

1

A SystemC™ OCP
Transaction Level Communication Channel

V2.0.2 – May 17, 2003

Document version 1.4

2

Revision History

Version Date Comment

1.0 1/15/03 Initial Generic Transaction Channel

1.0.1 3/31/03 First revision for OCP 1.0 channel

1.1 7/18/03 OCP 1.0 Sideband and layer adapters included

2.0 11/26/03 Updated generic channel, and OCP data class. Added new OCP 2.0 specific
API on the generic channel.

2.0.1 2/15/04 Patched TL1 ports

2.0.2 5/17/04 Updated with pre-emptive accept methods, clocked blocking methods, made
OCP monitor and protocol checker optional, modified constructors. TL2
Reset methods, added the reset case for ‘return false’ conditions.

DISCLAIMER

This OCP-IP document is provided "as is" with no warranties whatsoever, including any
warranty of merchantability, noninfringement, fitness for any particular purpose, or any
warranty otherwise arising out of any proposal, specification or sample. OCP-IP disclaims
all liability for infringement of proprietary rights, relating to use of information in this
document. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

OCP International Partnership (OCP-IP) disclaims all warranties and liability for the use of
this document and the information contained herein and assumes no responsibility for any
errors that may appear in this document, nor does OCP-IP make a commitment to update
the information contained herein.

Contact the OCP-IP office to obtain the latest revision of this document.

Questions regarding this document or membership in OCP-IP may be forwarded to:

 OCP-IP
 www.ocpip.org
 E-mail: admin@ocpip.org
 Phone: +1 503-291-2560
 Fax: +1 503-297-1090

 OCP-IP Technical Support
 techsupport@ocpip.org

All product names are trademarks, registered trademarks, or servicemarks of their
respective owners.

Copyright © 2003, 2004 OCP-IP

3

Table of Contents
1. Introduction ...5
2. Directory structure and Class Hierachy ..7
3. Overview of Transaction ChannelS ..9

3.1. OCP Specific Transaction Channel and Interfaces..9
3.2. Working with Different Channel Versions...9

4. OCP Specific TL1 Channel Model ..10
4.1. OCP TL1 Channel Constructors ..10
4.2. OCP TL1 Specific Enum Types and Template Classes...13

4.2.1. OCPMCmdType Enum ...13
4.2.2. OCPRespType Enum..13
4.2.3. OCPMBurstSeqType Enum ..14
4.2.4. OCPRequestGrp Template Class ...14
4.2.5. OCPResponseGrp Template Class ..16
4.2.6. OCPDataHSGrp Template Class..18

4.3. TL1 Master Interface Methods (ocp_tl1_master.if.h) ...20
4.3.1. Reset...20
4.3.2. Request Phase..21
4.3.3. Response Phase...24
4.3.4. Data Handshake ...27

4.4. OCP TL1 Slave Interface Methods (ocp_tl1_slave_if.h) ..29
4.4.1. Reset...29
4.4.2. Request Phase..30
4.4.3. Response Phase...32
4.4.4. Data Handshake ...34

5. OCP TL2 specific Channel Model...37
5.1. OCP TL2 Channel Constructor ..37
5.2. OCP TL2 Specific Enum Types and Template classes ...37

5.2.1. OCPMCmdType, OCPSRespType and OCPMBurstSeqType Enums37
5.2.2. OCPRequestGrp Template Class ...37
5.2.3. OCPResponsetGrp Template Class ...38

5.3. TL2 Master Interface Methods (ocp_tl2_master_if.h) ..38
5.3.1. Reset...38
5.3.2. Request Phase..39
5.3.3. Response Phase...42
5.3.4. Serialized Methods..44

5.4. TL2 Slave Interface Methods (ocp_tl2_master_if.h) ..45
5.4.1. Reset...45
5.4.2. Request Phase..47
5.4.3. Response Phase...49

6. Example Using OCP Specific TL1 Channel and API ..52
6.1. Configuring the OCP Specific TL1 Channel...52

6.1.1. Parameter Map Format ...52
6.1.2. Building the Parameter Map from a File..53
6.1.3. Configurable Master and Slave...54
6.1.4. Building a Custom Configurable Core...55

6.2. A Configurable Master Model...55
6.2.1. Header File..56
6.2.2. Constructor..60
6.2.3. The end_of_elaboration() Method...61
6.2.4. SystemC Request Thread Process...64

4

6.2.5. SystemC Response Thread Process ..68
6.2.6. SystemC Sideband Process ...70
6.2.7. Template Instantiation...71

6.3. A Configurable Slave Model...71
6.3.1. Header File..72
6.3.2. Constructor..77
6.3.3. Destructor..78
6.3.4. The end_of_elaboration() Method...78
6.3.5. SystemC Request Thread Process...82
6.3.6. SystemC Response Thread Process ..85
6.3.7. The Sideband Thread Process ...88
6.3.8. Template Instantiation...89

6.4. The Main Program ...89
7. Debugging Your Model Using SOCCREATOR® Tools..94
8. Sideband Signals ..97

8.1. MError Signal ...97
8.2. MFlag Signal ..98
8.3. SError Signal..98
8.4. SFlag Signal...100
8.5. SInterrupt Signal ..102
8.6. Control Signal...103
8.7. ControlWr Signal ..104
8.8. ControlBusy Signal...104
8.9. Status Signal ..105
8.10. StatusRd Signal ...106
8.11. StatusBusy Signal ..107

List of Figures
Figure 1. Generic Channel Class Hierarchy ...7
Figure 2. OCP TL1 Specific Channel Class Hierarchy (Inherited from TL Channel Class

Hierarchy)..8
Figure 3. OCP Channel Directory Tree ..8
Figure 4. Master Model...56
Figure 5. Slave Model...72

List of Tables
Table 1. OCPMCmdType Enum Labels and Values ...13
Table 2. OCPRespType Enum Labels and Values ...13
Table 3. OCPMBurstSeqType Enum Labels and Values..14
Table 4. OCPRequestGrp Member Types ..15
Table 5. OCPResponseGrp Member Types ...17
Table 6. OCPDataHSGrp Member Types ...19

5

1. INTRODUCTION

This document describes the SystemC model of an Open Core Protocol (OCP) channel. This
model is meant for the system simulation of cores that use the OCP to connect to one another. A
System on a Chip (SOC) with processors, memory, an interconnect, and I/O devices could use
OCP channels to handle the connections between the cores.

This document covers OCP specific versions of the SystemC channel: the OCP specific channels
for Transaction Level One (TL1) and Transaction Level Two (TL2). A base generic model,
which serves as the foundation of the OCP TL1 and TL2 channels, is described in A SystemC™
Generic Transaction Level Communication Channel specification (Refer to www.ocpip.org for
more information). The OCP specific channel models were designed with the goals of OCP
correctness and ease of use. These OCP specific models are useful for cores that require an
accurate model of the OCP channel that is close to cycle accurate. As a group, the OCP specific
commands are more powerful and mask some of the complexity of the channel. This version of
the channel would be useful for all OCP cores except those legacy cores that require a Generic
channel interface.

This document categorizes the communication abstraction levels according to those introduced
in the white paper “SystemC™ based SoC Communication Modeling for the OCP™ Protocol.”
(You can obtain a copy of this paper at www.ocpip.org.) The abstraction levels are as follows:

1. Transaction Level

• Layer-3: Message Layer
Model untimed functionality
Point-point communication

• Layer-2: Transaction Layer

Model/analyze SoC architecture
Start SW development
Estimate timing

6

• Layer-1: Transfer Layer

Cycle true but faster than RTL
Detailed analysis, develop low-level SW

2. Pin Level

• Layer-0: Register Transfer Level

“TLx” and Layer-x are used for Transaction Level, Layer-x interchangeably. For example, the
acronym “TL1” stands for Transaction Level One.

SystemC is a C++ modeling environment designed for both cycle based and higher level
modeling of systems. This document assumes a basic understanding of the SystemC language.
For more information on SystemC, go to www.systemc.org.

The OCP is a non-proprietary, openly licensed, core-centric protocol for on-chip
communications. To use the OCP channel model correctly, the user would be well served to have
a solid understanding of the OCP protocol. The protocol is described in the Open Protocol
Specification manual, which is available at: www.ocpip.org. The chapters on “Overview,”
“Theory of Operation,” “Signals and Encoding,” and “Protocol Semantics” are essential for
understanding the OCP protocol and for using the OCP channel model.

7

2. DIRECTORY STRUCTURE AND CLASS HIERACHY

The generic channel is a SystemC module (sc_module) that uses “request/update” methods for
delta cycle delayed updates of the channel state. Figure 1 shows the internal class hierarchy for
the generic channel. The generic model contains a pointer to the type of data that moves through
the channel. In this case, the data is in the Open Core Protocol (OCP) Transaction Layer One
(TL1) format. Any type of data, even non-OCP data, can move through the generic base channel.

TL_Channel
<OCP_TL1_DataCl>

sc_module

Virtual
Abstract TLslaveIF

<OCP_TL1_DataCl>

Virtual
Abstract TLmasterIF
<OCP_TL1_DataCl>

SdirectIF
<TL1_DataCl>

MdirectIF
<TL1_DataCl>

Virtual
sc_interface

UpdateCl

sc_prim_channel

ParamCl CommClOCP_TL1_DataCl
<DataType, AddrType>

"ReqEnd"
Method
Process

"ResEnd"
Method
Process

"Update" Method
Process

Figure 1. Generic Channel Class Hierarchy

The OCP Specific channels are derived from the generic base channel model. The class
hierarchy for the OCP_TL1_Channel is shown in Figure 2. The OCP_TL1_Channel adds
OCP specific commands that process requests, responses, and data handshakes with single
commands. In addition, the OCP TL1 channel is built to ensure that the timing and the behavior
of the channel is OCP-correct. Other commands in the OCP_TL1_Channel provide direct
access to the events in the channel (CommCl) as well as the commands of the OCP TL1 Data
Class.

The interfaces OCP_TL1_SlaveIF and OCP_TL1_MasterIF provide port access to all of
the OCP specific commands. OCP specific ports for the master and slave provide OCP specific

8

event finders so that methods in the user’s SystemC core model may be statically sensitive
events in the channel.

TL_ChannelTLslaveIF TLmasterIF

OCP_TL1_Channel

OCP_TL1_SlaveIF OCP_TL1_MasterIF

Figure 2. OCP TL1 Specific Channel Class Hierarchy

(Inherited from TL Channel Class Hierarchy)

Like TL1, the OCP Transaction Layer Two (TL2) channel is derived from the generic base
channel model and provides OCP specific commands that process requests and responses with
single commands. The interfaces OCP_TL2_SlaveIF and OCP_TL2_MasterIF provide
port access to all of the OCP specific commands. OCP specific ports for the master and slave
provide OCP specific event finders so that methods in the user’s SystemC core model may be
statically sensitive events in the channel.

Figure 3 illustrates the directory structure for the OCP SystemC channel models.

tl_channel.h
tl_comm_cl.h
tl_direct_if.h
tl_master_if.h
tl_slave_if.h
ocp_globals.h
ocp_tl_param_cl.h
ocp_tlx_channel_cl.h
ocp_tl1_checker_cl.h
ocp_tlx_data_cl.h
ocp_tlx_master.h
ocp_tl1_ocpmongen_cl.h
ocp_mon.h
ocp_tlx_slave_if.h

tl_sc/

examples/ ocp_tl1/

ocp_tl2/

supplementary/

generic_tl1/

generic_tl2/

include/

Figure 3. OCP Channel Directory Tree

9

3. OVERVIEW OF TRANSACTION CHANNELS

This document describes the OCP Specific channel with the following goal: the OCP Specific
channel is designed to fully enforce the Open Core Protocol and to be close to cycle-accurate. As
a result, the OCP Specific channel can maintain a notion of time and has additional restrictions
on how and when its commands may be used.

3.1. OCP Specific Transaction Channel and Interfaces

While the base generic channel model is meant to support basic channel communication, the
OCP specific channel models are built specifically to implement the OCP. The OCP specific
channels are OCP correct and follow the definitions in the OCP standard. In addition, the OCP
models were tailored to be easy for the core writer to use while still maintaining full OCP
functionality.

3.2. Working with Different Channel Versions

Each different channel interface is meant to be a stand-alone set of commands for implementing
that particular channel model. Commands should not be mixed from multiple APIs. For example,
a core that uses the OCP-specific TL1 API should only use commands from that API.

While it is possible to mix commands from one model with another, this is strongly discouraged
because you must take great care to ensure that the model still behaves as expected. To ensure
OCP correct behavior, you should not mix commands from the OCP-specific APIs with the
generic channel commands. In particular, the generic channel’s pointer access to the internals of
the channel should be avoided. If the core writer uses the base generic class data pointer to
directly manipulate the OCP TL1 data, the channel may no longer be OCP correct.

10

4. OCP SPECIFIC TL1 CHANNEL MODEL

The OCP TL1 specific channel has OCP specific commands for sending and accepting OCP
requests, data, and responses. Because the channel model was designed specifically for OCP TL1
transactions, it is both easier to use and it ensures that the channel is OCP correct.

Since the OCP TL1 specific channel is built upon the base generic channel and the OCP TL1
data class, it is possible to use generic commands with the OCP TL1 channel. However, this is
strongly discouraged as doing so may lead to unexpected behavior, which is out of the bounds of
the OCP protocol.

4.1. OCP TL1 Channel Constructors

There are several constructors available. The main difference is whether the instantiated channel
is using an external clock or not. If the master and slave use only non-blocking methods, no
timing is required in the channel, and the default constructor can be used. This is the fastest
configuration of the channel. The master and slave use a clock and channel events to simulate
progression of time, but the channel itself does not know of the time.

The other two timing modes can be used with blocking methods: Clocked and self-timed. (The
first release of the OCP channel had only the self-timed mode.) The clocked mode simulates
faster, but requires a pointer to an object providing the clock events (signal, port, or sc_clock).
The clocked blocking methods are similar to using clock wait statements within master and slave
threads. The self-timed mode is slower, but allows creating master and slave models, which
don’t have clock inputs at all. The clock period is given as a constructor parameter, and the
channel will implement wait statements simulating the progression of bus cycles.

Notice that the self-timed mode is not compatible with the other timing modes: One cannot
connect a non-clocked master, which uses blocking calls with self-timed channel to a clocked
slave and expect cycle-accurate behavior. Also, the behavior of blocking methods is slightly
different in clocked and self-timed modes: The clocked blocking methods always wait for clock
edge before progressing, the self-timed ones progress immediately, and wait in the end.

The default constructor can configure non-timed and self-timed channels. The default is non-
timed (clock_period=0). Normally, this constructor would need only name as a parameter, the
other parameters can be left default.

11

OCP_TL1_Channel(std::string name,
 bool sync = true,
 bool use_event = true,
 bool use_default_event = true,
 sc_trace_file* vcd_tf = NULL,
 double clock_period = 0,
 sc_time_unit clock_time_unit = SC_NS,
 std::string monFileName = "",
 bool runtimeCheck = false)

name specifies the name of the module (channel) instance.

synch specifies whether the channel’s internal state and events are
updated synchronously (synch = true) or
asynchronously (synch = false). Always set synch to
true.

use_event specifies whether the channel’s events for the
synchronization of Mput*() and Sget*() methods as
well as Sput*() and Mget*() methods are triggered
(use_event = true) or not (use_event = false).
Always set use_event to true.

use_default_event specifies whether the channel should trigger the default
event. The channel may be faster if no default event is
triggered. use_default_event can be false if none of
the attached modules are sensitive to port events.

vcd_tf No Longer used. Always set to NULL.

clock_period The period of the OCP Channel cycle. If 0, non-timed mode
is set, and blocking methods are not allowed.

clock_time_unit The time unit of the OCP channel’s period.

monFileName The name of the file to use to output the OCP Monitor data.
If this parameter is not set then no OCP Monitor data is
recorded. If OCP Monitor package is not installed, the
monitor file will contain only a warning message of this. The
clock_period must be defined for the monitor to work.

runtimeCheck Boolean to turn the run time checker on (true) or off (false).
The run time checker provides basic debugging capability by
monitoring the number of requests and responses and
commands and command-accepts and ensuring that the
counts match. Will only work as advertised if OCP Monitor
package is installed.

12

The simple constructors can configure self-timed or clocked channels. Notice that there is no
parameter for turning off the OCP Checker. It can be turned off by defining preprocessor
NDEBUG before including the channel header file. It is a good idea to keep the OCP Checker
on (if installed) to ensure model behavior (pun intended).

The simple self-timed constructor:

OCP_TL1_Channel(std::string name,
 double clock_period,
 sc_time_unit clock_time_unit = SC_NS,
 std::string monFileName = "")

name specifies the name of the module (channel) instance.

clock_period The period of the OCP Channel cycle. If 0, non-timed mode
is set, and blocking methods are not allowed.

clock_time_unit The time unit of the OCP channel’s period.

monFileName The name of the file to use to output the OCP Monitor data.
If this parameter is not set then no OCP Monitor data is
recorded. If OCP Monitor package is not installed, the
monitor file will contain only a warning message of this. The
clock_period must be defined for the monitor to work.

The simple clocked constructors:

OCP_TL1_Channel(std::string name,
 <clock_object> * clk,
 std::string monFileName = "")

name specifies the name of the module (channel) instance.

<clock_object> ::= “sc_in_clk” | “sc_clock” |
“sc_signal<bool>”

 A pointer to the object giving clock events.

clock_time_unit The time unit of the OCP channel’s period.

monFileName The name of the file to use to output the OCP Monitor data.
If this parameter is not set then no OCP Monitor data is

13

recorded. If OCP Monitor package is not installed, the
monitor file will contain only a warning message of this.

