A SystemC™ Generic
Transaction Level Communication Channel

V2.0.3 — October 21, 2004

Document version 1.2



Revision History

Version Date Comment

1.0 1/15/03  Initial Generic Transaction Channel

1.0.1 3/31/03  First revision for OCP 1.0 channel

1.1 7/18/03  OCP 1.0 Sideband and layer adapters included

2.0 12/11/03  Adds updated request, response, and data handshake phase methods. Also

adds additional sideband single methods. Adds descriptions of configurable
master and slave models. Adds descriptions of OCP TL1 specific Enum
Types and Template Classes. Updates ParamCl parameter names to conform
to the parameter names in the OCP specification. Adds information about the
TL2 data class and TL2 specific channel model.

2.0.2 05/11/04  Adds pre-emptive release methods.
2.0.3 10/21/04 Updates document version for channel release 2.0.3
DISCLAIMER

This OCP-IP document is provided "as is" with no warranties whatsoever, including any
warranty of merchantability, noninfringement, fitness for any particular purpose, or any
warranty otherwise arising out of any proposal, specification or sample. OCP-IP disclaims
all liability for infringement of proprietary rights, relating to use of information in this
document. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

OCP International Partnership (OCP-IP) disclaims all warranties and liability for the use of
this document and the information contained herein and assumes no responsibility for any
errors that may appear in this document, nor does OCP-IP make a commitment to update
the information contained herein.

Contact the OCP-IP office to obtain the latest revision of this document.
Questions regarding this document or membership in OCP-IP may be forwarded to:

OCP-IP

WWW.ocpip.org

E-mail: admin@ocpip.org
Phone: +1 503-291-2560
Fax: +1 503-297-1090

OCP-IP Technical Support
techsupport@ocpip.org

All product names are trademarks, registered trademarks, or servicemarks of their
respective owners.



Copyright © 2003, 2004 OCP-IP



Table of Contents

R 1 o [ o ) 6
2. Directory structure and Class HIEraChY .............ouuueiiiiiiiiiiiiiiiiiiiiiiiieiieeeieeeeeeneeeeeeeneeeeneeeeeenneennee 8
3. TranSaction ChaNNEL..........uuiiiiiiii e e e e e e e e e e e e s s bbb aeeeeeean 9
3.1. Generic Channel INtEIfaCeS ......cooveee e 9
4. Generic Model Application INterface (API) ... ... . e e 10
4.1. Constructor Parameters of the Base Generic Channel................cco, 10
4.1.1. Base Generic Class DefiNition .........cccuuiiiiiiiiiiiiiiiieiecee e 11
4.1.2. Generic Master Interface (tl_master_if.n).......ccccoiiiiiiiin 11
4.1.3. Generic Slave Interface (tl_slave if.n) .......cccooiiiiirii e 18

4.2. OCP TLL DALA ClASS....ccttiiiiiiiiiiiiiiiiee ettt e e e e e st e e e e e e e e s nsabb e eeaee s 25
4.2. 0. ENUMEIAION TYPES. i 25
4.2.2. Mandatory (and Generic) Data Class Member Functions..............cccccoeeeieeeieeeieeen. 26
4.2.3. OCP Request Group SIigNalS ......ciie e et e e e e e eeanann s e e e e e e eeees 26
4.2.4. OCP Data Request Group SIGNaAIS........c.uuviriiiieeiiiiiiiieiee e 27
4.2.5. OCP Response Group Signals ... 28
4.2.6. Example: Address Transfer Methods...........cccoviiiiiiiiiiiiiii e 29
4.2.7. TLL VEISUS RT L.ttt ettt e e et e e e e e e e e e n e n e e e e e eeenes 30
4.2.8. Example: Sending and Receiving Write Transactions ............cccvvveeeeeeeeniiniiiinineeeenn 30
4.2.9. Example: Sending and Receiving Read RESPONSES.......ccoeevvvveeiiiiiiiiieeeeeeeviiiin e 33

4.3. OCP TL2 DALA ClASS....cciiiiiiiiiiitiiiiiie ettt e e e e st e e e e e e e s s bbb e eeaee s 34
4.3.1. OCP RequeSt GroUp SIGNAIS .....ccciiiiiiiiiiiiiiice ettt 36
4.3.2. OCP Data Request Group SIGNaAIS........cc.uuurriiiieeiiiiiiiiiee e 39
4.3.3. OCP Response Group SIQNAIS ........ccoviiiiiiiiiiie e e e s e e e e e e eaea e e e e e eeees 39
4.3.4. Example: Sending and Receiving (Burst) Write Transactions .................cccoeeeeeeeenn. 42
4.3.5. Example: Sending and Receiving (Burst) Read ReSpONSes..........cccceeveveeveeeeieeeeenn. 43

