycle) will
work as expected by the legacy IP.

The class is defined as

template <typename DataCl, unsigned int BUSWIDTH=DataCl::SizeCalc::bit size>

class ocp tl1 master legacy adapter {
...

ocpip legacy :: OCP TL1 SlavePort<DataCl> slave port;

ocp master socket tl1<BUSWIDTH> master socket;

...

}

DataCl This template argument must be the same as for the OCP-IP SLD r2.2.1 TL1 channel that shall be
connected to the adapter.

BUSWIDTH If the provided class does not provide static bit size calculation facilities (the OCP TL1 DataCl
from the legacy code base, and the data class as described in 3.9.1 both provide such facilities), or if the
statically calculated size is not correct for the given use case1, this parameter can be set manually.

slave port The OCP-IP SLD r2.2.1 slave port to which to connect the OCP-IP SLD r2.2.1 TL1 channel.

master socket The OCP Modelling Kit master socket to which to connect the OCP Modelling Kit slave.

The constructor is defined as

ocp tl1 master legacy adapter (sc core :: sc module name name, unsigned int max impr burst length=64)

name The module name of the adapter.

max impr burst length The maximum length of imprecise bursts that may pass this adapter. The information
is required to enable the adapter to allocate large enough data buffers for imprecise bursts. If an imprecise
burst passes the adapter that exceeds the maximum length the behavior is undefined.

Example: Connect a OCP-IP SLD r2.2.1 master to an OCP Modelling Kit slave.
1 i n t s c ma i n ( i n t , cha r ∗∗){
2 // t h e c l o c k
3 s c c o r e : : s c c l o c k c l k ;
4

5 // Submodu l e s
6 Mas t e r ms1 ( ”ms1 ” ) ; // t h e SLD k i t ma s t e r
7 S l a v e s l 1 ( ” s l 1 ” ) ; // t h e TLM−2.0 k i t s l a v e
8

9 // Se t OCP c o n f i g u r a t i o n f o r s l a v e
10 // t h e map was r e a d f rom a f i l e
11 o c p i p : : o c p p a r a m e t e r s pa rams ;
12 params . s e t o c p c o n f i g u r a t i o n ( ” s l 1 ” , ocpParamMap ) ;
13 s l 1 . i pP . s e t o c p c o n f i g ( params ) ;
14

15

16 t y p e d e f o c p i p l e g a c y : : OCP TL1 DataCl<u i n t 3 2 t , u i n t 3 2 t > d a t a t y p e ;
17 t y p e d e f o c p i p l e g a c y : : OCP TL1 Channe l C l ocked < d a t a t y p e > c h a n n e l t y p e ;
18

19 // c r e a t e t h e SLD k i t TL1 c h a n n e l
20 c h a n n e l t y p e ch0 ( ”ocp0 ” ) ;
21 ch0 . p c l k ( c l k ) ; // c o n n e c t t h e c l o c k
22

23 // c r e a t e t h e a d a p t e r
24 o c p i p : : o c p t l 1 m a s t e r l e g a c y a d a p t e r <d a t a t y p e > a d a p t e r ( ” a d a p t e r ” ) ;
25

26 // c o n n e c t SLD k i t ma s t e r t o a d a p t e r v i a SLD k i t TL1 c h a n n e l
27 // t h e c o n f i g f rom t h e TLM−2.0 s l a v e s o c k e t w i l l a r r i v e a t t h i s

1E.g. the data class could use a 32 bit data type but the simulated bus width shall only be 16 bit
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28 // c h a n n e l t h r o u g h SLD k i t c o n f i g f rom c o r e s , s o t h e r e i s no
29 // need t o c o n f i g u r e i t ma n u a l l y
30 ms1 . i pP ( ch0 ) ;
31 a d a p t e r . s l a v e p o r t ( ch0 ) ;
32

33 // c o n n e c t a d a p t e r t o TLM−2.0 s l a v e
34 a d a p t e r . m a s t e r s o c k e t ( s l 1 . i pP ) ;
35

36 // c o n n e c t c l o c k p o r t s
37 ms1 . c l k ( c l k ) ;
38 s l 1 . c l k ( c l k ) ;
39

40 // s t a r t
41 s c c o r e : : s c s t a r t ( ) ;
42 r e t u r n 0 ;
43 }

6.2.2 TL1 slave legacy adapter

This adapter has a OCP-IP SLD r2.2.1 TL1 master port, and an OCP Modelling Kit TL1 slave socket. Hence,
you can connect an an OCP-IP SLD r2.2.1 TL1 slave to this adapter via an OCP-IP SLD r2.2.1 TL1 channel,
and you can connect an OCP Modelling Kit TL1 master to the adapter’s slave socket.