4.2. OCP TL1 Specific Enum Types and Template Classes

The OCP TL1 commands pass requests, responses and data handshakes through as single
structures. This section describes those structures (actually template classes) as well as the Enum
types used by elements of those structures.

4.2.1. OCPMCmdType Enum

The OCPMCmdType enumerator defines the master command names. The enumerator values are
listed in Table 1. This Enum type is defined as

 Enum OCPMCmdType

Table 1. OCPMCmdType Enum Labels and Values

Label Value Description

OCP_MCMD_IDLE 0 Idle command

OCP_MCMD_WR 1 Write command

OCP_MCMD_RD 2 Read command

OCP_MCMD_RDEX 3 Exclusive read command

OCP_MCMD_RDL 4 Read linked command

OCP_MCMD_WRNP 5 Non-posted write command

OCP_MCMD_WRC 6 Write conditional command

OCP_MCMD_BCST 7 Broadcast command

4.2.2. OCPRespType Enum

The OCPSRESPType enumerator defines the slave response names. The enumerator values are
listed in Table 2. This Enum type is defined as

 Enum OCPSRESPType

Table 2. OCPRespType Enum Labels and Values

14

Label Value Description

OCP_SRESP_NULL 0 Null response

OCP_SRESP_DVA 1 Data valid/accept response

OCP_SRESP_FAIL 2 Request failed

OCP_SRESP_ERR 3 Error response

4.2.3. OCPMBurstSeqType Enum

The OCPMBurstSeqType enumerator defines the OCP master burst sequence types. The
enumerator values are listed in Table 3. This Enum type is defined as

 Enum OCPMBurstSeqType

Table 3. OCPMBurstSeqType Enum Labels and Values

Label Value Description

OCP_MBURSTSEQ_INCR 0 Incrementing

OCP_MBURSTSEQ_DFLT1 1 Custom (packed)

OCP_MBURSTSEQ_WRAP 2 Wrapping

OCP_MBURSTSEQ_DFLT2 3 Custom (not packed)

OCP_MBURSTSEQ_XOR 4 Exclusive OR

OCP_MBURSTSEQ_STRM 5 Streaming

OCP_MBURSTSEQ_UNKN 6 Unknown

OCP_MBURSTSEQ_RESERVED 7 Reserved

4.2.4. OCPRequestGrp Template Class

The OCPRequestGrp class is used for sending and receiving requests. All of signals that
make up the request group of signals are to be found here. This template class is defined as

Template<class Td, class Ta>
class OCPRequestGrp

15

4.2.4.1. Data Type and Address Type

The class template parameters Td and Ta indicate the data type and address type of the
MData and MAddr signals, respectively. By making this a template, any sized data or
address width may be supported.

4.2.4.2. Members

Some configurations of the OCP will not use all of the members in the class. In that case, the
unused members are invalid and should not be referenced or used. Table 4 lists the member
names and their data types for OCPRequestGrp.

Table 4. OCPRequestGrp Member Types

Name Data Type Description

MCmd OCPMCmdType Master command

MAddr AddrType Master address

MAddrSpace unsigned int Master address space

MData DataType Master data, when no data
handshake

MDataInfo Unsigned int Extra information sent with the
write data

MByteEn unsigned int Master byte enable

MThreadID unsigned int Master thread identifier

MConnId unsigned int Master connection identifier

MReqInfo unsigned int Extra information sent with the
response.

MAtomicLength unsigned int Length of atomic burst

MBurstLength unsigned int Burst length

MBurstPrecise bool Given burst length is precise

MBurstSeq OCPMBurstSeqType Address sequence of burst

MBurstSingleReq bool Burst uses single request/multiple
data protocol

16

Name Data Type Description

MRefLast bool Last response in burst

4.2.4.3. Constructor

OCPRequestGroup(bool has_mdata = true)

OCPRequestGroup(const OCPRequestGrp& src)

The first form constructs a default OCPRequestGrp object and uses the has_mdata
parameter to indicate whether or not there is a data handshake. The value for has_mdata
should be true for channels without data handshaking where all data is transmitted with the
request. It should be false for write requests when data handshaking is enabled because the
data will come through the data handshake, not the request.

The second form is the copy constructor, which copies the src into a new
OCPRequestGroup object.

4.2.4.4. Assignment Operator (=)

OCPRequestGroup& operator=(const OCPRequestGroup& rhs)

The assignment operator assigns one OCPRequestGroup object to another.

4.2.4.5. copy

void copy(const OCPRequestGrp& src)

Copies one OCPRequestGrp object to another.

4.2.5. OCPResponseGrp Template Class

The OCPResponseGrp class is used to send and receive responses with the OCP TL1 specific
channel. All of the signals that make up the response group are to be found in this class. This
template class is defined as

 Template<class Td>
 OCPResponseGrp

4.2.5.1. Data Type

The class template parameter Td indicates the data type of the SData signal. This allows the
response to contain any width of data. Note that the type of the response data must match the
type of request and data handshake data.

17

4.2.5.2. Members

Some configurations of the OCP will not use all of the members in the class. This
corresponds to the fact that some OCP implementations do not use all of the OCP signals. In
that case, the unused members are invalid and should not be referenced or used. Table 5 lists
the names and their data types of OCPResponseGrp.

Table 5. OCPResponseGrp Member Types

Name Type Description

SResp OCPSRespType Slave response

SData DataType Data returned by slave

SThreadID unsigned int Slave thread identifier

SDataInfo unsigned int Extra information sent with the
response data.

SRespInfo unsigned int Extra information sent out with
the response.

SRespLast bool Last response in burst

18

4.2.5.3. Constructor

OCPResponseGrp(void)

OCPResponseGrp(const OCPResponseGrp& src)

The first form constructs a default OCPResponseGrp object. The second form is the copy
constructor which copies the src into a new OCPResponseGrp object.

4.2.5.4. Assignment Operator (=)

OCPResponseGrp& operator=(const OCPResponseGrp& rhs)

The assignment operator assigns one OCPResponseGrp object to another.

4.2.5.5. copy

void copy(const OCPResponseGrp& src)

Copies one OCPResponseGrp object to another.

4.2.6. OCPDataHSGrp Template Class

The OCPDataHsGrp class is a structure used to send and receive data handshake data. All of
the OCP signals that make up the data group are to be found in this class. This template class is
defined as

 Template<class Td>
 Class OCPDataHSGrp

4.2.6.1. Data Type

The class template parameter Td indicates the data type of the MData signal. For instance, it
can be int or unsigned long to represent a data width of up to 32 bits and 64 bits,
respectively. Note that the data type used for the DataHSGrp should match the data type
used for the request and response group.

4.2.6.2. Members

Some configurations of the OCP will not use all of the members in the class. This is due to
the fact that not every OCP configuration uses all of the OCP signals. In that case, the unused
fields are invalid and should not be referenced or used. Table 6 lists the member names and
their data types of OCPDataHSgrp.

19

Table 6. OCPDataHSGrp Member Types

Name Type Description

MData DataType The master data being sent to the slave

MDataThreadID unsigned int The thread identifier for the write data

MDataByteEn unsigned int The data byte enable field

MDataInfo unsigned int The data info field.

MDataLast bool Is this the last data transfer in a burst?

MDataValid bool Synchronization bit. True when the
master places the data onto the
channel. False after the slave has
accepted the data.

4.2.6.3. Constructor

OCPDataHSGrp(void)

OCPDataHSGrp(const OCPDataHSGrp& src)

The first form constructs a default (empty) data handshake structure. The second form copies
the passed datahandshake data into the new object.

4.2.6.4. Assignment Operator (=)

OCPDataHSGrp& operator=(const OCPDataHSGrp& rhs)

The assignment operator assigns one OCPDataHSGrp object to another.

4.2.6.5. copy

 void copy(const OCPDataHsGrp& src)

Copies one OCPDataHSGrp object to another.

20

4.3. TL1 Master Interface Methods (ocp_tl1_master.if.h)

The methods described in this section handle the OCP TL1 master’s transaction request phase,
response phase, and data handshake.

All methods return immediately if the channel is in reset state. The non-void methods return
false if called during reset. It is advisable to make sure that the threads trusting blocking
methods for sequencing call a wait if a blocking methods returns false, to avoid infinite loops.

NOTE: It is recommended that blocking TL1 calls be used only in test benches and somesuch,
since their behavior depends on the channel timing configuration. Non-blocking calls are safe
for modeling masters and slaves, since they require that masters and slaves be clocked.

4.3.1. Reset

This section describes the methods for the master’s reset phase.

bool getReset()

Purpose: Check if channel is in reset state.

Return: Returns true if the channel is in reset, false otherwise.

Events: No event.

void MResetAssert()

Purpose: Puts channel in reset state. Resets all channel state variables, and calls
data class reset. All in-band methods will return immediately with false
return value while reset is active. All blocking methods are released, and
return with false.

Events: All start and end events fire (to release all waits in the system).

void MResetDeassert()

Purpose: Removes reset state from the channel.

Events: ResetEndEvent.

sc_event& ResetStartEvent()

Purpose: This event is triggered when channel reset starts.

21

Return: Reset start event.

sc_event& ResetEndEvent()

Purpose: This event is triggered when channel reset ends.

Return: Reset end event.

4.3.2. Request Phase

This section describes the methods for the master’s TL1 request phase.

bool getSBusy()const

Purpose: Used to check whether a new request can be placed on the channel.

Return: Returns true if the channel is free for a new request. This function does
not check the threadbusy signal (if any). See also
getSThreadBusy().

Events: No event.

bool startOCPRequest(
 const OCPRequestGrp<Td,Ta>& newRequest)

Purpose: Places the passed request onto the channel.

Return: Returns false if there is another request in progress or about to start or if
the slave is busy.

Events: Default event and request start event. No event if return value is false.

bool startOCPRequestBlocking(
 const OCPRequestGrp<Td,Ta>& newRequest)

Purpose: Self-timed behavior: Waits until the channel is free for a new request and
then starts the passed request on the channel.

 Clocked behavior: Repeat - Wait for a rising clock edge, try request -
until successful.

22

startOCPRequestBlocking() returns once the request has started
but before the slave has accepted the request.

Return: Returns false if there is already a blocking request waiting to be sent, or if
the request could not be sent.

Events: Default event and request start event. No event if return value is false.

bool getSCmdAccept() const // Functionality changed

Purpose: Get state of SCmdAccept.

 NOTE: Despite the name, this behaves like an RTL version of
SCmdAccept signal only after a request is put into the channel, and only at
rising clock edge, that is only when SCmdAccept is not don’t-care
according to OCP standard.

Return: Returns always true if parameter cmdaccept is 0, and !getSBusy()
otherwise.

Event: None.

unsigned int getSThreadBusy() const

Purpose: Returns the current value of the SThreadBusy signal in the channel.

Return: The unsigned int returned contains the SThreadBusy signals for
each of the threads in the channel. If a bit position is “1” then that thread is
busy.

Event: None.

sc_event& RequestStartEvent()

Purpose: This event is triggered when a new request has been placed on the
channel. A slave could use wait on this event so that it would restart when
a new request was available.

Return: Request start event.

23

sc_event& RequestEndEvent()

Purpose: This event is triggered when the request is accepted.

Return: Request end event.

void waitSCmdAccept(void)

Purpose: If there is a current request on the channel, waitSCmdAccept() waits
until the request has been accepted by the slave. This method returns
immediately if there is no request on the channel or if that request has
already been accepted. Note that if SCmdAccept is not part of the
channel, this command will wait until request is automatically accepted by
the channel (one delta cycle after the request is submitted.)

Return: None.

Event: None.

24

4.3.3. Response Phase

This section describes the methods for the master’s TL1 response phase.

bool getOCPResponse(OCPResponseGrp<Td>& myResponse,
 bool acceptResponse = false)

Purpose: If there is an unread response available on the channel, the response is
read and returned as myResponse. If acceptResponse is true,
putMRespAccept() is called. Note that if MRespAccept is not part
of the OCP channel, the response is always automatically accepted, and
the value of the acceptResponse parameter is ignored.

Return: Returns false if there is no response available or if the response has
already been read by a getResponse command or if there is a
getResponseBlocking command in progress.

Event: None

bool getOCPResponseBlocking(OCPResponseGrp<Td>& myResponse,
 bool acceptResponse = false)

Purpose: Waits for a new, unread response to become available on the channel. The
response is then read and returned as myResponse. If
acceptResponse is true, putMRespAccept() is called. Note that if
MRespAccept is not part of the OCP channel, the response is always
automatically accepted, and the value of the parameter
acceptResponse is ignored.

Return: Returns false if there is already another getResponseBlocking
command in progress or if a response cannot be read.

Event: None

bool putMRespAccept()

Purpose: Sets the MRespAccept signal in the OCP channel and releases the
response.

Return: Returns false if there is no response to accept or if the current response has
already been accepted. Otherwise, putMRespAccept() returns true
and the response will be accepted on the next delta cycle. Note that after

25

the response has been accepted, the OCP channel signal SResp is then
automatically reset to “OCP_SRESP_NULL”.

Event: None

void putMRespAccept(bool accept)

Purpose: Sets or unsets the MRespAccept signal in the OCP channel. Can be
called any time. One called, the accept state is persistent. See
MreleasePE() of the Generic channel.

Event: None

void putMThreadBusy(unsigned int nextMThreadBusy)

Purpose: At the next delta cycle, the OCP signal MThreadBusy will be set to the
passed value

Return: None.

Event: None

void putNextMThreadBusy()

Purpose: Sets the value of the MThreadBusy signal at the beginning of the next
clock cycle. The thread busy value passed in here will be placed on the
channel at the very beginning of the next clock cycle, before any thread or
method processes start. This function ensures that at the next cycle, the
slave will have this value of the MThreadBusy signal in order to decide
which response (if any) to send. Note that if this command is called more
than once in the same cycle, the value passed in the last call will be used.

Return: None.

Event: None

sc_event& ResponseStartEvent()

Purpose: This event is triggered when a new response has been placed on the
channel.

Return: Response start event.

26

sc_event& ResponseEndEvent()

Purpose: This event is triggered when the response is accepted.

Return: Response end event.

27

4.3.4. Data Handshake

This section describes the methods for the master’s TL1 data handshake.

bool getSBusyDataHS() const

Purpose: Used to check whether a new data handshake can be started on the
channel.

Return: Returns true if the channel is free for a new data handshake. This function
does not check the threadbusy signal (if any). See also
getSDataThreadBusy().

Events: No event.

bool startOCPDataHS(const OCPDataHSGrp<Td>& newData)

Purpose: Places the passed data onto the channel and automatically sets the OCP
signal MDataValid to true.

Return: Returns false if there is another data handshake in progress or about to
start or if the slave is busy.

Events: Default event and data handshake start event. No event when return value
is false.

bool startOCPDataHSBlocking(
 const OCPDataHSGrp<Td>& newData)

Purpose: Self-timed behavior: Wait until the channel is free for new data, start the
passed data and set the OCP signal MDataValid to true.

 Clocked behavior: Repeat - Wait for a rising clock edge, try request -
until successful.

startOCPDataHSBlocking() returns once the handshake has started
but before the slave has accepted the handshake.

Return: Returns false if there is already a blocking data handshake waiting to be
sent or if the data could not be sent.

Events: Default event and data handshake start event. No event when return value
is false.

28

bool getSDataAccept() const

Purpose: Get state of SDataAccept.

 NOTE: Despite the name, this behaves like an RTL version of
SDataAccept signal only after a data request is put into the channel, and
only at rising clock edge, that is only when SDataAccept is not don’t-care
according to OCP standard.

Return: Returns true, if dataaccept parameter is 0, and !getSBusyDataHS()
otherwise.

Event: No event.

unsigned int getSDataThreadBusy() const

Purpose: Returns the current value of the SDataThreadBusy signal in the channel.

Return: The unsigned int returned has one bit for each thread on the channel.
If a bit is “1”, that thread is busy and no more data transfers should be sent
to that thread.

Event: None.

sc_event& DataHSStartEvent()

Purpose: This event is triggered whenever a new data handshake transfer is started
on the channel.

Return: Data handshake start event.

sc_event& DataHSEndEvent()

Purpose: This event is triggered when the current data handshake transfer has been
accepted by the slave.

Return: Data handshake end event.

29

void waitSDataAccept(void)

Purpose: If there a current data handshake on the channel, waitSDataAccept()
waits until the data has been accepted by the slave. This method returns
immediately if there is no data handshake on the channel or if that data has
already been accepted. Note that if SDataAccept is not part of the
channel, this command will wait until the data handshake is automatically
accepted by the channel (one delta cycle after the data is submitted).

Return: None.

Event: None.

4.4. OCP TL1 Slave Interface Methods (ocp_tl1_slave_if.h)

The methods described in this section handle the slave’s transaction level 1 request phase,
response phase, and data handshake.

All methods return immediately if the channel is in reset state. The non-void methods return
false if called during reset. It is advisable to make sure that the threads trusting blocking
methods for sequencing call a wait if a blocking methods returns false, to avoid infinite loops.

NOTE: It is recommended that blocking TL1 calls be used only in test benches and somesuch,
since their behavior depends on the channel timing configuration. Non-blocking calls are safes
for modeling masters and slaves, since they require that masters and slaves be clocked.

4.4.1. Reset

This section describes the methods for the slave’s reset phase.

bool getReset()

Purpose: Check if channel is in reset state.