5. Generic Channel EXAMPIES ......i it e e e e e e s e e e e e e e e anaaa e e e e e e eeene 45
5.1. Generic Channel TLL EXAMPIES ....uuuuuuuiiceecee et a e e n e a s 45
5.1.1. TLL EXAMPIE FO ...ttt ettt e e e e aeeas 45
5.1.2. TLLEXaMPIE #l ... 46
5.1.3. TLL EXAMPIE H2 ..ottt ettt ettt 46
5.1.4. TLL EXAMPIE 3 ..ottt e e e e e e e e e s 47

5.2. Generic Channel TL2 EXampIes ... a7
5.2.1. TL2 EXAMPIE H0 ...eeiiiiee ettt ettt e e e e e e e et e e e e e e e e s s nnnnnneeeeaaeens 47
5.2.2. TL2 EXAMPIE HL ..ottt 50

B. AUXINIAIY ClASSES....eeiiiiiiiiiiitte ettt ettt e e e e e et et e e e e e e e e bbb e et e e e e e e s nreeeaeeas 53
6.1. ComMCI (tI_COMM_CLN).uuii e e e e e e e e eeens 53
6.2. ParamCl (0CP_th_parami.n) ... ... 53
A I @ 111 €U X (] PRSP 53
6.2.2. Parameter Member Variables .......... . e e 53



List of Figures

Figure 1.
Figure 2.

Figure 3.
Figure 4.
Figure 5.
Figure 6.

Figure 7.
Figure 8.

TL1 Channel Class HIEIarChy ............ooeiiiiiiiiiiiiiiiiiiiee et 8
OCP TL1 Specific Channel Class Hierarchy (Inherited from TL Channel Class
Hierarchy) Proposed fOr 1.0.2 .......uuuuicceeeee e 8
OCP Channel DIr€CIONY TIE .....uuuiiiiiiieeeieeiiiii ittt e e e e e e 8
Usage of the chunk-related data class members...........ccccccvvveviieeiiiiiiiiiiieiiieeeeeeee 35
Transactions and RTL Equivalent Timing of Simple TL1 with Asynchronous
SCMAACCEPL ... 52
Transactions and RTL Equivalent Timing of Simple TL1 with Synchronous

IS 1 4o 1A o o= o | 52
Transactions and RTL Equivalent Timing of Simple TL2 ................coeeeeeiiie. 52
Transactions Of SIMPIE TL3. ... i e e 52



1. INTRODUCTION

This document describes a generic SystemC transaction level communication channel, applied
with Open Core Protocol (OCP). The generic model is an extension to the original SystemC™
Generic Transaction Level Communication Channel specification (See www.systemc.org,
Contributions area for more information). The generic channel is maintained for providing
backward compatibility with models designed with the old generic channel model released by
Open SystemC Initiative (OSCI) and older OCP channel versions released by OCP-IP
(www.ocpip.org). The current release contains an updated channel model and a data class,
which implements data fields required by OCP protocol.

The generic channel contains protocol primitives (functions and events), which can be used to
build protocol-specific channel models. Although OCP protocol support is included in the data
class of the channel, it is not recommended that the naked generic channel be used directly in
new designs. The generic channel is used as a basis for OCP specific transaction channel. This
channel adds an OCP API on the generic channel and OCP data class. The OCP specific channel
models are described in another document: A SystemC™ OCP Transaction Level
Communication Channel specification.

This document categorizes the communication abstraction levels according to those introduced
in the white paper SystemC™ based SoC Communication Modeling for the OCP™ Protocol.
(You can obtain a copy of this paper at www.ocpip.org.) The abstraction levels are as follows:

1. Transaction Level

* Layer-3: Message Layer
Model untimed functionality
Point-point communication

e Layer-2: Transaction Layer
Model/analyze SoC architecture
Start SW development
Estimate timing



* Layer-1: Transfer Layer
Cycle true but faster than RTL
Detailed analysis, develop low-level SW

2. Pin Level
* Layer-0: Register Transfer Level

“TLx” and Layer-x are used for Transaction Level, Layer-x interchangeably. For example, the
acronym “TL1” stands for Transaction Level One.