As for the master, the conversion is simple and straight forward, and the delta protection scheme adaption
is performed in exactly the same way.w

The class is defined as

template <typename DataCl, unsigned int BUSWIDTH=DataCl::SizeCalc::bit size>

class ocp tl1 slave legacy adapter {
...

ocpip legacy :: OCP TL1 MasterPort<DataCl> master port;

ocp slave socket tl1 <BUSWIDTH> slave socket;

...

}

DataCl This template argument must be the same as for the OCP-IP SLD r2.2.1 TL1 channel that shall be
connected to the adapter.

BUSWIDTH If the provided class does not provide static bit size calculation facilities (the OCP TL1 DataCl
from the legacy code base, and the data class as described in 3.9.1 both provide such facilities), or if the
statically calculated size is not correct for the given use case1, this parameter can be set manually.

master port The OCP-IP SLD r2.2.1 master port to which to connect the OCP-IP SLD r2.2.1 TL1 channel.

slave socket The OCP Modelling Kit slave socket to which to connect the OCP Modelling Kit master.

The constructor is defined as

ocp tl1 slave legacy adapter (sc core :: sc module name name)

name The module name of the adapter.

Example: Connect a OCP-IP SLD r2.2.1 slave to an OCP Modelling Kit kit master.
1 i n t s c ma i n ( i n t , cha r ∗∗){
2 // t h e c l o c k
3 s c c o r e : : s c c l o c k c l k ;
4

5 // Submodu l e s
6 Mas t e r ms1 ( ”ms1 ” ) ; // t h e TLM−2.0 k i t ma s t e r
7 S l a v e s l 1 ( ” s l 1 ” ) ; // t h e SLD k i t s l a v e
8

9 // Se t OCP c o n f i g u r a t i o n f o r ma s t e r
10 // t h e map was r e a d f rom a f i l e
11 o c p i p : : o c p p a r a m e t e r s pa rams ;
12 params . s e t o c p c o n f i g u r a t i o n ( ”ms1 ” , ocpParamMap ) ;
13 ms1 . i pP . s e t o c p c o n f i g ( params ) ;
14

15

16 t y p e d e f o c p i p l e g a c y : : OCP TL1 DataCl<u i n t 3 2 t , u i n t 3 2 t > d a t a t y p e ;
17 t y p e d e f o c p i p l e g a c y : : OCP TL1 Channe l C l ocked < d a t a t y p e > c h a n n e l t y p e ;
18

19 // c r e a t e t h e SLD k i t TL1 c h a n n e l
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20 c h a n n e l t y p e ch0 ( ”ocp0 ” ) ;
21 ch0 . p c l k ( c l k ) ; // c o n n e c t t h e c l o c k
22

23 // c r e a t e t h e a d a p t e r
24 o c p i p : : o c p t l 1 s l a v e l e g a c y a d a p t e r <d a t a t y p e > a d a p t e r ( ” a d a p t e r ” ) ;
25

26 // c o n n e c t TLM−2.0 ma s t e r t o a d a p t e r
27 ms1 . i pP ( a d a p t e r . s l a v e s o c k e t ) ;
28

29 // c o n n e c t a d a p t e r t o SLD k i t s l a v e v i a SLD k i t TL1 c h a n n e l
30 // t h e c o n f i g f rom t h e TLM−2.0 ma s t e r s o c k e t w i l l a r r i v e a t t h i s
31 // c h a n n e l t h r o u g h SLD k i t c o n f i g f rom c o r e s , s o t h e r e i s no
32 // need t o c o n f i g u r e i t ma n u a l l y
33 a d a p t e r . m a s t e r p o r t ( ch0 ) ;
34 s l 1 . i pP ( ch0 ) ;
35

36 // c o n n e c t c l o c k p o r t s
37 ms1 . c l k ( c l k ) ;
38 s l 1 . c l k ( c l k ) ;
39

40 // s t a r t
41 s c c o r e : : s c s t a r t ( ) ;
42 r e t u r n 0 ;
43 }



Chapter 7

Monitoring Connections

Monitoring OCP Modelling Kit connection is currently done with the monitors of the OCP-IP SLD r2.2.1 kit.
They are connected to the OCP Modelling Kit connections through monitor adapters. This section will explain
how to instantiate and connect the monitor adapters and legacy monitors. Note that they are only available if
you have installed the OCP Modelling Kit monitor package.