Return: Returns true if the channel is in reset, false otherwise.

Events: No event.

void SResetAssert()

Purpose: Puts channel in reset state. Resets all channel state variables, and calls
data class reset. All in-band methods will return immediately with false
return value while reset is active. All blocking methods are released, and
return with false.

30

Events: All start and end events fire (to release all waits in the system).

void SResetDeassert()

Purpose: Removes reset state from the channel.

Events: ResetEndEvent.

sc_event& ResetStartEvent()

Purpose: This event is triggered when channel reset starts.

Return: Reset start event.

sc_event& ResetEndEvent()

Purpose: This event is triggered when channel reset ends.

Return: Reset end event.

4.4.2. Request Phase

This section describes the methods for the slave’s TL1 response phase.

bool getOCPRequest(OCPRequestGrp<Td,Ta>& myRequest,
 bool acceptRequest = false)

Purpose: If there is an unread request available on the channel, the request is read
and returned as “myRequest.” And if acceptRequest is true,
putSCmdAccept() is called. Note that if the SCmdAccept signal is
not part of the OCP channel, the request is always automatically accepted,
and the value of the acceptRequest parameter is ignored.

Return: Returns false if there is no request available or if the request has already
been read by a getOCPRequest command or if there is a
getOCPRequestBlocking command in progress.

Event: None

31

bool getOCPRequestBlocking(
 OCPRequestGrp<Td,Ta>& myRequest,
 bool acceptRequest = false)

Purpose: Waits for a new, unread request to become available on the channel, then
reads the request and returns it as myRequest. If acceptRequest is
true then putSCmdAccept() is called to accept the request at the end of
the delta cycle. Note that this function waits only until it has the new
request. Also note that if the SCmdAccept signal is not part of the OCP
channel, the request is always automatically accepted, and the value of the
acceptRequest parameter is ignored.

Return: Returns false if there is already another getRequestBlocking
command in progress or if a request cannot be read.

Event: None.

bool putSCmdAccept()

Purpose: Sets the SCmdAccept signal in the OCP channel and “releases” the
request.

Return: Returns false if there is no request to accept or if the current request has
already been accepted. Otherwise, putSCmdAccept() returns true and
the request will be accepted on the next delta cycle. Note that after the
command has been accepted, the OCP channel signal MCmd is then
automatically reset to "OCP_MCMD_IDLE".

Event: None

Void putSCmdAccept(bool accept)

Purpose: Sets or unsets the SCmdAccept signal in the OCP. Can be called at any
time during clock cycle. Persistent once called.

Event: None.

32

void putSThreadBusy(unsigned int nextSThreadBusy)

Purpose: Sets the next value of the OCP signal SThreadBusy. This signal is
updated at the end of the current delta cycle.

Return: None.

Event: None.

void putNextSThreadBusy()

Purpose: Sets the value of the SThreadBusy signal at the beginning of the next
clock cycle. The thread busy value passed in here will be placed on the
channel at the very beginning of the next SystemC clock cycle, before any
thread or method processes start. This function ensures that at the next
cycle, the master will be have this value of the SThreadBusy signal in
order to decide which request (if any) to send. Note that if this command
is called more than once in the same cycle, the value passed in the last call
will be used.

Return: None.

Event: None.

4.4.3. Response Phase

This section describes the methods for the slave’s TL1 response phase.

bool startOCPResponse(
 const OCPResponseGrp<Td>& newResponse)

Purpose: Places the passed response onto the channel.

Return: Returns false if there is another response in progress or about to start or if
the master is busy.

Event: Default event and response start event.

33

bool startOCPResponseBlocking(
 const OCPResponseGrp<Td>& newResponse)

Purpose: Self-timed behavior: Wait until the channel is free for a new response,
start response on the channel.

Clocked behavior: Repeat - try response - Wait for a rising clock edge -
until successful.

NOTE: The timing is different from clocked blocking request to allow
single-cycle response. This method should never be called before a request
is detected with some of the get request methods.

startOCPResponseBlocking() returns once the response has
started but before the master has accepted the response.

Return: Returns false if there is already a blocking response waiting to be sent or if
the response could not be sent.

Event: Default event and response start event.

sc_event& RequestStartEvent()

Purpose: This event is triggered when a new request has been placed on the
channel.

Return: Request start event.

sc_event& RequestEndEvent()

Purpose: This event is triggered when the request is accepted.

Return: Request end event.

unsigned int getMThreadBusy()

Purpose: Returns the current value of the MThreadBusy signal. This allows the
slave to determine if a thread is busy before sending a response on that
thread.

Return: The unsigned int returned has one bit for each thread in the channel.
If a bit position is “1”, that thread is busy.

34

Event: None.

bool getMRespAccept()

Purpose: Get state of MRespAccept signal.

 NOTE: Despite the name, this behaves like an RTL version of
MRespAccept signal only after a request is put into the channel, and only
at rising clock edge, that is only when MRespAccept is not don’t-care
according to OCP standard.

Return: Returns true, if respaccept parameter is 0, and !getMBusy() otherwise.

Event: No event.

sc_event& ResponseStartEvent()

Purpose: This event is triggered when a new response has been placed on the
channel.

Return: Response start event.

sc_event& ResponseEndEvent()

Purpose: This event is triggered when the response is accepted.

Return: Response end event.

void waitMRespAccept(void)

Purpose: If there a current response on the channel, waitMRespAccept()waits
until the response has been accepted by the master. This method returns
immediately if there is no response on the channel or if that response has
already been accepted. Note that if MRespAccept is not part of the
channel, this command will wait until the response is automatically
accepted by the channel (one delta cycle after the response is submitted).

Return: None.

Event: None.

4.4.4. Data Handshake

This section describes the methods for the slave’s TL1 data handshake.

35

bool getOCPDataHS(OCPDataHSGrp<Td>& myData,
 bool acceptData = false)

Purpose: If there is an unread data handshake available on the channel, the data
group is read and returned as myData. If acceptData is true then
putSDataAccept() is called. Note that if SDataAccept is not part
of the OCP channel, data is always automatically accepted during the next
delta cycle, and the value of the acceptData parameter is ignored.

Return: Returns false if there is no data available or if the data has already been
read by a getData command or if there is a getDataBlocking
command in progress.

Event: None.

bool getOPCDataHSBlocking(OCPResponseGrp<Td>& myData,
 bool acceptData = false)

Purpose: Waits for new, unread data to become available on the channel. The data
is then read and returned as “myData.” And if acceptData is true then
putSDataAccept() is called. getOPCDataHSBlocking() returns
once the data has been placed on the channel. Note that this function does
not continue to wait until the data is accepted. Also note that if the
SDataAccept signal is not part of the OCP channel, data is always
automatically accepted, and the value of the acceptData parameter is
ignored

Return: Returns false if there is already another getDataBlocking command in
progress or if the data cannot be read.

Event: None.

bool putSDataAccept()

Purpose: Sets the SDataAccept signal in the OCP channel and “releases” the data
handshake.

Return: Returns false if there is no data to accept or if the current data has already
been accepted. Otherwise, putSDataAccept() returns true and the
data handshake will be accepted on the next delta cycle. Note that after the
data has been accepted, the OCP channel signal MDataValid is
automatically reset to false.

Event: None.

36

sc_event& DataHSStartEvent()

Purpose: This event is notified whenever any new data handshake data is placed on
the channel.

Return: DataHSStartEvent.

sc_event& DataHSEndEvent()

Purpose: This event is notified when the current data handshake data is accepted by
the slave.

Return: DataHSEndEvent.

void putSDataThreadBusy(unsigned int nextSDataThreadBusy)

Purpose: Sets the next value of the SDataThreadBusy signal on the channel. Each
bit in the nextSDataThreadbusy parameter represents one thread in
the channel. If a bit is “1” that means that the corresponding thread is now
busy.

Return: No return value.

Event: None.

void putNextSDataThreadBusy()

Purpose: Sets the value of the SDataThreadBusy signal at the beginning of the next
clock cycle. The thread busy value passed in here will be placed on the
channel at the very beginning of the next SystemC clock cycle, before any
thread or method processes start. This function ensures that at the next
cycle, the master will be have this value of the SDataThreadBusy signal in
order to decide which data handshake (if any) to send. Note that if this
command is called more than once in the same cycle, the value passed in
the last call will be used.

Return: None.

Event: None.

37

5. OCP TL2 SPECIFIC CHANNEL MODEL

The OCP TL2 specific channel has OCP specific commands for sending and accepting OCP
requests and responses. Because the channel model was designed specifically for OCP TL2
transactions, it is both easier to use and it ensures that the channel is OCP correct.

Because the OCP TL2 specific channel is built upon the base generic channel and the OCP TL2
data class, it is possible to use generic commands with the OCP TL2 channel. However, this is
strongly discouraged. Doing so may lead to unexpected behavior that is out of the bounds of the
OCP protocol.

5.1. OCP TL2 Channel Constructor

The OCP TL2 channel has the following constructor:

OCP_TL2_Channel(sc_module_name name)

name Name of the module (channel) instance.

5.2. OCP TL2 Specific Enum Types and Template classes

The OCP TL2 commands can pass requests and responses through as single structures. This
section describes those structures (actually template classes) as well as the Enum types used by
elements of those structures. (See tl_sc/include/ocp/ocp_tl_globals.)

5.2.1. OCPMCmdType, OCPSRespType and OCPMBurstSeqType Enums

These enums are the same that are used for the OCP TL1 Specific channel. See section 4.2 “OCP
TL1 Specific Enum Types and Template Classes.”

5.2.2. OCPRequestGrp Template Class

This class is the same as for the OCP TL1 Specific channel (See section 4.2.4 “OCPRequestGrp
Template Class.” From the user’s point of view, the only difference is with the MData member
of the structure, which should be ignored in TL2. Users should instead use the TL2 specific
member MDataPtr to set or get the pointer on the master data array. Note that the assignment
operator (=) and the copy() method copy the value of the pointer from one instance to another
and do not copy the array itself.

38

5.2.3. OCPResponsetGrp Template Class

This class is the same as for the OCP TL1 Specific channel. (See section 4.2.5
“OCPResponseGrp Template Class.”) From the user’s point of view, the only difference between
the classes is the SData member of the structure, which should be ignored in TL2. Users should
instead use the TL2 specific member SDataPtr to set or get the pointer on the slave data array.
Note that the assignment operator (=) and the copy() method copy the value of the pointer
from one instance to another and do not copy the array itself.

5.3. TL2 Master Interface Methods (ocp_tl2_master_if.h)

The methods described in this section handle the OCP TL2 master’s transaction request phase
and response phase.

5.3.1. Reset

This section describes the methods for the master’s reset phase.

bool getReset()

Purpose: Check if channel is in reset state.

Return: Returns true if the channel is in reset, false otherwise.

Events: No event.

void Reset()

Purpose: Calls MResetAssert() and MResetDeassert()

Return: None.

Events: All start and end events fire (to release all waits in the system)
immediately, and ResetEndEvent fires after a delta cycle.

void MResetAssert()

Purpose: Puts channel in reset state. Resets all channel state variables, and calls
data class reset. All in-band methods will return immediately with false
return value while reset is active. All blocking methods are released, and
return with false.

Events: All start and end events fire (to release all waits in the system).

39

void MResetDeassert()

Purpose: Removes reset state from the channel after a delta cycle.

Events: ResetEndEvent.

sc_event& ResetStartEvent()

Purpose: This event is triggered when channel reset starts.

Return: Reset start event.

sc_event& ResetEndEvent()

Purpose: This event is triggered when channel reset ends.

Return: Reset end event.

5.3.2. Request Phase

bool getSBusy ()

Purpose: Status of the slave-busy semaphore. Indicates whether the slave has
released the previous request.

Return: Immediately returns true if slave has not responded to the last request
event, and false if it has.

bool getSCmdAccept()

Purpose: Returns the current value of the SCmdAccept signal.

Return: Returns true if the current command was accepted. Returns false if the
current command has not been accepted, or if there is no current
command.

waitSCmdAccept()

Purpose: Waits until SCmdAccept is asserted by the slave.

40

bool getSThreadBusyBit(unsigned int ThreadID = 0)

Return: Returns the right bit of the SThreadBusy signal corresponding to the
ThreadID.

bool sendOCPRequest(OCPRequestGrp<Tdata,Taddr>& req,
 int ReqChunkLen = 1,
 bool last_chunk_of_a_burst = true)

Purpose: Places the passed request on the channel. The ReqChunkLen parameter
specifies the length of the request chunk. Note that the data array pointed
by the MdataPtr member of the request must have its size equal to
ReqChunkLen in case of a WRITE request. The
last_chunk_of_a_burst parameter indicates whether this request
chunk is the last one of a complete request burst.

Return: Returns false in the following cases:

• Another request in progress

• The channel is configured with sthreadbusy_exact set to 1,
SThreadBusy is tested (relatively to the MThreadID field of the
request), and the method returns false if the slave thread is busy.

• The channel is in a reset state

bool startOCPRequest(OCPRequestGrp<Tdata,Taddr>& req,
 int ReqChunkLen = 1,
 bool last_chunk_of_a_burst = true)

Purpose: This function has exactly the same behaviour as ‘sendOCPRequest’
and can be considered as an alias. Its semantic is equivalent to the TL1
API corresponding function.

bool startOCPRequestBlocking(
 OCPRequestGrp<Tdata,Taddr>& req,
 int ReqChunkLen = 1,
 bool last_chunk_of_a_burst = true)

Purpose: Waits until the channel is free for a new request then starts the passed
request on the channel. This call returns once the request has started but
before the slave has accepted the request. The parameters have the same
meaning as for sendOCPRequest().The semantic of this function is
equivalent to the TL1 API corresponding function.

41

Return: Returns false in the following cases:

• There is already a (send/start)OCPRequestBlocking waiting
to be sent

• There is a (send/start)OCPRequest call in progress

• If the channel is configured with sthreadbusy_exact set to 1,
SThreadBusy is tested (relatively to the MThreadID field of the
request), and the method returns false if the slave thread is busy. Note
that the SThreadBusy test occurs at the beginning of the call before
testing if the request channel is free.

• The channel is in a reset state

bool sendOCPRequestBlocking(
 OCPRequestGrp<Tdata,Taddr>& req,
 int ReqChunkLen = 1,
 bool last_chunk_of_a_burst = true)

Purpose: Waits until the channel is free for a new request then starts the passed
request on the channel. This call returns once the slave has accepted the
request. The parameters have the same meaning as for
sendOCPRequest().

Return: Returns false in the following cases:

• There is already a (send/start)OCPRequestBlocking waiting
to be sent

• There is a (send/start)OCPRequest call in progress

• If the channel is configured with sthreadbusy_exact set to 1,
SThreadBusy is tested (relatively to the MThreadID field of the
request), and the method returns false if the slave thread is busy. Note
that the SThreadBusy test occurs at the beginning of the call before
testing if the request channel is free.

• The channel is in a reset state

sc_event& RequestStartEvent()

Purpose: This event is triggered when a new request has been placed on the
channel. A slave could use a wait on this event so that it would restart
when a new request was available.

42

Return: SystemC event.

sc_event& RequestEndEvent()

Purpose: This event is triggered when the request is accepted.

Return: SystemC event.

sc_event& SThreadBusyEvent()

Purpose: This event is triggered when the SThreadBusy signal changes.

Return: SystemC event.

5.3.3. Response Phase

bool putMRespAccept()

Purpose: Sets the MRespAccept signal in the OCP channel and releases the
response.

Return: Returns false if there is no response to accept. Note that after the response
has been accepted, the OCP channel signal SResp is then automatically
reset to “OCP_SRESP_NULL”.

bool putMRespAccept(sc_time after)

Purpose: Sets the MRespAccept signal in the OCP channel and releases the
response after time delay.

Return: Returns false if there is no response to accept. Note that after the response
has been accepted, the OCP channel signal SResp is then automatically
reset to “OCP_SRESP_NULL”.

void putMThreadBusyBit(bool nextBitValue,
 unsigned int
 ThreadID = 0)

Purpose: Sets the right bit of the MThreadBusy signal corresponding to the
ThreadID in the OCP channel.

43

bool getOCPResponse(OCPResponseGrp<Tdata>& resp,
 bool accept,
 unsigned int& RespChunkLen,
 bool& last_chunk_of_a_burst)

Purpose: If there is a new, unread response is available on the channel, the response
is read and returned as “resp” , and if accept is true,
putMRespAccept() is called. Note that if MRespAccept is not part of
the OCP channel, the response is always automatically accepted, and the
value of the accept parameter is ignored. The RespChunkLen parameter
specifies the length of the response chunk. The
Last_chunk_of_a_burst parameter indicates if this response chunk
is the last one of a complete response burst.

Return: Returns false in the following cases:

• No response is available

• A getOCPResponse or a getOCPResponseBlocking has
already read the response.

• A getOCPResponseBlocking command is already in progress.

• The channel is in a reset state

bool getOCPResponseBlocking(OCPResponseGrp<Tdata>& resp,
 bool accept,
 unsigned int& RespChunkLen,
 bool& last_chunk_of_a_burst)

Purpose: Waits for a new, unread response to become available on the channel. The
response is then read and eventually accepted (depending on the accept
parameter) and returned as “resp”. Parameters have the same meaning
as for getOCPResponse().

Return: Returns false if there is already another getResponseBlocking command
in progress, or if the channel is in a reset state.

sc_event& ResponseStartEvent()

Purpose: This event is triggered when a new response has been placed on the
channel.

Return: SystemC event.

44

sc_event& ResponseEndEvent()

Purpose: This event is triggered when the response is accepted.