SystemC is a C++ modeling environment designed for both cycle based and higher level
modeling of systems. This document assumes a basic understanding of the SystemC language.
For more information on SystemC, go to www.systemc.org.

The OCP is a non-proprietary, openly licensed, core-centric protocol for on-chip
communications. To use the OCP channel model correctly, the user would be well served to have
a solid understanding of the OCP protocol. The protocol is described in the Open Protocol
Specification manual, which is available at: www.ocpip.org. The chapters on “Overview,”
“Theory of Operation,” “Signals and Encoding,” and “Protocol Semantics” are essential for
understanding the OCP protocol and for using the OCP channel model.




2. DIRECTORY STRUCTURE AND CLASS HIERACHY

The generic channel is a SystemC module (sc_nodul e), which uses “request/update” methods
for delta cycle delayed updates of the channel state. The base generic model contains a pointer to
the type of data that moves through the channel. In this case, the data is in the Open Core
Protocol (OCP) Transaction Layer One or Two (TL1, TL2) format. Any type of data, even non-
OCP data, can move through the generic base channel.

The Figure 1 shows the internal class hierarchy for the generic channel, with TL1 data class. The
channel becomes TL2 by using TL2 data class instead.

Virtual
sc_interface
L)
SdirectlF sc module MdirectIF
<TL1_DataCl> — <TL1_DataCl>
Y 4 Y
Virtual Virtual
Abstract TLslavelF Abstract TLmasterlF
<OCP_TL1_DataCl> <OCP_TL1_DataCl>

* ;

sc_prim_channel
TL_Channel
<OCP_TL1 DataCl> 4
UpdateCl
"ReqEnd" "ResEnd" -
Method Method | | . N /"Update" Method\‘\)
Process Process “..__ Process
4 v v
OCP_TL1_DataCl
<DataType, AddrType> ParamCl CommCl

Figure 1. Generic Channel Class Hierarchy



3. TRANSACTION CHANNEL

This section describes the generic channel with the following goal: the channel maintains the
"generic" interface of the OSCI transaction channel and adds the ability to move data in the OCP
format across the channel. The OCP data class is included, since the generic channel does not do
anything as such. The data class can be replaced with another one to support a different interface
protocol.

3.1. Generic Channel Interfaces

The base generic transaction channel (in header filet | _channel . h) is a new version of the
generic OSCI transaction channel, with minor additions explained in the next section. The
channel provides synchronization for transactions, and it is used with all transaction layers. The
channel can support both clocked and event-driven master and slave modules. The channel is
templatized over a data class, which in this case contains member functions for implementing a
version of the OCP protocol (in header filesocp_t1 1 data_cl . h and

ocp_tl2 data_ cl.h).

The channel synchronization methods and events are visible to the masters and slaves through
SystemC interface definitions (in filest | _master _if. h,tl _slave_if.h and
tl _direct if.h).

The implementation of the channel is somewhat different from the original generic channel.
There is better support for clocked TL1 masters and slaves. Also, easier integration with RTL
models is provided. The channel implementation is not meant to be user-modifiable and should
not matter to users. For those interested, more information can be found in the channel heading
and in-line comments.



4. Generic Channel Application Interface (API)

This section describes the API of the generic communication channel. In particular, it describes
the constructor parameters of the channel and the methods of the channel’s master and slave
interface. This is followed by a description of the methods of the data classes for the OCP

protocol.

4.1. Constructor Parameters of the Base Generic Channel

The base generic channel has the following constructor:

TL_Channel (sc_nodul e_nane nanme, bool Synchron = true,
bool SyncEvent = true, bool DefaultEvent = true,
EndTi mes = fal se)

nane

Synchron

SyncEvent

Def aul t Event

EndTi mes

specifies the name of the module (channel) instance.

specifies whether the channel’s internal states and events are updated
synchronously (Synchr on = tr ue) or asynchronously
(Synchron = fal se). OCP users always set Synchr on to true.
Asynchronous updating is slightly faster. In some applications, the
update mechanism makes no difference.

specifies whether the channel’s events for the synchronization of
Mput * () and Sget * () as well as Sput * () and Myet * ()
methods are triggered (SyncEvent = true) or not. OCP users
always set SyncEvent to true. The channel may be slightly faster if
no synchronization events are used. Use the default value (= true)
unless you know exactly what you are doing. ).

specifies whether the channel should trigger the default event. The
channel may be slightly faster if no default event is triggered.