7.1 Connection Monitor

To enable monitoring the compile time switch USE OCP MONITOR has to be provided to the compiler1 When
using more than one release of the OCP Modelling Kit simultaneously that will enable the monitors in all releases.
If one release is installed without monitors, setting USE OCP MONITOR will lead to problems (missing include
files). In this case the lines conaitning ifdef USE OCP MONITOR in the appropriate ocpip standard X Y Z.h
should be replaced with ifdef 0.

The OCP Modelling Kit provides a generic connection monitor that shall be used as a connector for OCP
Modelling Kit sockets instead of connecting them directly.

The class is defined as

template <unsigned int BUSWIDTH> class ocp connection monitor;

BUSWIDTH The bus width in bits of the connection that shall be monitored. That template argument must
match those of the master and slave socket that form the link that shall be monitored.

The constructor is defined as

ocp connection monitor(ocp master socket<BUSWIDTH>& msock, ocp slave socket<BUSWIDTH>& ssock)

msock The master socket of the link that shall be monitored.

ssock The slave socket of the link that shall be monitored.

Example: Connect two sockets with a connection monitor
1 i n t s c ma i n ( i n t , cha r ∗∗){
2 // t h e c l o c k
3 s c c o r e : : s c c l o c k c l k ;
4

5 // Submodu l e s
6 Mas t e r ms1 ( ”ms1 ” ) ; //TLM−2.0 k i t TL1 ma s t e r
7 S l a v e s l 1 ( ” s l 1 ” ) ; //TLM−2.0 k i t TL1 s l a v e
8

9 // Se t OCP c o n f i g u r a t i o n f o r ma s t e r
10 // t h e map was r e a d f rom a f i l e
11 o c p i p : : o c p p a r a m e t e r s pa rams ;
12 params . s e t o c p c o n f i g u r a t i o n ( ”ms1 ” , ocpParamMap ) ;
13 ms1 . i pP . s e t o c p c o n f i g ( params ) ;
14

15 // c o n n e c t t h e ma s t e r and s l a v e s o c k e t v i a c o n n e c t i o n mon i t o r
16 o c p i p : : o c p c o n n e c t i o n m o n i t o r <32> o c p m o n i t o r t p i e c e ( ms1 . ipP , s l 1 . tpP ) ;
17 // i n s t e a d o f
18 //ms1 . i pP ( s l 1 . tpP ) ;
19

1USE OCP MONITOR enables the monitors in the kit with the highest version number, just as namespace ocpip refers to the
highest version number. To enable monitors of a certain version you can use USE OCP MONITOR ocpip X Y Z. This will activate
the monitors in release X.Y.Z..
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20 // c o n n e c t c l o c k p o r t s
21 ms1 . c l k ( c l k ) ;
22 s l 1 . c l k ( c l k ) ;
23

24 // s t a r t
25 s c c o r e : : s c s t a r t ( ) ;
26 r e t u r n 0 ;
27 }

7.2 TL1 Monitors

To connect the TL1 monitors of the OCP-IP SLD r2.2.1, an adapter is provided that offers the OCP TL1 MonitorIF
to its environment. An arbitrary number of legacy monitors can be connected (e.g. trace or performance mon-
itors).

The adapter class is defined as

template <unsigned int BUSWIDTH, unsigned int ADDRWIDTH>

class ocp tl1 monitor adapter

: public ocpip legacy :: OCP TL1 MonitorIF<ocp data class unsigned<BUSWIDTH,ADDRWIDTH> >

{
...

typedef ocp data class unsigned<BUSWIDTH,ADDRWIDTH> data class type;

...

};

BUSWIDTH This template argument specifies the width of the connection that is to be monitored. It shall
match the appropriate template argument of the used connection monitor.