Return: SystemC event.

5.3.4. Serialized Methods

These methods could be used to write testbenches at the TL2 level. Serialized methods take
charge of both request and response phases of a complete OCP transaction, making testbenches
more compact and easier to code.

bool OCPReadTransfer(OCPRequestGrp<Tdata,Taddr>& req,
 OCPResponseGrp<Tdata>& resp,
 int TransferLen = 1)

Purpose: Issues a blocking request call to pass req on the channel, waits for the
slave to release the request, then issues a blocking response call to retrieve
the response, stores it in resp, and releases the response. The
TransferLen parameter specifies the size of the data array pointed to
by req.MDataPtr.

Return: Returns false in the following cases:

• Request Phase:

o The MCmd request field is not equal to OCP_MCMD_RD

o A (send/start)OCPRequestBlocking is already waiting
to be sent

o A (send/start)OCPRequest call in progress

o If the channel is configured with sthreadbusy_exact is set
to 1, SThreadBusy is tested (relatively to the MThreadID
field of the request), and the method returns false if the slave
thread is busy.

o The channel is in a reset state

• Response Phase:

o Another getOCPResponseBlocking command in progress is
already in progress.

45

o The SRespChunkLen response field is different from
TransferLen, or the SRespChunkLast field is not equal to
true. This can happen when the slave truncates the response into
several response chunks. In this case, the user should use
sendOCPRequest()/getOCPResponse() blocking calls
instead.

o The channel is in a reset state

Note: Use of this function should be avoided when the OCP channel is configured to
support several threads. Because this function gets the first response following
the request without testing the SThreadID, there is no guarantee that the
response corresponds to the ThreadID of the request.

bool OCPWriteTransfer(OCPRequestGrp<Tdata,Taddr>& req,
 int TransferLen = 1)

Purpose: Issues a WRITE request to the slave, and waits for the slave to release the
request. TransferLen specifies the size of the data array pointed to by
req.MDataPtr. The transfer is atomic; that is,. the MReqChunkLast
parameter is set to 1.

Return: Returns false in the following cases:

• The MCmd request field is not equal to OCP_MCMD_WR.

• A (send/start)OCPRequestBlocking is already waiting to
be sent.

• A (send/start)OCPRequest call in progress.

• If the channel is configured with sthreadbusy_exact set to 1,
SThreadBusy is tested (relatively to the MThreadID field of the
request), and the method returns false if the slave thread is busy.

• The channel is in a reset state

5.4. TL2 Slave Interface Methods (ocp_tl2_master_if.h)

The methods described in this section handle the OCP TL2 slave’s transaction request phase and
response phase.

5.4.1. Reset

This section describes the methods for the slave’s reset phase.

46

bool getReset()

Purpose: Check if channel is in reset state.

Return: Returns true if the channel is in reset, false otherwise.

Events: No event.

void Reset()

Purpose: Calls SResetAssert() and SResetDeassert()

Return: None.

Events: All start and end events fire (to release all waits in the system)
immediately, and ResetEndEvent fires after a delta cycle.

void SResetAssert()

Purpose: Puts channel in reset state. Resets all channel state variables, and calls
data class reset. All in-band methods will return immediately with false
return value while reset is active. All blocking methods are released, and
return with false.

Events: All start and end events fire (to release all waits in the system).

void SResetDeassert()

Purpose: Removes reset state from the channel after a delta cycle.

Events: ResetEndEvent.

sc_event& ResetStartEvent()

Purpose: This event is triggered when channel reset starts.

Return: Reset start event.

sc_event& ResetEndEvent()

Purpose: This event is triggered when channel reset ends.

Return: Reset end event.

47

5.4.2. Request Phase

bool getOCPRequest(OCPRequestGrp<Tdata,Taddr>& req,
 bool accept
 int& ReqChunkLen,
 bool& last_chunk_of_a_burst)

Purpose: If there is a new, unread request available on the channel, the request is
read and returned as “req”, and if accept is true, putSCmdAccept() is
called. Note that if the SCmdAccept signal is not part of the OCP
channel, the request is always automatically accepted, and the value of the
accept parameter is ignored. The ReqChunkLen parameter specifies the
length of the request chunk. The Last_chunk_of_a_burst
parameter indicates if this request chunk is the last one of a complete
request burst.

Return: Returns false in the following cases:

• No request available

• A getOCPRequest or a getOCPRequestBlocking has
already read the request.

• A getOCPRequestBlocking command is already in progress

• The channel is in a reset state

bool getOCPRequestBlocking(OCPRequestGrp<Tdata,Taddr>& req,
 bool accept,
 int& ReqChunkLen,
 bool& last_chunk_of_a_burst)

Purpose: Waits for a new, unread request to become available on the channel. The
request is then read, eventually accepted (depending on the accept
parameter), and returned as “req”. If not, the method returns false. The
parameters have the same meaning as for getOCPRequest().

Return: Returns false if there is already another getOCPRequestBlocking
command in progress, or if the channel is in a reset state.

48

void putSThreadBusyBit(bool nextBitValue,
 unsigned int ThreadID = 0)

Purpose: Sets the right bit of the SThreadBusy signal corresponding to the
ThreadID in the OCP channel.

bool putSCmdAccept()

Purpose: Sets the SCmdAccept signal in the OCP channel and releases the request.

Return: Returns false if there is no request to accept or if the current request has
already been accepted. Note that after the command has been accepted, the
OCP channel signal MCmd is then automatically reset to
“OCP_MCMD_IDLE”.

bool putSCmdAccept(sc_time after)

Purpose: Sets the SCmdAccept signal in the OCP channel and releases the request
after time delay.

Return: Returns false if there is no request to accept or if the current request has
already been accepted. Note that after the command has been accepted, the
OCP channel signal MCmd is then automatically reset to
“OCP_MCMD_IDLE”.

sc_event& RequestStartEvent()

Purpose: This event is triggered when a new request has been placed on the
channel. A slave could use a wait on this event so that it would restart
when a new request was available.

Return: SystemC event.

sc_event& RequestEndEvent()

Purpose: This event is triggered when the request is accepted.

Return: SystemC event.

49

5.4.3. Response Phase

bool sendOCPResponse(OCPResponseGrp<Tdata>& resp,
 int RespChunkLen = 1,
 bool last_chunk_of_a_burst = true)

Purpose: Places the passed response onto the channel. The ReqChunkLen
parameter specifies the length of the response chunk. Note that the data
array pointed to by the SdataPtr member of the response must have its
size equal to ReqChunkLen. The last_chunk_of_a_burst
parameter indicates if this response chunk is the last one of a complete
response burst.

Return: Returns false in the following cases:

• Another response in progress

• If the channel is configured with mthreadbusy_exact set to 1,
MThreadBusy is tested, and the method returns false if the master is
busy.

• The channel is in a reset state

bool startOCPResponse(OCPResponseGrp<Tdata>& resp,
 int RespChunkLen = 1,
 bool last_chunk_of_a_burst = true)

Purpose: This function has exactly the same behaviour as ‘sendOCPResponse’
and can be considered as an alias. Its semantic is equivalent to the TL1
API corresponding function.

bool sendOCPResponseBlocking(
 OCPResponseGrp<Tdata>& resp,
 int RespChunkLen = 1,
 bool last_chunk_of_a_burst = true)

Purpose: Waits until the channel is free for a new response and then starts the
passed response on the channel. sendOCPResponseBlocking()
returns when the master has accepted the response. The parameters have
the same meaning as for sendOCPResponse().

Return: Returns false in the following cases:

50

• A (send/start)OCPResponseBlocking is already waiting to
be sent

• A (send/start)OCPResponse call in progress

• The channel is in a reset state

Note: If the channel is configured with mthreadbusy_exact set to 1,
MThreadBusy is tested and the method returns false if the master is busy. Note
that the MThreadBusy test occurs at the beginning of the call before testing if the
response channel is free.

bool startOCPResponseBlocking(
 OCPResponseGrp<Tdata>& resp,
 int RespChunkLen = 1,
 bool last_chunk_of_a_burst = true)

Purpose: Waits until the channel is free for a new response and then starts the
passed response on the channel. This call returns once the response has
started but before the master has accepted the response. The parameters
have the same meaning as for sendOCPResponse(). The semantic of
this function is equivalent to the TL1 API corresponding function.

Return: Returns false in the following cases:

• A (send/start)OCPResponseBlocking is already waiting to
be sent

• A (send/start)OCPResponse call in progress

• The channel is in a reset state

Note: If the channel is configured with mthreadbusy_exact set to 1,
MThreadBusy is tested and the method returns false if the master is busy. Note
that the MThreadBusy test occurs at the beginning of the call before testing if the
response channel is free.

bool getMBusy()

Purpose: Status of the master-busy semaphore. This method indicates whether the
master has released the previous response.

Return: Immediately returns true if master has not responded to the last response
event, and false if it has.

51

bool getMThreadBusyBit(unsigned int ThreadID = 0)

Purpose: Returns the right bit of the MThreadBusy signal corresponding to the
ThreadID.

bool getMRespAccept()

Purpose: Checks whether the master has accepted the current response.

Return: Returns true if the current response has been accepted.

void waitMRespAccept()

Purpose: Waits until MRespAccept is asserted by the master

sc_event& ResponsetStartEvent()

Purpose: This event is triggered when a new response has been placed on the
channel.

Return: SystemC event.

sc_event& ResponseEndEvent()

Purpose: This event is triggered when the response is accepted.

Return: SystemC event.

sc_event& MThreadBusyEvent()

Purpose: This event is triggered when the MThreadBusy signal changes.

Return: SystemC event.

52

6. EXAMPLE USING OCP SPECIFIC TL1 CHANNEL AND API

The example described in this section demonstrates the use of the OCP Specific TL1 channel in a
simple reference master and slave. The first part of the example shows how the configuration
parameters can be set in the OCP specific TL1 channel. This technique is expanded upon to
configure a master and a slave core.

The second part of the example shows a configurable reference master core that uses the OCP
specific TL1 API. The third part of the example is a configurable slave core that also uses the
OCP specific TL1 API.

This example makes a heavy use of blocking TL1 methods, and timed wait statements. There
are simpler examples included in the release package that use non-blocking methods and clocks.

6.1. Configuring the OCP Specific TL1 Channel

The OCP specific TL1 channel can be configured using any of the standard OCP configuration
parameters. This section illustrates some of these parameters, but is by no means complete. For
the complete list of OCP parameters, refer to the Open Core Protocol Specification document.
The parameters of the OCP channel have the exact same names and function as the parameters in
the OCP specification document.

The channel should be configured anytime after it is created and before the simulation is started.
To configure the channel, the channel’s setConfiguration() function is called with a
MAP object that contains all of the parameter settings, for example:

 setConfiguration(map<string,string>& parameterMap);

The MAP object is a C++ Standard Template Library (STL) object that is an associative array. In
this case, the MAP is string-to-string with the key string being the name of the parameter and the
value string being the parameter value. This parameter MAP may be automatically generated by
a configuration tool. It may be hand coded in the user’s main.cc program, or it may be built by
reading in parameter data from a file. Section 6.1.1 gives the details of the parameter MAP
format.

6.1.1. Parameter Map Format

Each entry in the parameter map is a pair of strings. The left side (the key side) of the pair is the
parameter name. The right side (the value side) is the parameter value. The parameter name is a
string, and it must exactly match the OCP standard parameter name. For example,
“cmdaccept” is the OCP parameter to indicate that the SCmdAccept signal is part of the
OCP channel. You must be careful in the use of case or nonstandard spellings (such as
“CMDAccept” or “SCommandAccept”), which will not give you the desired result.

53

The value side of the parameter map has the following format:

 type_char:value

Where type_char is a single character is one of the following:

“i” specifies an integer or Boolean

“f” specifies a floating point value

“s” specifies a string.

Note that a colon (:) is required, and the value is the value of the parameter. Also, the value
should not contain any spaces. For example:

“i:1” An integer value 1 or the Boolean value TRUE.

“f:3.14159” The floating point value for PI.

“s:little” The string value “little.”

The following is an example that builds a simple parameter map and then uses it to configure the
channel. OCP Parameters which are not set by the user are configured to their default value as
specified in the OCP Specification.

 // C++ STL include
 # include <map>
 // Create a parameter map:
 map<string, string> myParamMap;
 myParamMap.insert(make_pair(“cmdaccept”, “i:1”));
 myParamMap.insert(make_pair(“addr_wdth”, “i:40”));
 myParamMap.insert(make_pair(“endian”, “s:big”));
 // etc…

 // Send it to the channel
 myOcpChannel->setConfiguration(myParamMap);

6.1.2. Building the Parameter Map from a File

You can also build the parameter map by using a file. This can be useful because the file name
may be passed to the main program that builds the simulation. Also, the file name may be
changed on the command line so the parameters are changed without having to recompile the
model.

In the example below, the parameters are in a file as lines of pairs of space separated strings:

 cmdaccept i:1
 addr_wdth i:40
 endian s:both

54

The user’s code then reads the strings from the fil and stores them into an STL map. The map is
then passed to the channel’s setConfiguration function.

6.1.3. Configurable Master and Slave

The same parameter map scheme described in section 6.1.1is used to configure the reference
master and reference slave.

The following table gives the parameters for the reference master.

Parameter Name

Type

Default
Value

Description

mrespaccept_delay i 1 The number of cycles to delay before
accepting a response from the slave.

mrespaccept_fixeddelay i 1 MRespAccept Delay Style. If this
parameter is true (1), the master always
waits for “mrespaccept_delay” cycles
before accepting a response. If this
parameter is false (0), the master waits
for a random number of cycles before
accepting the response. This random
number of cycles will vary uniformly
from 0 to mrespaccept_delay.

To configure the reference master, create a parameter map using the parameters above and then
send it to the reference master using the following command:

 void Master<TdataCl>::setConfiguration(MapStringType& passedMap)

The following table gives the parameters for the reference slave:

Parameter Name Type Default
Value

Description

latencyX i 3 This is actually a set of parameters, one for
each thread in the channel. Each parameter sets
the latency for one thread. The latency is the
minimum number of cycles between when the
request arrives and when the response is sent.
As an example, the parameter latency0 will
set how many cycles the slave will wait before
accepting a request on thread number zero,
while latency5 will set the latency cycles

55

Parameter Name Type Default
Value

Description

for thread 5

limitreq_enable i 0 (false) Should the slave limit how many requests it
has outstanding?

limitreq_max i 4 The maximum number of requests that the
slave can have outstanding at any one time on
any one thread. Note that this parameter is not
used if limitreq_enable is false.

Once the parameter map for the reference slave has been built, it can be sent to the slave with the
following commands:

 void Slave<TdataCl>::setConfiguration(MapStringType& passedMap)

6.1.4. Building a Custom Configurable Core.

A user core may also be configurable and of course the core writer is free to use the parameter
map scheme presented here to configure their own custom core.

6.2. A Configurable Master Model

This section provides an example of a configurable master model that has a single-threaded
master OCP interface and that can generate simple OCP traffic to mimic an initiator core. This
master model not only has its own parameters but can also deal with different OCP parameter
settings. For instance, the master model can talk to an OCP channel with the following settings:

 - cmdaccept == 1, sthreadbusy == 0 or 1, and sthreadbusy_exact == 0
 - cmdaccept == 0, sthreadbusy == 1, and sthreadbusy_exact == 1
 - respaccept == 0, mthreadbusy == 0, and mthreadbusy_exact == 0
 - respaccept == 1, mthreadbusy == 0 or 1, and mthreadbusy_exact == 1
 - respaccept == 0, mthreadbusy == 1, and mthreadbusy_exact == 1

The address, the request type (WR or RD), and the write data of a request can also be specified.

In addition, the latency between the acceptance of a previous request and sending of a current
request can be controlled. Also, the latency between receiving a response and accepting the
response can be controlled.

Figure 8 shows a diagram of the configurable master model. This master model implements two
SystemC thread processes (represented by the two ovals in the figure). (The master model is a
derived class of the SystemC sc_module class.) The request thread process handles the
sending of requests for the master core. The response thread process handles the receiving of
responses for the master core.

56

In the following sections, the source code (with explanations) of the master model is described to
help you understand the implementation of the model.

SysC Request Thread Proc

request 0

Class Master : public sc_module

delay

request 1
delay

request 2
request 3

..........

Request
Stream

single-threaded
OCP

SysC Response Thread Proc

response

delay

Response
Processing

and
Acceptance

New Response

MRespAccept
or

ThreadbusyReq Phase
SCmdAccept

Figure 4. Master Model

6.2.1. Header File

You must follow a few rules in defining the master core template class so that it can
communicate with the OCP Channel. The following are comments on the code followed by the
full master header file.

First, include the OCP specific TL1 channel header files:

 // OCP-IP Channel header files
 #include "globals.h"
 #include "ocp_tl1_master_port.h"
 #include "ocp_tl_param_cl.h"

The file globals.h contains the definitions of the types used in the channel. This also includes
the file ocp_tl1_data_cl.h that defines the data class used by the OCP specific TL1
channel, which then includes ocp_globals.h. The header file ocp_globals.h in turn is
used to define the structures used to pass requests and responses to the channel. If this core did
not have a header file such as globals.h, it would need to directly include the header files
ocp_tl1_data_cl.h and ocp_globals.h.

57

The header ocp_tl1_master_port.h contains the master port to the OCP specific TL1
channel. In addition to providing the master interface to the channel, the port also provides event
finders for all of the master and sideband events of the channel.