Def aul t Event can be false if none of the attached modules are
sensitive to port events. Use the default value (= true) unless you
know exactly what you are doing.

specifies whether the channel should record transaction end time.
This information is used only by some OCP transactions, and the
OCP Channel sets the parameter automatically if needed. Since this
slows the channel down considerably, always use the default value
when instantiating the generic channel.

10



4.1.1. Base Generic Class Definition

The base generic channel is templatized over the data class. The data class itself is templatized
over the data type and the address type. In the following subsections, Tdat aCl denotes the
template data class argument (template<class TdataCl> class TL_Channel).

All methods return immediately if the channel is in reset state. The non-void methods return
false if called during reset. It is advisable to make sure that the threads trusting blocking
methods for sequencing call a wait if a blocking methods returns false, to avoid infinite loops.

4.1.2. Generic Master Interface (tl_master_if.h)

This section describes the interface methods for the master.

TdataCl * GetDatad ()
Purpose: Gets the pointer to the data class of the channel.

Return: Returns the pointer immediately.

bool Myet Sbusy()

Purpose: Status of the slave-busy semaphore. Mget Sbusy() indicates whether
the slave has released the previous request.

Return: Immediately returns true if the slave has not released the last request.
Returns false if it has.

Events: No event.

bool Myet SbusyDat a()

Purpose: Status of the data-busy semaphore. Myet SbusyDat a() indicates
whether the slave has released the previous data request. Used only with
TL protocols, which have separate data and request phases.

Return: Immediately returns true if the slave has not responded to the last data
request event, and false if it has.

Events: No event.

11



bool Mout Wit eRequest Bl ocki ng()

Purpose:

Return:

Events:

Issues a write request to the slave. The master may write to the channel’s
data class any time outside this call by either copying or pointer passing.

Suspends calling thread. Resumes and returns after the slave has released
the request channel. Returns true at success, false at failure.

Triggers the default event and request start event.

bool MutWiteRequest ()

Purpose:

Return:

Events:

Issues a write request to the slave. Mout Wi t eRequest () should be
called only after Mget Sbusy() returns false; that is, the slave is no
longer using the channel data buffer. Both copy and pointer-passing put
data methods (of the data class) can be used, but the master must not reuse
the passed data buffer until Myet Sbusy() is false. Must be called only
once per clock cycle in TL1 models.

Returns immediately. Master must suspend itself to allow slave process to
run. Returns true if channel accepts the request, false if not.

Triggers the default event and request start event. No event when the
return value is false.

bool Mout Dat aRequest Bl ocki ng()

Purpose:

Return:

Events:

Issues a data write request to slave. The master may write to the data
handshake group of the channel’s data class any time outside this call by
either copying, or pointer passing. Used only with TL protocols, which
have separate data and request phases.

Suspends the calling thread. Returns after the slave has released the data
request channel. Returns true on success, false on failure.

Triggers the default event and data request start event.

12



bool Mut Dat aRequest ()

Purpose: Issues a data write request to the slave. Mput Dat aRequest () should
be called only after Myjet Sbusy() returns false; that is, the slave is no
longer using the channel data buffer. Both copy and pointer-passing put
data methods can be used, but the passed data buffer must not be re-used
by the master until Myet SbusyDat a() is false.

Mput Dat aRequest () is used only with TL protocols, which have
separate data and request phases. Must be called only once per clock
cycle in TL1 models.

Return: Returns immediately. The master must suspend itself to allow the slave
process to run. Returns true if channel accepts the request, false if not.

Events: Triggers the default event and data request start event. No event when
return-value is false.

bool Mut ReadRequest Bl ocki ng()

Purpose: Issues a read request to the slave. The master may read the response data
only after Mget Response* () call returns true.

Return: Returns after the slave has released the request channel. Returns true on
success and false on failure. Suspends calling thread.

Events: Triggers the default event and request start event. No event when return-
value is false.

bool Mut ReadRequest ()

Purpose: Issues a read request to the slave. Should be called only when
Myet Sbusy() returns false. The master may read the response data only
after an Mget Response* () call returns true. Must be called only once
per clock cycle in TL1 models.

Return: Returns immediately. The master must suspend itself to allow the slave
process to run. Returns true if channel accepts the request, false if not.