ADDRWIDTH This template argument specifies the address width of the connection that is to be monitored.
It is used to determine the appropriate data type to hold the address information within the adapter.

OCP TL1 MonitorIF As mentioned above the adapter provides the OCP-IP SLD r2.2.1 TL1 monitor interface.
Note that it is fixed to use the ocp data class unsigned as described in section 3.9.1. So the attached legacy
monitors must use the same.

data class type Since the legacy monitors must use the same data class as the OCP TL1 MonitorIF of the
adapter, the adapter provides a typedef to get the correct data class type directly from the used adapter.

The constructor is define as

ocp tl1 monitor adapter ( infr :: monitor<BUSWIDTH, tlm::tlm base protocol types>& mon);

mon The reference to the connection monitor to which to connect the adapter. As can be seen, the provided
type is from namespace infr. However, the user does not have to use this namespace explicitly when using
monitors, as the class infr::monitor is a base for the class ocp connection monitor.

Example: Monitor a TL1 connection with both a legacy performance and trace monitor.
1 i n t s c ma i n ( i n t , cha r ∗∗){
2 // t h e c l o c k
3 s c c o r e : : s c c l o c k c l k ;
4

5 // OCP TLM−2.0 TL1 modu l e s
6 S l a v e s l 1 ( ” s l 1 ” ) ;
7 Mas t e r ms1 ( ”ms1 ” ) ;
8

9 // Se t OCP c o n f i g u r a t i o n
10 // The map ha s been r e a d f rom a f i l e
11 o c p i p : : o c p p a r a m e t e r s pa rams ;
12 params . s e t o c p c o n f i g u r a t i o n ( ” s l 1 ” , ocpParamMap ) ;
13 s l 1 . i pP . s e t o c p c o n f i g ( params ) ;
14

15 params . s e t o c p c o n f i g u r a t i o n ( ”ms1 ” , ocpParamMap ) ;
16 ms1 . i pP . s e t o c p c o n f i g ( params ) ;
17

18 // n e t l i s t
19 // c o n n e c t t h e two s o c k e t u s i n g a c o n n e c t i o n mon i t o r
20 o c p i p : : o c p c o n n e c t i o n m o n i t o r <32> o c p m o n i t o r t p i e c e ( ms1 . ipP , s l 1 . i pP ) ;
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21

22 // a t t a c h t h e a d a p t e r t o t h e c o n n e c t i o n mon i t o r
23 o c p i p : : o c p t l 1 m o n i t o r a d a p t e r <32,32> mon adapt ( o c p m o n i t o r t p i e c e ) ;
24

25 // t h e c l o c k s o f t h e TL1 modu l e s
26 ms1 . c l k ( c l k ) ;
27 s l 1 . c l k ( c l k ) ;
28

29 // t h e mo n i t o r s need t o u s e t h e same t y p e a s t h e a d a p t e r
30 t y p e d e f o c p i p : : o c p t l 1 m o n i t o r a d a p t e r <32 ,32 >:: d a t a c l a s s t y p e d a t a c l a s s t y p e ;
31

32 // t r a n s a c t i o n r e c o r d i n g p e r f mon i t o r
33 s c v t r t e x t i n i t ( ) ;
34 s c v t r d b db ( ”ocp db ” ) ;
35 s c v t r d b : : s e t d e f a u l t d b (&db ) ;
36 boo l Ch a n n e l R e c o r d i n g = t r u e ;
37 boo l S y s t emRe c o r d i n g = f a l s e ;
38 o c p i p l e g a c y : : OCP T l 1 Pe r f Mon i t o r <d a t a c l a s s t y p e > pmon0 ( ”pmon0 ” , Chann e l R e c o r d i n g , S y s t emRe c o r d i n g ) ;
39 pmon0 . p mon ( mon adapt ) ;
40 pmon0 . p c l k ( c l k ) ;
41

42 // t r a c e mon i t o r
43 o c p i p l e g a c y : : OCP TL1 Tra c e Mon i t o r C l o c k ed <d a t a c l a s s t y p e > t r a c e r ( ”T r a c e r ” , ” t r a c e . ocp ” ) ;
44 t r a c e r . p mon ( mon adapt ) ;
45 t r a c e r . p c l k ( c l k ) ;
46