The ocp_tl_param_cl.h header file contains the definition of the parameter class. The
configurable master uses this class to read the channel’s configuration and then uses that
information to set up its own configuration to match.

The master class is a template class and the parameter of the template is the data class that the
master will support over the OCP connection. A data class with a 32 bit data width and a 32 bit
address is specified as follows:

 OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32>

Where OCPCHANNELBit32 is defined as follows in the file globals.h:

 typedef unsigned int OCPCHANNELBit32;

After including the header files, you must declare a SystemC port (sc_port). Specifically, you
need to declare an OCP TL1 master port (ipP) for the Master class to communicate with an
OCP SystemC TL1 channel. This is accomplished with the following statement:

 OCP_TL1_MasterPort<TdataCl> ipP;

The master port provides event finders for the channel events (such as RequestStart and
RequestEnd). If these event finders are not needed, they could be declaared the as follows,
which would also work:

 sc_port< OCP_TL1_MasterIF<TdataCl> > ipP;

Next, declare functions that define SystemC thread or method processes used in your model. For
example, in this master core model, the following functions are defined:

 SC_HAS_PROCESS(Master);
 void requestThreadProcess();
 void responseThreadProcess();
 void exerciseSidebandThreadProcess();

The macro SC_HAS_PROCESS(Master) tells SystemC that the master core is a SystemC
module with its own processes. In this case, the thread processes that follow. Each of these
processes are explained in detail in later sections.

After declaring the functions for the thread or method processes, define a SystemC
end_of_elaboration function. For example,

 void end_of_elaboration(); // SystemC method

58

Now define a pointer that points to the OCP parameters of the OCP channel that is connected to
the master core model’s ipP port:

 ParamCl<TdataCl>* m_pOCPParam; // pointer to OCP parameters

The rest of the data members hold the parameter and configuration values of the master.

The following is the complete header file for the master.

#ifndef _SIMPLE_MASTER_H
#define _SIMPLE_MASTER_H

#include <iostream>
#include "stdlib.h"
#include "globals.h"

// OCP-IP Channel header files
#include "ocp_globals.h"
#include "ocp_tl1_master_port.h"
#include "ocp_tl_param_cl.h"

// For multithreaded masters only
// #include "master_data_queue.h"

// define the Master transactor class
template <typename TdataCl>
class Master : public sc_module
{
 public:
 // --------------------------
 // public members and methods
 // --------------------------

 // type definitions
 typedef typename TdataCl::DataType Td;
 typedef typename TdataCl::AddrType Ta;

 // member definitions

 // channel port
 OCP_TL1_MasterPort<TdataCl> ipP;

 // SystemC macros
 // has SystemC processes
 SC_HAS_PROCESS(Master);

 // constructor and destructor
 Master(sc_module_name, double, sc_time_unit,
 int, ostream* debug_os_ptr = NULL);
 ~Master();

 // methods
 void setConfiguration(MapStringType& passedMap);

59

 // process methods
 void requestThreadProcess();
 void responseThreadProcess();
 void exerciseSidebandThreadProcess();

private:
 // ---------------------------
 // private members and methods
 // ---------------------------

 // SystemC methods
 void end_of_elaboration();

 // member definitions

 // master identification
 int m_ID;

 // ocp clock information
 double m_ocpClkPeriod;
 sc_time_unit m_ocpClkTimeUnit;

 // model a per thread data queue
 // used for multi-threaded master
 // DataQueue<TdataCl> m_DataQueueThread0;

 //
 ostream* m_debug_os_ptr;

 // Parameters from the OCP Channel:

 // Class that holds all OCP parameters
 ParamCl<TdataCl>* m_OCPParamP;

 // The number of threads
 int m_threads;

 // is MAddrSpace part of the OCP channel?
 bool m_addrspace;

 // is SThreadBusy part of the channel?
 bool m_sthreadbusy;

 // Is SThreadBusy compliance required?
 bool m_sthreadbusy_exact;

 // is MThreadBusy part of the channel?
 bool m_mthreadbusy;

 // Is MThreadBusy compliance required?
 bool m_mthreadbusy_exact;

 // is MRespAccept part of the channel?
 bool m_respaccept;

 // is Data Handshake part of the channel?
 bool m_datahandshake;

60

 // is write response part of the channel?
 bool m_writeresp_enable;

 // is the READ-EX command part of the channel
 bool m_readex_enable;

 // Are non-posted writes (write commands that receive responses)
 // part of the channel?
 bool m_writenonpost_enable;

 //---
 // Master Specific Parameters
 //---

 // Response delay style - fixed or random
 bool m_respaccept_fixeddelay;

 // Delay in accepting responses (max delay for random)
 int m_respaccept_delay;

 // Map of string to string that holds the Master's paramter values
 MapStringType m_ParamMap;

};

#endif // _SIMPLE_MASTER_H

6.2.2. Constructor

In the master core model’s constructor, the following items are implemented:

 The base sc_module class is initialized using the name parameter passed to the Master
class.

 The OCP master interface port (ipP) is also initialized and named “ipPort”.

 The master’s configuration and parameters are given their initial default values.

 Functions for sending a request from the master, processing a response from the slave,
and for setting sideband signals on the channel are registered using the SystemC
SC_THREAD macro.

The following is the code for the constructor of the master core model:

// ---
// constructor
// ---
template<typename TdataCl>
Master<TdataCl>::Master(
 sc_module_name name,
 double ocp_clock_period,
 sc_time_unit ocp_clock_time_unit,
 int id,

61

 ostream* debug_os_ptr
) : sc_module(name),
 ipP("ipPort"),
 m_ID(id),
 m_ocpClkPeriod(ocp_clock_period),
 m_ocpClkTimeUnit(ocp_clock_time_unit),
 m_debug_os_ptr(debug_os_ptr),
 m_OCPParamP(NULL),
 m_threads(1),
 m_addrspace(false),
 m_sthreadbusy(false),
 m_sthreadbusy_exact(false),
 m_mthreadbusy(false),
 m_mthreadbusy_exact(false),
 m_respaccept(true),
 m_datahandshake(false),
 m_writeresp_enable(false),
 m_writenonpost_enable(false),
 m_respaccept_delay(0)
{
 // setup a SystemC thread process, which uses dynamic sensitive
 SC_THREAD(requestThreadProcess);

 // setup a SystemC thread process, which uses dynamic sensitive
 SC_THREAD(responseThreadProcess);

 // setup a SystemC thread process to drive any connected sideband signals
 SC_THREAD(exerciseSidebandThreadProcess);
}

6.2.3. The end_of_elaboration() Method

The end_of_elaboration() method is called by SystemC after the model has been built and
connected, but before the simulation begins. Sometime during the construction of the models, the
master’s setConfiguration function should have been called with a parameter map of the
master’s parameters. During the end_of_elaboration() method, that master processes
this parameter map to set its own master parameters.

At the end of elaboration point, the OCP channel must have already been connected to the core.
The master takes advantage of this to read the OCP parameters of the channel and then uses
those parameters to configure itself to work with the channel it was connected to.

The following are some important points regarding the code for the
end_of_elaboration() method:

• The GetParamCl() method returns a pointer that points to the OCP channel’s
parameters. The master then uses this pointer to extract the channel’s parameters and to use
them to configure itself. For example,

 m_OCPParamP = ipP->GetParamCl();

62

• The master uses functions in the ParamCl class that extract integers and Booleans from
string formatted parameter maps. For example, the complex looking function call

 ParamCl<TdataCl>::getBoolOCPConfigValue(myPrefix, paramName,
 m_respaccept_fixeddelay, m_ParamMap)

returns true if the passed parameter map (m_ParamMap) contains a Boolean parameter
named by the string “parameterName” where “parameterName” is the
concatenation of “myPrefix” and “paramName”. (Note that “myPrefix” is
generally not used and set to “”. If the parameter map does contain the parameter, the
value of m_respaccept_fixeddelay is set to the value of that parameter.

The following is code for the end_of_elaboration method.

// ---
// SystemC Method Master::end_of_elaboration()
// ---
//
// At this point, everything has been built and connected.
// We are now free to get our OCP parameters and to set up our
// own variables that depend on them.
//
template<typename TdataCl>
void Master<TdataCl>::end_of_elaboration()
{
 // Call the System C version of this function first
 sc_module::end_of_elaboration();

 //---
 // OCP Parameters
 //---

 // This Master adjusts to the OCP it is connected to.

 // Now get my OCP parameters from the port.
 m_OCPParamP = ipP->GetParamCl();

 // Get the number of threads
 m_threads = m_OCPParamP->threads;

 // This Reference Master is single threaded.
 if (m_threads > 1) {
 cout << "ERROR: Single threaded Master \"" << name()
 << "\" connected to OCP with " << m_threads
 << " threads." << endl;
 }

 // is the MAddrSpace field part of the OCP channel?
 m_addrspace = m_OCPParamP->addrspace;

 // is SThreadBusy part of the channel?
 m_sthreadbusy = m_OCPParamP->sthreadbusy;

 // Is SThreadBusy compliance required?

63

 m_sthreadbusy_exact = m_OCPParamP->sthreadbusy_exact;

 // is MThreadBusy part of the channel?
 m_mthreadbusy = m_OCPParamP->mthreadbusy;

 // Is MThreadBusy compliance required?
 m_mthreadbusy_exact = m_OCPParamP->mthreadbusy_exact;

 // is MRespAccept part of the channel?
 m_respaccept = m_OCPParamP->respaccept;

 // Just a double check here
 if (m_mthreadbusy_exact && m_respaccept) {
 cout << "ERROR: Master \"" << name()
 << "\" connected to OCP with both MThreadBusy_Exact and MRespAccept
 active which are exclusive." << endl;
 }

 // is Data Handshake part of the channel?
 m_datahandshake = m_OCPParamP->datahandshake;
 // if so, quit. This core does not support it.
 assert(m_datahandshake == false);

 // is write response part of the channel?
 m_writeresp_enable = m_OCPParamP->writeresp_enable;

 // is READ-EX part of the channel?
 m_readex_enable = m_OCPParamP->readex_enable;

 // Are non-posted writes (write commands that receive responses)
 //part of the channel?
 m_writenonpost_enable = m_OCPParamP->writenonpost_enable;

 //---
 // Master Specific Parameters
 //---

 // Retrieve any configuration parameters that were passed to this block
 // in the setConfiguration command.

#ifdef DEBUG
 cout << "I am configuring a Master!" << endl;
 cout << "Here is my configuration map for Master >"
 << name() << "< that was passed to me." << endl;
 MapStringType::iterator map_it;
 for (map_it = m_ParamMap.begin(); map_it != m_ParamMap.end(); ++map_it) {
 cout << "map[" << map_it->first << "] = " << map_it->second << endl;
 }
 cout << endl;
#endif

 string myPrefix = "";
 string paramName = "undefined";

 // MRespAccept delay in OCP cycles
 paramName = "mrespaccept_delay";
 if (!(ParamCl<TdataCl>::getIntOCPConfigValue(myPrefix, paramName,

64

 m_respaccept_delay, m_ParamMap))) {
 // Could not find the parameter so we must set it to a default
#ifdef DEBUG
 cout << "Warning: master paramter \"" << paramName
 << "\" for Master \"" << name()
 << "\" was not found in the parameter map." << endl;
 cout << " setting missing parameter to 1." << endl;
#endif
 m_respaccept_delay = 1;
 }

 // MRespAccept Delay Style. 1=fixed delay : 0=random delay
 paramName = "mrespaccept_fixeddelay";
 if (!(ParamCl<TdataCl>::getBoolOCPConfigValue(myPrefix, paramName,
 m_respaccept_fixeddelay, m_ParamMap))) {
 // Could not find the parameter so we must set it to a default
#ifdef DEBUG
 cout << "Warning: master paramter \"" << paramName
 << "\" for Master \"" << name()
 << "\" was not found in the parameter map." << endl;
 cout << " setting missing parameter to 1 (fixed delay)."
 << endl;
#endif
 m_respaccept_fixeddelay = true;
 }
}

6.2.4. SystemC Request Thread Process

For this master core example, the master request thread process works from a table of requests.
The delays between the sending out of each request are also set in a table. For each table entry,
the master sends the corresponding request then waits the corresponding time before moving on
to the next table entry.

The Commands table is the table of commands to send out while the NumWait table contains
the length of time to wait before sending out the next command. Each time is organized by row
with each row being a “test” of up to four commands.

The following is an explanation of the code below:

1. Sets up the tables to be used by the process. The code then enters the infinite loop of the
thread and waits for the first wait period before sending its first request.

2. After the wait is over, the code checks to see if the slave has set threadbusy. Note that the
parameter m_sthreadbusy was set by looking at the OCP channel’s parameters during the
end_of_elaboration() method. If SThreadBusy is part of the channel, and if that
signal has been asserted, the request process will continue to wait until the slave releases
threadbusy by driving it to zero.

3. Once the threadbusy hurtle has been cleared, the request process then tries to send a request.
First it constructs the request by reading the next command from the table. If the command is

65

incompatible with the channel that the master is connected to, the master changes the
command to a simpler one that the channel can accept. If the command calls for data (that is,
it is some sort of write command) new data is generated through a counter.

4. The data is sent with the OCP specific TL1 channel command:

 ipP->startOCPRequestBlocking(req);

This command places the newly generated request on the channel. If there is already a
request on the channel (for example, if the previous request has not yet been accepted), that
command will block until the channel is free and the new command can be placed on the
channel. The function returns once the request has started, but before it has been accepted by
the slave. A blocking call like this one may only be used within a thread process. A SystemC
method does not allow the context switching required by a blocking command.

5. Finally, return to step 1, processing the table and setting up the wait time before the next
command may be issued.

The following is the code for the Request Thread Process.

template<typename TdataCl>
void Master<TdataCl>::requestThreadProcess()
{
 Ta Addr[] = {0x1784, 0x20, 0x20, 0x40};

 // start time of requests
 int NumWait[NUM_TESTS][4] = {
 {100, 3, 0xF, 0xF},
 {7, 1, 3, 0xF},
 {6, 0xF, 0xF, 0xF},
 {10, 2, 1, 0xF},
 {7, 1, 3, 0xF},
 {6, 1, 1, 1},
 {7, 2, 0xF, 0xF},
 {8, 2, 1, 0xF},// no data handshake
 {7, 2, 2, 2}
 };

 // specifies the command to use
 OCPMCmdType Commands[NUM_TESTS][4] = {
 {OCP_MCMD_WR, OCP_MCMD_RD, OCP_MCMD_IDLE, OCP_MCMD_IDLE},
 {OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_IDLE},
 {OCP_MCMD_RD, OCP_MCMD_IDLE, OCP_MCMD_IDLE, OCP_MCMD_IDLE},
 {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_IDLE},
 {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_IDLE
 {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD},
 {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_IDLE, OCP_MCMD_IDLE},
 {OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_IDLE},
 {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD}
 };

 // number of specified transactions in a test
 int NumTr[] = {2, 3, 1, 3, 3, 4, 2, 3, 4};

66

 // -----------------------------------
 // (1) processing and preparation step
 // -----------------------------------

 // initialize data
 OCPRequestGrp<Td,Ta> req;
 int Count = 0;
 int Nr = 0;
 sc_time old_time;
 sc_time current_time;
 bool sthreadbusy;
 unsigned int my_data = 0;

 // calculate the new waiting time
 double wait_for = NumWait[Nr][Count];

 // Do requests contain data (or will it be sent separately)
 // Always true as this core does not support data handshake
 req.HasMData = true;

 ipP->ocpWait();

 // main loop
 while (true) {
 // wait for the time to send the current request

 if (m_debug_os_ptr) {
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << "master wait_for = " << wait_for << endl;
 }

 ipP->ocpWait(wait_for);

 // remember the time
 old_time = sc_time_stamp();

 // --
 // (2) is SThreadBusy?
 // --

 // NOTE: we are single threaded so the thread busy signal
 // looks like a boolean (0 or 1).
 // Abritration based on thread busy will be needed for a
 // multi-threaded model.
 if (m_sthreadbusy_exact) {
 sthreadbusy = ipP->getSThreadBusy();
 while (sthreadbusy) {
 ipP->ocpWait();
 sthreadbusy = ipP->getSThreadBusy();
 }
 }

 // --
 // (3) send a request
 // --

67

 // NOTE: data handshake is not handled by this simple example.

 // Compute the next request
 req.MCmd = Commands[Nr][Count];

 // is this an extended command to be sent over a basic
 // channel?
 if ((!m_readex_enable) && (req.MCmd == OCP_MCMD_RDEX)) {
 // channel cannot handle READ-EX. Send simple READ.
 req.MCmd = OCP_MCMD_RD;
 } else if ((!m_writenonpost_enable) && (req.MCmd == OCP_MCMD_WRNP)){
 // channel cannout handle WRITE-NP. Send simple WRITE.
 req.MCmd = OCP_MCMD_WR;
 }

 // compute the address
 req.MAddr = Addr[Count] + m_ID*0x40;
 req.MByteEn = 0xf;
 if (m_addrspace) {
 req.MAddrSpace = 0x1;
 }
 // compute the data
 switch (req.MCmd) {
 case OCP_MCMD_WR:
 case OCP_MCMD_WRNP:
 case OCP_MCMD_WRC:
 case OCP_MCMD_BCST:
 // This is a write command - it has data
 my_data++;
 // put the data into the request
 req.MData = my_data + m_ID*0x40;
 break;
 case OCP_MCMD_RD:
 case OCP_MCMD_RDEX:
 case OCP_MCMD_RDL:
 // this is a read command - no data.
 req.MData = 0;
 break;
 default:
 cout << "ERROR: Master \"" << name()
 << "\" generates unknown command #"
 << req.MCmd << endl;
 }

 if (m_debug_os_ptr) {
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << "send request." << endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " t = " << sc_simulation_time() << endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " MCmd: " << req.MCmd << endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " MData: " << req.MData << endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " MByteEn: " << req.MByteEn << endl;
 }

68

 // send the request
 ipP->startOCPRequestBlocking(req);

 // -------------------------------
 // (1) processing and preparation step
 // -------------------------------

 // compute the next pointer
 if (++Count >= NumTr[Nr]) {
 Count = 0;
 if (++Nr >= NUM_TESTS) Nr = 1;
 }

 // calculate the new waiting time
 wait_for = NumWait[Nr][Count];
 current_time = sc_time_stamp();
 double delta_time =
 (current_time.value() - old_time.value()) / 1000;
 if (delta_time >= wait_for) {
 wait_for = 0;
 } else {
 wait_for = wait_for - delta_time;
 }
 }
}

6.2.5. SystemC Response Thread Process

The code for the master’s response thread process is much simpler than that for the request. The
code follows this pattern:

 The master receives a response.