Events: Triggers the default event and request start event. No event when return-
value is false.

13



bool Myet ResponseBl ocki ng(bool Rel ease)

Purpose:

Parameters:

Return:

Events:

Gets the response from the slave and suspends the calling thread.
Myet ResponseBl ocki ng() can only be called after

Mput * Request (). After this command returns, the channel’s data
class will contain the response data.

If Rel ease is true, the response channel is released immediately;
otherwise, the response channel is not released until M el ease() is
called. If channel parameter r espaccept is 0, Release parameter has
no effect; the channel is released a delta cycle after the request
automatically.

Returns true at success and false on failure. Returns after the slave has
called the Sput Response() method.

No event.

bool Myet Response(bool Rel ease)

Purpose:

Parameters:

Return:

Events:

Gets the response from the slave. If this command returns true, the
channel’s data class will contain the response data.

If Rel ease is true, the response channel is released immediately.
Otherwise the response channel is not released until M el ease* () is
called. The release mechanism is equal to calling M el ease() after
Myet Response(f al se) . If called at clock edge, the channel is
released for the next clock (two cycle transaction). If channel parameter
respaccept is 0, Release parameter has no effect; the channel is
released a delta cycle after the request automatically.

Returns immediately. Returns true after the slave has responded to the
read request, false before. Master must suspend itself to allow the slave
process to run.

No event.

14



bool Myet ResponsePE() deprecat ed

Purpose:

Parameters:

Return:

Events:

Gets the response from the slave. Myet ResponsePE() can only be
called after Mput * Request () . The channel’s data class contains valid
data, and the channel’s data pointer can be used by the master when this
call returns true, and before Mput * Request () is called again. Use only
in conjunction with Mr el easePE() . Use only with clocked processes.

None.

Returns immediately. Returns true after the slave has responded to the
read request, false before. Master must suspend itself to allow the slave
process to run.

No event.

voi d M el ease()

Purpose:

Return:

Events:

Releases the response channel. Note that the calling thread is not
suspended, and the slave thread cannot run until the master suspends itself.
Can be called only after a response is detected on the channel. In fully
clocked TL1 models, this means that the slave sees the release at the next
clock edge, resulting to a minimum of two-cycle transaction.

Returns immediately. No return value.

No event.

void M el easePE()

Purpose:

Return:

Events:

Preemptively releases the response channel; that is, without knowing if
there is a response. This is used in TL1 masters, which do not want to
block the next response. The primary purpose of this method is to allow
TL1 masters use single-cycle response handshake. Can be called at any
time during a clock cycle. This causes a channel update, and the pending
and all the following responses are released until Munr el easePE() is
called. This method should not be used in TL2 modeling.

Returns immediately. No return value.

No event.

15



voi d Munr el easePE()

Purpose:

Return:

Events:

Removes preemptive release on the response channel. This is used in TL1
masters, which do want to block the next response. Can be called at any
time during a clock cycle. This causes a channel update, and the pending
or the following response is blocked until Mr el ease* () is called. This
method should not be used in TL2 modeling.

Returns immediately. No return value.

No event.

void Mel ease(sc_tine Tinme)

Purpose:

Return:

Events:

void M egi

Purpose:

Return:

Events:

Releases the response after Ti me time units. Note that the calling thread is

not suspended, and the slave thread cannot run until the master suspends
itself. This call is primarily used with TL2 and TL3.

Returns immediately. No return value.

No event.

sterDirect| F(Mlirectl F<TdataC > *MasterDirectl|F)

This method registers the direct interface of the master at the channel. It
must be called if the master has implemented the Sput Di r ect ()
method, which can be used by the slave to directly read or write data to the
master without affecting the timing of the system.

Returns immediately. No return value.

No event.

bool MputDirect(int Masterl D, bool IsWite,

Purpose:

Td* Dat aPoi nter, Ta Address, int NumAords)

This method belongs to the direct interface of the slave, and it must be
implemented in the slave. This method allows the master to directly read
or write data to the slave without affecting the timing of the system. If the
slave has implemented this method, the slave must register the method at
the channel by calling the Sr egi st er Di r ect | F() method of the
channel.

16



Return: Returns immediately, returning true on success and false on failure. A
return value of false usually means that the slave has not implemented this
method; that is, the slave does not support direct access.

Events: No event.

17



4.1.3. Generic Slave Interface (tl_slave_if.h)

This section describes the methods for the slave’s interface.