47 // s t a r t t h e s i m u l a t i o n
48 s c c o r e : : s c s t a r t (70 , s c c o r e : : SC NS ) ;
49 r e t u r n 0 ;
50 }

7.3 TL2 Monitors

7.4 TL3 Monitor

For TL3 there is a simple text file logger called ocp tl3 imc logger. The constructor is defined as

template<unsigned int BUSWIDTH>

ocp tl3 imc logger ( infr :: monitor<BUSWIDTH, tlm::tlm base protocol types>& mon

, const char∗ filename

, unsigned int trace extensions =0

, unsigned int trace data=0

, unsigned int trace be=0

, bool check release=false);

mon The reference to the connection monitor to which to connect the imc monitor. As can be seen, the provided
type is from namespace infr. However, the user does not have to use this namespace explicitly when using
monitors, as the class infr::monitor is a base for the class ocp connection monitor.

filename The name of the file that shall contain the logger’s output.

trace extensions An integer that defines the extension log level. Currently two levels are supported:

• 0 : No extension logging.

• 1 : OCP extension logging.

trace data An integer that defines if and how to log the data array. If it is zero, the data array will not be
logged. If it is greater than 0, the data array bytes will be logged grouped into lines of trace data items.

trace be An integer that defines if and how to log the byte enable array. If it is zero, the byte enable array
will not be logged. If it is greater than 0, the byte enable array bytes will be logged grouped into lines of
trace data items.

check release If set to true, the logger will capture the moment at which the free() method of the transaction
is called. If set to false this will not happen.

Example: Monitor a TL3 connection with the ocp tl3 imc logger, including data array, byte enable array,
and extensions.
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1 i n t s c ma i n ( i n t , cha r ∗∗){
2 // C r e a t e s m a s t e r s and s l a v e s
3 o c p t l 3 s l a v e s l 1 ( ” s l 1 ” ) ;
4 o c p t l 3 m a s t e r ms1 ( ”ms1 ” ) ;
5

6 // c o n f i g u r e t h e s o c k e t s
7 o c p i p : : o c p p a r a m e t e r s c o n f i g ;
8 o c p i p : : m a p s t r i n g t y p e c o n f i g ma p=g e t c o n f i g m a p ( ) ;
9 c o n f i g . s e t o c p c o n f i g u r a t i o n ( s l 1 . ocp . name ( ) , c o n f i g ma p ) ;

10 s l 1 . ocp . s e t o c p c o n f i g ( c o n f i g ) ;
11 c o n f i g . s e t o c p c o n f i g u r a t i o n ( ms1 . ocp . name ( ) , c o n f i g ma p ) ;
12 ms1 . ocp . s e t o c p c o n f i g ( c o n f i g ) ;
13

14 // Connec t m a s t e r s and s l a v e s v i a a c o n n e c t i o n mon i t o r
15 o c p i p : : o c p c o n n e c t i o n m o n i t o r <32> o c p m o n i t o r t p i e c e 1 ( ms1 . ocp , s l 1 . ocp ) ;
16 o c p i p : : o c p t l 3 i m c l o g g e r o c p t l 3 i m c l o g g e r ( o c p m o n i t o r t p i e c e 1 , ” t l 3 l o g . t x t ” , 1 , 4 , 4 , t r u e ) ;
17

18 // s t a r t s i m u l a t i o n
19 s c s t a r t (100 , s c c o r e : : SC NS ) ;
20

21 r e t u r n 0 ;
22

23 }

A part of the gathered data can be seen below. It is a write followed by a read. Note how the data array is
grouped into a line of four bytes, and how the extensions are logged.

1 @0 s (+11 ns ) , d e l t a c oun t=0
2 CALL n b t r a n s p o r t f w (0 xb084c0 , BEGIN REQ )
3 Command v a l u e=TLM WRITE COMMAND
4 Add r e s s v a l u e=0x1
5 S t r e am i ngW id t h v a l u e=4
6 R e s p o n s e S t a t e v a l u e=TLM INCOMPLETE RESPONSE
7 DMIHint v a l u e=Not a l l o w e d
8 Data a r r a y ( l e n g t h =4)
9 [ 0 : 3 ]=0 x1 0 0 0