 The master waits for a given amount of time.

 The master accepts the response.

The following is an explanation of the code below.

1. Once the process enters the infinite loop of the thread, it starts waits for a response to come
from the slave. The command

 ipP->getOCPResponseBlocking(resp);

gets the current response from the OCP channel that is connected to the ipP port. If there is
no request waiting on the OCP channel, the command blocks until a new request arrives.
Because this is a blocking command, it may only be used in a thread process like this one. A
SystemC method process does not allow for the context switching required by a blocking
command.

2. Once the request has arrived, the response delay is calculated using the master parameters set
from the passed parameter map.

69

3. The thread implements the delay based on the channel configuration. If the OCP channel has
an MRespAccept signal, that signal is used to keep the slave from sending more responses.
The following command is used to set MRespAccept to true to accept the response:

 ipP->putMRespAccept();

If instead, the slave is threadbusy_exact, the MThreadBusy signal is used to pause the
slave. The following command is used to set MThreadBusy to true:

 ipP->putMThreadBusy(1);

The same command (with a different parameter) is used to unset MThreadBusy as well, that
is:

 ipP->putMThreadBusy(0);

In between the two calls to putMThreadBusy(), the following command causes the
response thread to wait for wait_for OCP channel cycles before resuming:

 ipP->ocpWait(wait_for);

The following is the code for the master’s response thread process.

template<typename TdataCl>
void Master<TdataCl>::responseThreadProcess()
{

 // initialization
 OCPResponseGrp<Td> resp;
 double wait_for;

 ipP->ocpWait();

 // main loop
 while (true) {
 // --
 // (1) wait for a response (blocking wait)
 // --

 // get the next response
 ipP->getOCPResponseBlocking(resp);

 // ------------------------
 // (2) process the response
 // ------------------------

 // compute the response acceptance time
 if (m_respaccept_fixeddelay) {
 wait_for = m_respaccept_delay;
 } else {
 // Go random up to max delay
 wait_for =
 (int)((m_respaccept_delay+1) * rand() / (RAND_MAX + 1.0));
 }

70

 // --
 // (3) generate a one-cycle-pulse MRespAccept signal
 // --

 if (m_respaccept) {
 if (wait_for == 0) {
 // send an one-cycle-pulse MRespAccept signal
 ipP->putMRespAccept();
 } else {
 // wait for the acceptance pulse cycle
 ipP->ocpWait(wait_for);
 //wait(ocpClkP->posedge_event());

 // send an one-cycle-pulse MRespAccept signal
 ipP->putMRespAccept();
 }
 }

 if (m_mthreadbusy_exact) {
 // use the MThreadBusy signal instead of resp accept
 if (wait_for > 0) {
 // Set MThreadBusy
 ipP->putMThreadBusy(1);
 // keep MThreadBusy on
 ipP->ocpWait(wait_for);
 // now release it
 ipP->putMThreadBusy(0);
 }
 }
 }
}

6.2.6. SystemC Sideband Process

The code example shown in this section is a simple process that illustrates how the OCP specific
TL1 API can be used to set sideband signals in the OCP channel.

The following is an explanation of the code below.

1. Before the start of the infinite loop of the thread, the sideband process checks the channel’s
parameters to determine which (if any) master sideband signals are available in the channel.

2. Once the code reaches the main loop, the process waits then sets all of the master sideband
signals that are connected to it. It updates the values to be set next time and then repeats.

The following is the code for the master’s sideband thread process.

template<typename TdataCl>
void Master<TdataCl>::exerciseSidebandThreadProcess(void)
{
 // Systematically send out sideband signals on
 // any signals that are attached to us.
 ipP->ocpWait(10);
 int tweakCounter =0;

71

 bool hasMError = m_OCPParamP->merror;
 bool nextMError = false;
 bool hasMFlag = m_OCPParamP->mflag;
 int numMFlag = m_OCPParamP->mflag_wdth;
 unsigned int nextMFlag = 0;
 unsigned int maxMFlag = (1 << numMFlag) -1;

 // main loop
 while (true) {
 // wait 10 cycles
 ipP->ocpWait(10);

 // Now count through my sideband changes
 tweakCounter++;

 // Drive MError
 if (hasMError) {
 if (tweakCounter%2 == 0) {
 // Toggle MERROR
 nextMError = !nextMError;
 ipP->MputMError(nextMError);
 }
 }

 // Drive MFlags
 if (hasMFlag) {
 if (tweakCounter%1 == 0) {
 // go to next MFlag
 nextMFlag += 1;
 if (nextMFlag > maxMFlag) {
 nextMFlag = 0;
 }
 ipP->MputMFlag(nextMFlag);
 }
 }
 }
}

6.2.7. Template Instantiation

The final line of the master.cc file makes sure that the compiler creates an instance of the
Master template for the OCP_TL1_SIGNAL_CL type defined in the globals.h header file.
The last line is

 template class Master< OCP_TL1_SIGNAL_CL >;

6.3. A Configurable Slave Model

This section provides an example of a configurable slave model, which reacts like a target
memory core and takes in or delays the acceptances of OCP requests based on parameterized
settings. The slave model has a single-threaded slave OCP interface. This slave model not only
has its own parameters but can also deal with different OCP parameter settings. For instance, the
slave model can talk to an OCP channel with the following settings:

72

 - cmdaccept == 1, sthreadbusy == 0 or 1, and sthreadbusy_exact == 0
 - cmdaccept == 0, sthreadbusy == 1, and sthreadbusy_exact == 1
 - respaccept == 0, mthreadbusy == 0, and mthreadbusy_exact == 0
 - respaccept == 1, mthreadbusy == 0 or 1, and mthreadbusy_exact == 1
 - respaccept == 0, mthreadbusy == 1, and mthreadbusy_exact == 1

Parameters belonging to the slave model itself are:

• latencyX. This is the response latency for thread number X. There is a latency
parameter for each thread in the channel. This parameter sets the minimum number of
cycles between receiving the request and issuing the response.

• limitreq_enable and limitreq_max. When the limitreq_enable parameter
is set to 1, the outstanding requests per thread are limited to limitreq_max

Figure 9 shows a diagram of the configurable slave model.

SysC
Request
Thread

Proc

Class Slave : public sc_module

single-threaded
OCP

SysC
Response

Thread
Proc

Read
Response

FIFO

Resp Phase
(w default acceptance)

Req Phase

SCmdAccept

Simple
Read/Write

Memory

Figure 5. Slave Model

6.3.1. Header File

The header file for the simple configurable slave calls the header files for the channel it is
connected to and for the objects it uses. It then defines the template class that is the slave. The
following are a few explanations regarding some of the highlights of the code. The full header
file is provided below.

73

First, the slave includes the OCP specific TL1 channel header files:

 // OCP-IP Channel header files
 #include "globals.h"
 #include "ocp_tl1_slave_port.h"
 #include "ocp_tl_param_cl.h"

The file globals.h contains the definitions of the types used in the channel. This file also
includes the header ocp_tl1_data_cl.h that defines the data class used by the OCP specific
TL1 channel. The header ocp_tl1_data_cl.h in turn includes ocp_globals.h, which is
used to define the structures used to pass requests and responses to the channel. If this core did
not have an include file like globals.h, it would need to directly include
ocp_tl1_data_cl.h and ocp_globals.h.

The header ocp_tl1_slave_port.h is the slave port to the OCP specific TL1 channel. In
addition to providing the slave interface to the channel, the port also provides event finders for
all of the slave events and sideband events of the channel.

The ocp_tl_param_cl.h header file contains the definition of the parameter class. The
configurable slave uses this class to read the channel’s configuration and then uses that
information to set up its own configuration to match the channel it is connected to.

The header file then defines objects that are used by the slave. The file
slave_response_queue.h defines a simple response queue that the slave uses to queue
responses as they are waiting to go out on the channel. The file MemoryCl.h implements a
simple memory.

Following the include statements, the slave header file defines the slave class. The slave is a
template class and the parameter of the template is the data class that the slave will support over
the OCP connection. A data class with a 32 bit data width and a 32 bit address is specified as
follows:

 OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32>

Where OCPCHANNELBit32 is defined in the file globals.h as

 typedef unsigned int OCPCHANNELBit32;

The simple configurable slave has a single port which connects to the OCP channel. The
following code declares the slave port for the OCP channel:

 // channel port
 OCP_TL1_SlavePort<TdataCl> tpP;

74

Next the slave class declares functions that define SystemC thread or method processes used in
your model. For example, in this slave core model, the following functions are defined:

 // has SystemC processes
 SC_HAS_PROCESS(Slave);
 void requestThreadProcess();
 void responseThreadProcess();
 void exerciseSidebandThreadProcess();

The SC_HAS_PROCESS(Slave) macro tells SystemC that the slave core is a SystemC
module with its own processes. In this case, the thread processes that follow. Each of these
processes are explained in detail in below.

Lastly, the Slave class define a SystemC end_of_elaboration function to be called
automatically after all models are built and connected but just before the simulation is to start:

 void end_of_elaboration(); // SystemC method

Following the declaration of the end_of_elaboartion method, the Slave class define a
pointer that points to the OCP parameters of the OCP channel that is connected to the model’s
tpP port:

 ParamCl<TdataCl>* m_OCPParamP;

Also, there is the following function for compatibility with the base generic channel class:

 bool MputDirect(int, bool, Td*, Ta, int);

The rest of the data members of the Slave class hold the parameter and configuration values of
the master.

The following is the complete header file for the slave.

#ifndef _SIMPLE_SLAVE_H
#define _SIMPLE_SLAVE_H

#include <iostream>
#include <map>
#include "globals.h"

// OCP-IP Channel header files
#include "ocp_tl1_slave_port.h"
#include "ocp_tl_param_cl.h"

#include "slave_response_queue.h"

#include "MemoryCl.h"

// define the Slave class
template <typename TdataCl>
class Slave : public sc_module

75

{
 public:
 // --------------------------
 // public members and methods
 // --------------------------

 // type definitions
 typedef typename TdataCl::DataType Td;
 typedef typename TdataCl::AddrType Ta;
 typedef map< Ta, Td > MemMapType;

 // member definitions

 // channel port
 OCP_TL1_SlavePort<TdataCl> tpP;

 // Systemc macros

 // has SystemC processes
 SC_HAS_PROCESS(Slave);

 // constructor and destructor
 Slave(sc_module_name, double, sc_time_unit,
 int, Ta, ostream* debug_os_ptr = NULL);
 ~Slave();

 // methods
 void setConfiguration(MapStringType& passedMap);

 void requestThreadProcess();
 void responseThreadProcess();
 void exerciseSidebandThreadProcess();

 private:
 // ---------------------------
 // private members and methods
 // ---------------------------

 // SystemC methods
 void end_of_elaboration();

 // methods
 bool MputDirect(int, bool, Td*, Ta, int);

 // member definitions

 // slave identification
 int m_ID;

 // ocp clock information
 double m_ocpClkPeriod;
 sc_time_unit m_ocpClkTimeUnit;

 // number of memory bytes and the memory array
 Ta m_MemoryByteSize;

 // model a per thread response queue

76

 ResponseQueue<TdataCl> m_ResponseQueue;

 MemoryCl<TdataCl> *m_Memory;

 ostream* m_debug_os_ptr;

 // current value of SThreadBusy as set by this Slave.
 int m_curSThreadBusy;

 // --
 // Parameters of the connected OCP channel
 // --

 ParamCl<TdataCl>* m_OCPParamP;

 // Number of threads in the OCP channel
 int m_threads;

 // Does the channel use data handshaking?
 bool m_datahandshake;

 // Are writes with responses part of the OCP channel?
 bool m_writeresp_enable;

 // is SThreadBusy part of the OCP channel?
 bool m_sthreadbusy;

 // do we follow the rules of sthread_busy exact?
 bool m_sthreadbusy_exact;

 // is MThreadBusy part of the OCP channel?
 bool m_mthreadbusy;

 // is SCmdAccept part of the OCP channel?
 bool m_cmdaccept;

 // --
 // Parameters of the Slave Model
 // --

 // should there be a limit to the number of outstanding requests per
 // thread?
 // default = false;
 bool m_limitreq_enable;

 // maximum number of outstanding requests per thread
 // default = 4;
 int m_limitreq_max;

 // Response Latency
 int m_Latency;

 MapStringType m_ParamMap;

};

#endif // _SIMPLE_SLAVE_H

77

6.3.2. Constructor

In the slave model’s constructor, the following items are implemented:

 The base sc_module class is initialized using the name parameter passed to the Slave
class.

 The OCP slave interface port (tpP) is also initialized and named “tpPort”.

 The slave’s configuration and parameters are given their initial default values. They will
receive their parameter values at the end of elaboration.

 Functions for receiving requests, sending responses and for checking sideband signals on
the channel are registered using the SystemC SC_THREAD macro.

The following is the code for the constructor.

// ---
// constructor
// ---
template<typename TdataCl>
Slave<TdataCl>::Slave(
 sc_module_name n,
 double ocp_clock_period,
 sc_time_unit ocp_clock_time_unit,
 int id,
 Ta memory_byte_size,
 ostream* debug_os_ptr
) : sc_module(n),
 tpP("tpPort"),
 m_ID(id),
 m_ocpClkPeriod(ocp_clock_period),
 m_ocpClkTimeUnit(ocp_clock_time_unit),
 m_MemoryByteSize(memory_byte_size),
 m_Memory(NULL),
 m_debug_os_ptr(debug_os_ptr),
 m_curSThreadBusy(0),
 m_OCPParamP(NULL),
 m_threads(1),
 m_datahandshake(false),
 m_writeresp_enable(false),
 m_sthreadbusy(false),
 m_sthreadbusy_exact(false),
 m_mthreadbusy(false),
 m_cmdaccept(true),
 m_limitreq_enable(1),
 m_limitreq_max(4),
 m_Latency(0)
{
 // Note: member variables that depend on values of
 // configuration parameters are constructed when those
 // values are known - at the end of elaboration.

 // setup a SystemC thread process, which uses dynamic sensitive

78

 SC_THREAD(requestThreadProcess);

 // setup a SystemC thread process, which uses dynamic sensitive
 SC_THREAD(responseThreadProcess);

 // setup a SystemC thread process to check and
 // set sideband signals
 SC_THREAD(exerciseSidebandThreadProcess);
}

6.3.3. Destructor

The destructor cleans up the memory created in the end_of_elaboration() function.

The following is the code for the destructor.

template<typename TdataCl>
Slave<TdataCl>::~Slave()
{
 delete m_Memory;
}

6.3.4. The end_of_elaboration() Method

This function is automatically called after the model has been built and connected but before the
simulation begins. At the end of elaboration point, the OCP channel must have already been
connected to the core. The slave takes advantage of this to read the OCP parameters of the
channel and then to use those parameters to configure itself to work with the channel it was
connected to.

The following are some points regarding the code for the end_of_elaboration() method:

• The GetParamCl() method returns a pointer that points to the OCP channel’s
parameters. For example,

 m_OCPParamP = tpP->GetParamCl();

The slave then uses this pointer to extract the channel’s parameters and to use them to
configure itself. Because the names of the channel parameters match the names in the
OCP Specification document, the parameter look-up is one to one. The channel
parameters are then stored locally in the core for convenience.

• Sometime before the end of elaboration, the setConfiguration() function was
called and the slave’s parameters were passed to it using a string to string parameter
map. The read this map, the slave uses functions in the ParamCl class that extract
integers and Booleans from string formatted parameter maps. The complex looking
function call

79

 ParamCl<TdataCl>::getBoolOCPConfigValue(myPrefix, paramName,
 m_limitreq_enable, m_ParamMap)

returns true if the passed parameter map (m_ParamMap) contains a Boolean parameter
named by the string “paramName”. If the parameter map does contain the parameter,
the value of m_limitreq_enable is set to the value of that parameter. The parameter
“myPrefix” is generally not used and can be set to “”.

• Finally, the slave uses the values of its own parameters and the configuration of the
channel to which it is connected to build the memory model that it will use during the
simulation.

The following is the complete code for the slave’s end_of_elaboration() method.

// ---
// SystemC Method Slave::end_of_elaboration()
// ---
//
// At this point, everything has been built and connected.
// We are now free to get our OCP parameters and to set up our
// own variables that depend on them.
//
template<typename TdataCl>
void Slave<TdataCl>::end_of_elaboration()
{
 sc_module::end_of_elaboration();

 /////////////
 //
 // Process OCP Parameters from the port
 //
 /////////////

 m_OCPParamP = tpP->GetParamCl();

 // Set the number of threads
 m_threads = m_OCPParamP->threads;

 if (m_threads > 1) {
 cout << "Warning: Singled threaded reference Slave "
 << name() << " attached to multi-threaded OCP." << endl;
 cout << "Only commands sent on thread 0 will be processed."
 << endl;
 }

 // Does the channel use data handshaking?
 m_datahandshake = m_OCPParamP->datahandshake;
 // Is so, quit as this Slave does not handle data handshake.
 assert(!m_OCPParamP->datahandshake);

 // Do writes get reponses?
 m_writeresp_enable = m_OCPParamP->writeresp_enable;

 // is SThreadBusy part of the channel?

80

 m_sthreadbusy = m_OCPParamP->sthreadbusy;

 // is this slave expected to follow the threadbusy exact protocol?
 m_sthreadbusy_exact = m_OCPParamP->sthreadbusy_exact;

 // is MThreadBusy part of the channel?
 m_mthreadbusy = m_OCPParamP->mthreadbusy;

 // is SCmdAccept part of the channel?
 m_cmdaccept = m_OCPParamP->cmdaccept;

 /////////////
 //
 // Process Slave Parameters
 //
 /////////////

 // For Debugging
 if (m_debug_os_ptr) {
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << "Configuring Slave." << endl;
 (*m_debug_os_ptr) << "DB ("
 << name()
 << "): was passed the following configuration map:" << endl;
 MapStringType::iterator map_it;
 for (map_it = m_ParamMap.begin();
 map_it != m_ParamMap.end(); ++map_it) {
 (*m_debug_os_ptr) << "map[" << map_it->first << "] = "
 << map_it->second << endl;
 }
 cout << endl;
 }

 // Here the prefix is not needed.
 // the future.
 string myPrefix = "";
 string paramName = "undefined";

 // latency(0), latency(1), ... , latency(n)
 paramName = "latency(0)";
 if (!(ParamCl<TdataCl>::getIntOCPConfigValue(myPrefix,
 paramName,
 m_Latency,
 m_ParamMap))) {
 // Could not find the parameter so we must set it to a default
#ifdef DEBUG
 cout << "Warning: paramter \"" << paramName
 << "\" for Slave \"" << name()
 << "\" was not found in the parameter map." << endl;
 cout << " setting missing parameter to 3." << endl;
#endif
 m_Latency = 3;
 }

 // limitreq_enable
 paramName = "limitreq_enable";
 if (!(ParamCl<TdataCl>::getBoolOCPConfigValue(myPrefix,

81

 paramName,
 m_limitreq_enable,
 m_ParamMap))) {
 // Could not find the parameter so we must set it to a default
#ifdef DEBUG
 cout << "Warning: paramter \"" << paramName
 << "\" for Slave \"" << name()
 << "\" was not found in the parameter map." << endl;
 cout << " setting missing parameter to false." << endl;
#endif
 m_limitreq_enable = false;
 }
 // limitreq_max
 paramName = "limitreq_max";
 if (!(ParamCl<TdataCl>::getIntOCPConfigValue(myPrefix,
 paramName,
 m_limitreq_max,
 m_ParamMap))) {
 // Could not find the parameter so we must set it to a default
#ifdef DEBUG
 cout << "Warning: paramter \"" << paramName
 << "\" for Slave \"" << name()
 << "\" was not found in the parameter map." << endl;
 cout << " setting missing parameter to 4." << endl;
#endif
 m_limitreq_max = 4;
 }

 /////////////
 //
 // Initialize the Slave with New Parameters
 //
 /////////////

 // Clear the response queue
 m_ResponseQueue.reset();

 // Create the memory:
 if (m_Memory) {
 // Just in case we are called multiple times.
 delete m_Memory;
 }
 char id_buff[10];
 sprintf(id_buff,"%d",m_ID);
 string my_id(id_buff);
 m_Memory =
 new MemoryCl<TdataCl>(my_id,m_OCPParamP->addr_wdth,sizeof(Td));

}

82

6.3.5. SystemC Request Thread Process

The request thread processes each new request as it arrives from the channel. This section
explains some highlights of the code for the request thread process. The complete code for the
request process is presented below.

The basis loop of the request thread process does the following: gets a new request, processes it,
generates a response (if needed), then queues that response for the response thread to process.
The request thread uses a blocking command to get the next request:

 tpP->getOCPRequestBlocking(req, false);

This command gets the current request from the channel if there is one. If there is no request, the
command blocks until a new request arrives. When a request is found, it is copied into the
variable req. The second parameter to the command (false) indicates that the command
should not automatically accept the request it receives. The thread then processes the command.
Either it updates the memory (for a write command) or it extracts a value from the memory for a
read command.

After receiving a request, the process then builds a response. In this slave model, all requests
generate a response for the response queue. Some are actual responses such as the responses to a
read request. These responses have SResp of type OCP_SRESP_DVA. Some of the responses
are just place-holder responses. They are there to make sure that the timing for activities such as
writes are accurate. Place-holder responses take up a spot in the response queue, but they have an
SResp type of OCP_SRESP_NULL and are never sent on the OCP channel. Each item in the
outgoing response queue consists of a response and a time stamp of the earliest time that the
response may be sent (if it is an actual response) or cleared from the queue (if it is a place-holder
response).

Note in the code (see comment 2 in the code below) how each element of the response structure
is set by the slave. For example, the following line sets the response type of the out going
response:

 resp.SResp = OCP_SRESP_DVA;

If the outgoing response queue is full, the slave can no longer accept any new requests. Based on
the configuration of the channel, the slave uses either SThreadBusy or a delay on accepting the
request to keep the master from sending any new requests that cannot be processed due to the
full queue (see comment 4 in the code below)

The following is the complete code for the slave’s request thread process.

83

template<typename TdataCl>
void Slave<TdataCl>::requestThreadProcess()
{
 // The new request we have just received
 OCPRequestGrp<Td,Ta> req;

 // The response to the new request
 OCPResponseGrp<Td> resp;

 // Time after which the response can be sent or this
 // request can be cleared from incoming queue.
 sc_time send_time;

 // We are in the initialization call.
 // Wait for the first simulation cycle.
 tpP->ocpWait();

 // main loop
 while (true) {
 // --
 // (1) Get the next request
 // --
 tpP->getOCPRequestBlocking(req,false);

 // --
 // (2) process the new request and generate a response.
 // --

 // compute the word address
 if (req.MAddr >= m_MemoryByteSize) {
 req.MAddr = req.MAddr - m_MemoryByteSize;
 }

 // send a response for writes if channel requires it.
 if (m_writeresp_enable && (req.MCmd == OCP_MCMD_WR)) {
 req.MCmd = OCP_MCMD_WRNP;
 }

 // write to or read from the memory
 switch (req.MCmd) {
 case OCP_MCMD_WR:
 // posted write to memory
 m_Memory->write(req.MAddr,req.MData,req.MByteEn);

 // note that posted writes do not have responses.
 // However, they do have a processing delay that can
 // contribute to a max request limit back up.
 // To solve this problem, requests that have no
 // response to generate a dummy respose with
 // SRESP=NULL which is defined as "No response".
 // Dummy responses are never sent out on the channel.
 resp.SResp = OCP_SRESP_NULL;
 resp.SThreadID = req.MThreadID;
 break;

 case OCP_MCMD_RD:
 case OCP_MCMD_RDEX:

84

 // NOTE that for a single threaded slave,
 // Read-EX works just like Read
 // read from memory
 m_Memory->read(req.MAddr,resp.SData,req.MByteEn);
 // setup a read response
 resp.SResp = OCP_SRESP_DVA;
 resp.SThreadID = req.MThreadID;
 break;

 case OCP_MCMD_WRNP:
 // Generate an acknowledgement response
 resp.SResp = OCP_SRESP_DVA;
 resp.SThreadID = req.MThreadID;
 resp.SData = 0;
 break;

 default:
 cout << "MCmd #" << req.MCmd << " not supported yet."
 << endl;
 sc_stop();
 break;
 }

 // --
 // (3) generate a completion time stamp and add the response
 // to the queue
 // --

 // compute pipelined response delay
 send_time = sc_time_stamp() + sc_time(m_Latency,m_ocpClkTimeUnit);

 // purge the queue of any posted write place holder responses
 // that have reached their send times
 m_ResponseQueue.purgePlaceholders();

 m_ResponseQueue.enqueueBlocking(resp.SResp,resp.SData, send_time);

 // --
 // (4) if our queue is full, generate back pressure halt
 // the flow of requests. Otherwise, accept the request
 // and move on.
 // --

 // Do we need to set SThreadBusy??
 if (m_sthreadbusy && (m_ResponseQueue.length() >= m_limitreq_max)) {
 m_curSThreadBusy = 1;
 tpP->putSThreadBusy(m_curSThreadBusy);
 }

 // Should we accept this command?
 if (m_cmdaccept) {
 // if queue is full, delay accepting request
 while (m_ResponseQueue.length() >= m_limitreq_max) {
 // Our queue is full. Wait for this to change.
 tpP->ocpWait();
 }
 // now it is okay to accept the request

85

 tpP->putSCmdAccept();
 }

 }
}

6.3.6. SystemC Response Thread Process

The response thread process cycles through the response queues, and then places each response
into the channel at the appropriate time. This section explains some highlights of the code for the
response thread process. The complete code for the request process is presented below.

The basis loop of the response thread process does the following:

 Clears and processes any writes that do not need a response, then it finds the next
response to send out (if any)

 Builds the response, makes sure the channel is free, then places the new response on the
channel.

 If no more responses are available to be sent, the process waits until responses arrive.

The command following command changes the channel’s SThreadBusy signal at the next delta
cycle:

 tpP->putSThreadBusy(m_curSThreadBusy);

The following loop checks to see if the master’s MThreadbusy signal is true for our thread
(thread zero). As long as the master keeps this signal high, the slave must wait before sending a
new response on that thread.

 mthreadbusy = tpP->getMThreadBusy();
 while (mthreadbusy & 1) {
 tpP->ocpWait();
 mthreadbusy = tpP->getMThreadBusy();
 }

The following command will try to place the passed response unto the channel:

 tpP->startOCPResponseBlocking(resp);

If the channel is busy (that is, there is already a response on the channel waiting to be accepted,
the command will block until the response can be placed on the channel. Note that this command
returns once the response has been placed on the channel, but before the response has been
accepted by the master.

The following is the complete code for the Response Thread Process.

86

template<typename TdataCl>
void Slave<TdataCl>::responseThreadProcess()
{
 OCPResponseGrp<Td> resp;
 sc_time send_time;
 sc_time CurTime;
 unsigned int mthreadbusy;

 tpP->ocpWait();

 // main loop
 while (true) {

 // ---
 // (1) Find a response to place on the channel
 // ---

 // We are single threaded - always choose thread zero:
 int selectedThread = 0;

 // Get to next response (wait for one, if necessary).

 // First, clear any stale write latency waits
 m_ResponseQueue.purgePlaceholders();

 // Can we free SThreadBusy??
 if (m_sthreadbusy && (m_curSThreadBusy==1) &&
 (m_ResponseQueue.length() < m_limitreq_max)) {
 // Our queue has been shortened. Clear threadBusy.
 m_curSThreadBusy = 0;
 tpP->putSThreadBusy(m_curSThreadBusy);
 }

 // Get the next request off of the queue
 m_ResponseQueue.dequeueBlocking(resp.SResp,resp.SData,send_time);
 resp.SThreadID = selectedThread;

 // check if we still need to wait
 CurTime = sc_time_stamp();
 if (send_time > CurTime) {
 tpP->ocpWait((send_time.value() - CurTime.value())/1000);
 }

 if (m_debug_os_ptr) {
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << "slave wait time = "
 << send_time.value() << endl;
 }

 // The response could be a place holder response
 // used to implement write latency. If this is the case,
 // skip the rest of the steps.

 if (resp.SResp == OCP_SRESP_NULL) {
 if (m_debug_os_ptr) {
 (*m_debug_os_ptr) << "DB (" << name() << "): "

87

 << "finished Write Latency waiting." << endl;
 }
 } else {

 // ----------------------------------
 // (2) is MThreadBusy?
 // ----------------------------------

 if (m_mthreadbusy) {
 mthreadbusy = tpP->getMThreadBusy();
 while (mthreadbusy & 1) {
 tpP->ocpWait();
 mthreadbusy = tpP->getMThreadBusy();
 }
 }

 // ----------------------------------
 // (3) return a response
 // ----------------------------------

 if (m_debug_os_ptr) {
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << "send response." << endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " t = " << sc_simulation_time() << endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " SResp: " << resp.SResp << endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " SData: " << resp.SData << endl;
 }

 // Send out the response
 tpP->startOCPResponseBlocking(resp);
 }

 // We must be able to clear ThreadBusy now as we just sent a
 // request (or cleared a write latency)
 if (m_sthreadbusy && (m_curSThreadBusy==1) &&
 (m_ResponseQueue.length() < m_limitreq_max)) {
 // Our queue has been shortened. Clear threadBusy.
 m_curSThreadBusy = 0;
 tpP->putSThreadBusy(m_curSThreadBusy);
 } else {
 assert("Slave should have been able to clear SThreadBusy");
 }

 // wait until next cycle to send out the next response (if any)
 tpP->ocpWait();
 }
}

88

6.3.7. The Sideband Thread Process

This slave process demonstrates how the sideband signals on the channel may be exercised. The
code below reads the MError signal and then uses that to set the SError signal. This process also
periodically changes the SInterrupt and SFlag signals as well.

The following is the complete code for the Sideband Thread Process.

// Exercises the sideband signals by setting them with a recurring pattern
// Also loops back error signal from the Master if both Master and Slave
// versions (MError and SError) are configured into the channel
template<typename TdataCl>
void Slave<TdataCl>::exerciseSidebandThreadProcess()
{
 // Systematically send out sideband signals on any signals that are
attached to us.
 tpP->ocpWait(10);
 int tweakCounter =0;
 bool hasMError = m_OCPParamP->merror;
 bool hasSError = m_OCPParamP->serror;
 bool nextSError = false;
 bool hasSInterrupt = m_OCPParamP->interrupt;
 bool nextSInterrupt = false;
 bool hasSFlag = m_OCPParamP->sflag;
 int numSFlag = m_OCPParamP->sflag_wdth;
 unsigned int nextSFlag = 0;
 unsigned int maxSFlag = (1 << numSFlag) -1;

 // main loop
 while (true) {
 // wait 10 cycles
 tpP->ocpWait(10);

 // Now count through my sideband changes
 tweakCounter++;

 // Drive SError every time we are called
 if (hasSError) {
 if (hasMError) {
 // loop MError back through SError
 nextSError=tpP->SgetMError();
 tpP->SputSError(nextSError);
 } else {
 // Toggle SError
 nextSError = !nextSError;
 tpP->SputSError(nextSError);
 }
 }

 // Drive SInterrupt
 if (hasSInterrupt) {
 // Drive every other time we are called
 if (tweakCounter%2 == 0) {
 // Toggle SInterrupt
 nextSInterrupt = !nextSInterrupt;

89

 tpP->SputSInterrupt(nextSInterrupt);
 }
 }

 // Drive SFlag
 if (hasSFlag) {
 // Drive every fourth time we are called
 if (tweakCounter%4 == 0) {
 nextSFlag += 1;
 if (nextSFlag > maxSFlag) {
 nextSFlag = 0;
 }
 tpP->SputSFlag(nextSFlag);
 }
 }
 } // end while
}

6.3.8. Template Instantiation

The final line of the slave.cc file makes sure that the compiler creates an instance of the
Slave template for the OCP_TL1_SIGNAL_CL type defined in the globals.h header file.
The final line is as follows:

 // ---
 // explicit instantiation of the Slave template class
 // ---
 template class Slave< OCP_TL1_SIGNAL_CL >;

6.4. The Main Program

The main.cc program processes its command line options with the
process_command_line() function, then reads in the configuration parameters for the
channel, master, and slave. The configuration files are converted into the STL maps in the
readMapFromFile() function. The main.cc program then creates a channel and uses the
new channel configuration map to configure it. The program then does the same for the master
and slave. Finally, it connects the master to the channel and the slave to the channel.

Once the model has been build, the main.cc program calls the SystemC function:

 sc_start(simulation_end_time,SC_NS);

that runs the simulation for simulation_end_time nano-seconds. After the simulation has
completed, some minimal reporting is done.

The following is the complete code of the main.cc program.