10 Byte En ab l e a r r a y not u s ed .
11 S t a r t o f E x t e n s i o n L i s t
12 </ e x t e n s i o n name=” b u r s t l e n g t h ” t y p e=”g u a r d e d d a t a ” v a l u e=”1 ”>
13 End o f E x t e n s i o n L i s t
14 @0 s (+16 ns ) , d e l t a c oun t=0
15 RETURN n b t r a n s p o r t f w (0 xb084c0)−>TLM COMPLETED
16 Command v a l u e=TLM WRITE COMMAND
17 Add r e s s v a l u e=0x1
18 S t r e am i ngW id t h v a l u e=4
19 R e s p o n s e S t a t e v a l u e=TLM OK RESPONSE
20 DMIHint v a l u e=Not a l l o w e d
21 Data a r r a y ( l e n g t h =4)
22 [ 0 : 3 ]=0 x1 0 0 0
23 Byte En ab l e a r r a y not u s ed .
24 S t a r t o f E x t e n s i o n L i s t
25 </ e x t e n s i o n name=” b u r s t l e n g t h ” t y p e=”g u a r d e d d a t a ” v a l u e=”1 ”>
26 End o f E x t e n s i o n L i s t
27

28 +++++ r e l e a s e o f t r a n s a c t i o n 0 xb084c0 ++++
29 @16 ns (+12 ns ) , d e l t a c oun t=1
30 CALL n b t r a n s p o r t f w (0 xb084c0 , BEGIN REQ )
31 Command v a l u e=TLM READ COMMAND
32 Add r e s s v a l u e=0x2
33 S t r e am i ngW id t h v a l u e=4
34 R e s p o n s e S t a t e v a l u e=TLM INCOMPLETE RESPONSE
35 DMIHint v a l u e=Not a l l o w e d
36 Data a r r a y ( l e n g t h =4)
37 [ 0 : 3 ]=0 x1 0 0 0
38 Byte En ab l e a r r a y not u s ed .
39 S t a r t o f E x t e n s i o n L i s t
40 </ e x t e n s i o n name=” b u r s t l e n g t h ” t y p e=”g u a r d e d d a t a ” v a l u e=”1 ”>
41 End o f E x t e n s i o n L i s t
42 @16 ns (+19 ns ) , d e l t a c oun t=1
43 RETURN n b t r a n s p o r t f w (0 xb084c0)−>TLM ACCEPTED
44

45 @35 ns (+0 s ) , d e l t a c oun t=2
46 CALL n b t r a n s p o r t b w (0 xb084c0 , BEGIN RESP )
47 Command v a l u e=TLM READ COMMAND
48 Add r e s s v a l u e=0x2
49 S t r e am i ngW id t h v a l u e=4
50 R e s p o n s e S t a t e v a l u e=TLM OK RESPONSE
51 DMIHint v a l u e=Not a l l o w e d
52 Data a r r a y ( l e n g t h =4)
53 [ 0 : 3 ]=0 x1 0 0 0
54 Byte En ab l e a r r a y not u s ed .
55 S t a r t o f E x t e n s i o n L i s t
56 </ e x t e n s i o n name=” b u r s t l e n g t h ” t y p e=”g u a r d e d d a t a ” v a l u e=”1 ”>
57 End o f E x t e n s i o n L i s t
58 @35 ns (+6 ns ) , d e l t a c oun t=2
59 RETURN n b t r a n s p o r t b w (0 xb084c0)−>TLM UPDATED : END RESP
60 Command v a l u e=TLM READ COMMAND
61 Add r e s s v a l u e=0x2
62 S t r e am i ngW id t h v a l u e=4
63 R e s p o n s e S t a t e v a l u e=TLM OK RESPONSE
64 DMIHint v a l u e=Not a l l o w e d
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65 Data a r r a y ( l e n g t h =4)
66 [ 0 : 3 ]=0 x1 0 0 0
67 Byte En ab l e a r r a y not u s ed .
68 S t a r t o f E x t e n s i o n L i s t
69 </ e x t e n s i o n name=” b u r s t l e n g t h ” t y p e=”g u a r d e d d a t a ” v a l u e=”1 ”>
70 End o f E x t e n s i o n L i s t
71

72 +++++ r e l e a s e o f t r a n s a c t i o n 0 xb084c0 ++++
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