90

///////////////////////////
//
// Simple Main to read in Map data from files
// and then use that to configure and connect
// a master and slave.
//
///////////////////////////

#include <map>
#include <set>
#include <string>
#include <algorithm>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>

#include "systemc.h"

#include "master.h"
#include "slave.h"
#include "ocp_tl1_data_cl.h"
#include "ocp_tl_param_cl.h"
#include "ocp_tl1_channel.h"

#define OCP_CLOCK_PERIOD 1
#define OCP_CLOCK_TIME_UNIT SC_NS

#define MASTER_CLOCK_PERIOD 1
#define MASTER_CLOCK_TIME_UNIT SC_NS

#define SLAVE_CLOCK_PERIOD 1
#define SLAVE_CLOCK_TIME_UNIT SC_NS

void process_command_line(int argc,
 char* argv[],
 string& ocp_params_file_name,
 string& master_params_file_name,
 string& slave_params_file_name,
 double& simulation_end_time,
 bool& debug_dump,
 string& debug_file_name)
{
 // get the ocp parameters file name
 ocp_params_file_name = "";
 if (argc > 1) {
 string file_name(argv[1]);
 ocp_params_file_name = file_name;
 }

 // get the master parameters file name
 master_params_file_name = "";
 if (argc > 2) {
 string file_name(argv[2]);
 master_params_file_name = file_name;

91

 }
 // get the slave parameters file name
 slave_params_file_name = "";
 if (argc > 3) {
 string file_name(argv[3]);
 slave_params_file_name = file_name;
 }

 // get the simulation end time
 simulation_end_time = 1000;
 if (argc > 4) {
 simulation_end_time = (double) atoll(argv[4]);
 }

 // do we dump out a log file?
 debug_dump= false;
 debug_file_name = "";
 if (argc > 5) {
 string file_name(argv[5]);
 debug_file_name = file_name;
 debug_dump = true;
 }
}

void readMapFromFile(const string &myFileName, MapStringType &myParamMap)
{
 // read pairs of data from the passed file
 string leftside;
 string rightside;

 // (1) open the file
 ifstream inputfile(myFileName.c_str());
 assert(inputfile);

 // set the formatting
 inputfile.setf(std::ios::skipws);

 // Now read through all the pairs of values and add them to the passed
map
 while (inputfile) {
 inputfile >> leftside;
 inputfile >> rightside;
 myParamMap.insert(std::make_pair(leftside,rightside));
 }

 // All done, close up
 inputfile.close();
}

int
sc_main(int argc, char* argv[])
{
 OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> >*
pOCP;
 Master< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> >* pMaster;
 Slave< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> >* pSlave;
 MapStringType ocpParamMap;

92

 MapStringType masterParamMap;
 MapStringType slaveParamMap;

 double simulation_end_time;
 bool debug_dump;
 string ocpParamFileName;
 string masterParamFileName;
 string slaveParamFileName;
 string dump_file_name;
 ofstream debugFile;

 // --------------------------------
 // (1) process command line options
 // and read my parameters
 // --------------------------------
 process_command_line(argc,argv,ocpParamFileName,masterParamFileName,
 slaveParamFileName,simulation_end_time,debug_dump,dump_file_name);

 if (! ocpParamFileName.empty()) {
 readMapFromFile(ocpParamFileName, ocpParamMap);
 }

 if (! masterParamFileName.empty()) {
 readMapFromFile(masterParamFileName, masterParamMap);
 }

 if (! slaveParamFileName.empty()) {
 readMapFromFile(slaveParamFileName, slaveParamMap);
 }

 // open a trace file
 if (debug_dump) {
 cout << "Debug dumpfilename: " << dump_file_name << endl;
 debugFile.open(dump_file_name.c_str());
 }

 // --
 // (2) Create the self-timed OCP Channel
 // --

 pOCP = new OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBit32,
 OCPCHANNELBit32> >

("ocp0",true,true,true,NULL,OCP_CLOCK_PERIOD,OCP_CLOCK_TIME_UNIT,"ocp0.ocp");

 // Alternatively, use a clocked channel
 //sc_clock clk(“clk”, OCP_CLOCK_PERIOD,OCP_CLOCK_TIME_UNIT);
 //pOCP = new OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBit32,
 // OCPCHANNELBit32> >
 //("ocp0", (sc_clock *)&clk, (std::string)"ocp0.ocp");

 pOCP->setConfiguration(ocpParamMap);

 // --
 // (3) Create the Master and Slave
 // --

93

 pMaster = new Master< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32>
>("master", MASTER_CLOCK_PERIOD, MASTER_CLOCK_TIME_UNIT, 0, &debugFile);

 pSlave = new Slave< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32>
>("slave", SLAVE_CLOCK_PERIOD, SLAVE_CLOCK_TIME_UNIT, 0, 0x3FF, &debugFile);

 // --
 // (4) connect channel, master, and slave, & clock
 // --
 pMaster->ipP(*pOCP);
 pSlave->tpP(*pOCP);

 // ------------------------
 // (5) start the simulation
 // ------------------------
 sc_start(simulation_end_time,SC_NS);

 // -------------------
 // (6) post processing
 // -------------------

 cout << "main program finished at "
 << sc_time_stamp().to_double() << endl;

 sc_simcontext* sc_curr_simcontext = sc_get_curr_simcontext();
 cout << "delta_count: " << dec << sc_curr_simcontext->delta_count()
 << endl;
 cout << "next_proc_id: " << dec << sc_curr_simcontext->next_proc_id()
 << endl;

 return (0);

}

94

7. EXAMPLES USING OCP SPECIFIC TL2 CHANNEL AND API

The twois examples described in this section demonstrate the use of the OCP specific TL2
channel. The first example illustrates a single-threaded OCP communication between an OCP
master and an OCP slave. Both are using the TL2 specific API to model the protocol.

The second example shows a more complex example in which a multi-threaded master
communicates with a multi-threaded slave via the OCP TL2 channel.

All the concerned files for these examples are located in ‘tl_sc/examples/ocp_tl2’. A
README file details how to compile and run the code.

7.1. Example # 1

In this example, a simple TL2 master communicates with a simple TL2 slave. The OCP
parameters describing the channel are stored in the 'ocpParams' file. The master uses an
OCP specific TL2 master port to connect the channel, and the slave uses an OCP specific TL2
slave port. These ports allow modules to perform access to all the TL2 API functions and events
available.

The master and the slave use an 'OCPRequestGrp' structure to pass/get all the request
signals to the channel, and an 'OCPResponseGrp' structure to store/send the response
signals.

Both master and slave are non-pipelined modules, which use one single thread to handle requests
and responses.

The communication between the master and the slave is composed of the following sequences:

7.1.1. Master Sequence

• Master sends a 10-length WRITE burst to the slave using
sendOCPRequestBlocking(). Only one chunk is used (i.e. transaction is atomic).

• Master sends a 10-length READ burst to the slave using
sendOCPRequestBlocking(). Only one chunk is used (i.e. transaction is atomic).

• Master waits and get the corresponding response using two successive
getOCPResponseBlocking() calls catching 5-length chunks.

• Master performs a complete 20-length WRITE transaction using the serialized method
'OCPWriteTransfer()'. This call includes the following phases:

o request send

o request acknowledge

95

• Master performs a complete 20-length READ transaction using the serialized method
'OCPReadTransfer()'. This call includes the following phases:

o request send

o request acknowledge

o response reception

o response acknowledge

7.1.2. Slave sequence

• Slave receives a 10-length WRITE burst from the master, and stores the received data in
an internal array.

• Slave receives a 10-length READ burst from the master, and sends the response using
two consecutive response chunks (5-length each) with a different 'SRespInfo' signal
value.

• Slave receives a 20-length WRITE burst from the master, and stores the received data in
an internal array.

• Slave receives a 20-length READ burst from the master, and sends the response using
one response call.

7.2. Example #2

In this example, a multi-threaded TL2 master communicates with a multi-threaded TL2 slave.
The OCP parameters describing the channel are stored in the ‘ocpParams_complex’ file.

7.2.1. Slave Description

The TL2 slave emulates a '3 threads' OCP slave. It uses two SystemC threads, one for requests
and one for responses. The request SC_THREAD catches every request, computes the response
and stores it in one of the three response queues, depending on the ThreadID of the request.
Then, the response SC_THREAD issues responses to the master. The slave acts as a memory: a
write request updates an internal memory array, and a read request reads a cell of this array.

The slave accepts some parameters, described in the ‘slaveParams’ files:

• latencyX

• limitreq_enable

• limitreq_max

96

These parameters are described in section 6.1.3 of the OCP API documentation. Note that for
TL2, delays are not expressed in terms of clock cycles but as absolute timings (unit is SC_NS in
the slave).

7.2.2. Master Description

The TL2 master emulates a '3 threads' master. It sends requests labelled with a MThread ID
varying from 0 to 2. Depending on the current thread, each request targets a different location in
the target memory space (no overlap between thread operations). The master uses two SystemC
threads, one for the requests and one for the responses.

The master accepts some parameters, described in the ‘masterParams’ file:

• mrespaccept_delay

• mrespaccept_fixeddelay

• command_cycles

The first two parameters are described in section 6.1.3. Note that for TL2, delays are not
expressed in terms of clock cycles but as absolute timings (unit is SC_NS in the master).
'Command_cycles' specifies the number of times the predefined TL2 requests sequence is sent.

8. DEBUGGING YOUR MODEL USING SOCCREATOR® TOOLS

The main debugging tool available for the OCP channel model is the OCP monitor output. The
OCP monitor is activated by passing a file name for the OCP monitor output when the channel is
constructed. (See section 4.1 for more details about the channel constructor.) If the OCP monitor
is used, the channel will print out its current state at the end of every OCP clock cycle.

The resulting OCP Monitor file can be processed with “ocpdis,” a tool that is available separately
from the channel, which reformats the data for easy reading. The tool “ocpcheck,” also available
separately, processes the OCP Monitor data and checks that the OCP channel followed the OCP
protocol.

The OCP Monitor can also be instantiated as a separate component:

OCPMon< DataClass > m1("m1", &ch0, (std::string)"ocp0.ocp", &clk);

The OCP Monitor is available to OCP-IP members in a separate release package. The release
package for the OCP channel 2.0.2 does not contain the monitor files.

97

9. SIDEBAND SIGNALS

The access methods for sending and receiving sideband signals are shared by both the base
generic class API and the OCP TL1 specific API. The commands described in this section may
be used with either API.

9.1. MError Signal

This section describes the methods for the MError signal.

void MputMError(bool nextValue)

Caller: Master

Purpose: Changes the next value of the MError signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

bool SgetMError() const

Caller: Slave

Purpose: Returns the current value of the MError signal in the channel.

const sc_event& SidebandMErrorEvent() const

Caller: Slave

Purpose: Returns the event associated with the MError signal. This event is
triggered whenever the MError signal changes to a new value. Note that a
call to setMError() or resetMError() will not always result in the
event SidebandMErrorEvent occurring. For example, if the current
value of MError is true and the function setMError() is called, the
event SidebandMErrorEvent will not be triggered because the
current value (true) and the next value (true) are the same. This method is
called by the slave.

98

9.2. MFlag Signal

This section describes the methods for the MFlag signal.

void MputMFlag(int nextValue)

Caller: Master

Purpose: Changes the next value of the MFlag signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

void MputMFlag(int nextValue, unsigned int mask)

Caller: Master

Purpose: Changes the next value of the MFlag signal. Only nextValue & mask bits
are written. If the OCP channel is asynchronous, the change is
immediate. If the channel is synchronous, the change occurs at the next
update.

int SgetMFlag() const

Caller: Slave

Purpose: Returns the current value of the MFlag signal in the channel.

const sc_event& SidebandMFlagEvent() const

Caller: Slave

Purpose: Returns the event associated with the MFlag signal. This event is triggered
whenever the MFlag signal changes to a new value.

9.3. SError Signal

This section describes the methods for the SError signal.

void SputSError(bool nextValue)

Caller: Slave

99

Purpose: Changes the next value of the SError signal. If the OCP channel is
asynchronous, change is immediate. If the channel is synchronous, the
change occurs at the next update.

100

bool MgetSError() const

Caller: Master

Purpose: Returns the current value of the SError signal in the channel.

const sc_event& SidebandSErrorEvent() const

Caller: Master

Purpose: Returns the event associated with the SError signal. This event is
triggered whenever the SError signal changes to a new value. Note that a
call to setSError() or resetSError() will not always result in the
event SidebandSErrorEvent occurring. For example, if the current
value of SError is true and the function setSError() is called, the
event SidebandSErrorEvent will not be triggered because the
current value (true) and the next value (true) are the same.

9.4. SFlag Signal

This section describes the methods for the SFlag signal.

void SputSFlag(int nextValue)

Caller: Slave

Purpose: Changes the next value of the SFlag signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

void SputSFlag(int nextValue, unsigned int mask)

Caller: Slave

Purpose: Changes the next value of the SFlag signal. Only nextValue&mask bits
are written. If the OCP channel is asynchronous, the change is immediate.
If the channel is synchronous, the change occurs at the next update.

101

int MgetSFlag() const

Caller: Master

Purpose: Returns the current value of the SFlag signal in the channel.

102

const sc_event& SidebandSFlagEvent() const

Caller: Master

Purpose: Returns the event associated with the SFlag signal. This event is triggered
whenever the SFlag signal changes to a new value.

9.5. SInterrupt Signal

This section describes the methods for the SInterrupt signal.

void SputSInterrupt(bool nextValue)

Caller: Slave

Purpose: Changes the next value of the SInterrupt signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

bool MgetSInterrupt() const

Caller: Master

Purpose: Returns the current value of the SInterrupt signal in the channel.

const sc_event& SidebandSInterruptEvent() const

Caller: Master

Purpose: Returns the event associated with the SInterrupt signal. This event is
triggered whenever the SInterrupt signal changes to a new value. Note
that a call to setSInterrupt() or resetSInterrupt() will not
always result in the event SidebandSInterruptEvent occurring.
For example, if the current value of SInterrupt is true and the function
setSInterrupt() is called, the event
SidebandSInterruptEvent will not be triggered since the current
value (true) and the next value (true) are the same.

103

9.6. Control Signal

This section describes the methods for the Control signal.

bool SysputControl(int nextValue)

Caller: System side

Purpose: If ControlBusy is false, this function changes the next value of the
Control sideband signal. If the ControlBusy signal is part of the OCP
channel configuration, and the current value of ControlBusy is true, the
next value of the Control sideband signal will not be changed and the
setControl() method will return false. Otherwise, the method will
return true and will set the next value of the Control signal. If the OCP
channel is asynchronous, the change to the Control signal is immediate. If
the channel is synchronous, the change occurs at the next update.

int CgetControl() const

Caller: Core side

Purpose: Returns the current value of the Control signal in the channel.

const sc_event& SidebandControlEvent() const

Caller: Core side

Purpose: Returns the event associated with the Control signal. This event is
triggered whenever the Control signal changes to a new value.

104

9.7. ControlWr Signal

This section describes the methods for the ControlWr signal.

void SysputControlWr(bool nextValue)

Caller: System side

Purpose: Changes the next value of the ControlWr signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

bool CgetControlWr() const

Caller: Core side

Purpose: Returns the current value of the ControlWr signal in the channel.

const sc_event& SidebandControlWrEvent() const

Caller: Core side

Purpose: Returns the event associated with the ControlWr signal. This event is
triggered whenever the ControlWr signal changes to a new value.

9.8. ControlBusy Signal

This section describes the methods for the ControlBusy signal.

void CputControlBusy(bool nextValue)

Caller: Core side

Purpose: Changes the next value of the ControlBusy signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

105

bool SysgetControlBusy() const

Caller: Core side

Purpose: Returns the current value of the ControlBusy signal in the channel.

const sc_event& SidebandControlBusyEvent() const

Caller: System side

Purpose: Returns the event associated with the ControlBusy signal. This event is
triggered whenever the ControlBusy signal changes to a new value. Note
that a call to setControlBusy() or resetControlBusy() will
not always result in the event SidebandControlBusyEvent
occurring. For example, if the current value of ControlBusy is true and
the function setControlBusy() is called, the event
SidebandControlBusyEvent will not be triggered because the
current value (true) and the next value (true) are the same.

9.9. Status Signal

This section describes the methods for the Status Signal.

void CputStatus(int nextValue)

Caller: Core side

Purpose: This function changes the next value of the Status sideband signal. If the
OCP channel is asynchronous, the change to the Status signal is
immediate. If the channel is synchronous, the change occurs at the next
update.

int SysgetStatus() const

Caller: System side

Purpose: Returns the current value of the Status signal in the channel.

106

bool readStatus(int& currentValue) const

Caller: System side

Purpose: If the channel signal StatusBusy is false, then this function sets the
passed parameter currentValue to the current value of the Status
signal in the channel. Then the event SidebandStatusRdEvent is
triggered and the function returns true. If the channel signal StatusBusy
is true, the read is not performed, the event
SidebandStatusRdEvent is not triggered, and the function returns
false.

const sc_event& SidebandStatusEvent() const

Caller: System side

Purpose: Returns the event associated with the Status signal. This event is
triggered whenever the Control signal changes to a new value.

9.10. StatusRd Signal

This section describes the methods for the StatusRd Signal.

void SysputStatusRd(bool nextValue)

Caller: System side

Purpose: Changes the next value of the StatusRd signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

bool CgetStatusRd() const

Caller: Core side

Purpose: Returns the current value of the StatusRd signal in the channel.

107

const sc_event& SidebandStatusRdEvent() const

Caller: Core side

Purpose: Returns the event associated with the StatusRd signal. This event is
triggered whenever the ControlWr signal changes to a new value.

9.11. StatusBusy Signal

This section describes the methods for the StatusBusy signal.

void CputStatusBusy(bool nextValue)

Caller: Core side

Purpose: Changes the next value of the StatusBusy signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous, the
change occurs at the next update.

bool SysgetStatusBusy() const

Caller: System side

Purpose: Returns the current value of the StatusBusy signal in the channel.

const sc_event& SidebandStatusBusyEvent() const

Caller: System side

Purpose: Returns the event associated with the StatusBusy signal. This event is
triggered whenever the StatusBusy signal changes to a new value. Note
that a call to setStatusBusy() or resetStatusBusy() will not
always result in the event SidebandStausBusyEvent occurring. For
example, if the current value of StatusBusy is true and the function
setStatusBusy() is called, the event
SidebandStatusBusyEvent will not be triggered because the
current value (true) and the next value (true) are the same.