TdataCl * GetDatad ()

Purpose: Gets the pointer to the data class of the channel.

Return: Returns the pointer immediately.

bool IsWite()

Purpose: Indicates whether current request is a read or a write transfer. Other
request types can be communicated over the data class (in case of OCP,
through the MCnd field).

Return: false = Read transfer

true = Write transfer

bool Sget Mousy()

Purpose: Status of the master busy semaphore. This method indicates whether the
master has released the previous request.

Return: Immediately returns true if master has not received the last response event,
and false if it has.

Events: No event.

bool Sget Request Bl ocki ng(bool Rel ease)

Purpose: Blocks execution until the master signals a request event. Channel data
can be used until the slave thread suspends; that is, meets awai t () call.

Parameters: If Rel ease is true, the request channel is released immediately;
otherwise, the request channel is not released until Sr el ease() is
called. If channel parameter cndaccept is 0, Release parameter has no
effect; the channel is released a delta cycle after the request automatically.

Return: Suspends the calling thread. Returns after a read or write event from the
master.
Events: No events.

18



bool Sget Request (bool Rel ease)

Purpose: Gets a request. If true, channel data can be used until the slave thread
suspends; that is, meets a wai t () call.

Parameters: If Rel ease is set true, the request channel is released immediately;
otherwise it is not released until Sr el ease* () is called. The release
mechanism is equal to calling Sr el ease() after
Sget Request (f al se) . Ifcalled at clock edge, the channel is released
for the next clock (two cycle transaction). If channel parameter
cndaccept is 0, Release parameter has no effect; the channel is released
a delta cycle after the request automatically.

Return: Returns true when the master request is pending, returns immediately.

Events: No events.

bool Sget Request PE() depr ecat ed

Purpose: Gets a request. If true, channel data can be used until the slave thread
suspends; that is, meets awai t () call. Use only with Sr el easePE() .
Use only with clocked processes.

Parameters:  None.

Return: Returns true when a master request is pending, returns immediately.

Events: No events.

bool Sget Dat aRequest (bool Rel ease)

Purpose:

Parameters:

Return:

Events:

Gets a data request. If true, channel data can be used until the slave thread
suspends; that is, it meets awai t () call.

If Rel ease is set to true, the data request channel is released
immediately; otherwise, it is not released until Sr el easeDat a() is
called. The release mechanism is equal to calling Sr el easeDat a()
after Sget Dat aRequest (f al se). Ifcalled at clock edge, the
channel is released for the next clock (two cycle transaction). If channel
parameter dat aaccept is 0, Release parameter has no effect; the
channel is released a delta cycle after the request automatically. Used only
with TL protocols, which have separate data and request phases.

Returns true when master data request is pending, returns immediately.

No events.

19



bool Sget Dat aRequest PE() deprecat ed

Purpose:

Parameters:
Return:

Events:

Gets a data request. If true, channel data can be used until the slave thread
suspends; that is, it meets awai t () call. Use this method only with
Sr el easeDat aPE() . Use only with clocked processes.

None.
Returns true when a master data request is pending, returns immediately.

No events.

bool Sget Dat aRequest Bl ocki ng( bool Rel ease)

Purpose:

Parameters:

Return:

Events:

Blocks execution until the master signals a data request event. Channel
data can be used until the slave thread suspends; that is, meets a wai t ()
call.

If Rel ease is true, the request channel is released immediately;
otherwise, the data request channel is not released until

Sr el easeDat a* () is called. If channel parameter dat aaccept is 0,
Release parameter has no effect; the channel is released a delta cycle after
the request automatically. Used only with TL protocols, which have
separate data and request phases.

Suspends calling thread. Returns after read or write event from the master.

No events.

bool Sput ResponseBl ocki ng()

Purpose:

Return:

Events:

Issues a response to the master. Sput ResponseBl ocki ng() can be
called only after a request is detected by Sget Request (). The
response data can only be written between these get and put calls.

Suspends calling thread. Returns after the master called M el ease* () .
Returns true at success and false at failure.

Triggers default event, and response event. No event if returns false.

20



bool Sput Response()

Purpose: Issues a response to the master. Sput Response( ) can be called only
after a request is detected by Sget Request () or
Sget Request Bl ocki ng() . The response data can only be written
between these get and put calls. Must be called only once per clock cycle
in TL1 models.

Return: Returns immediately. Returns true if channel accepts the response, false if
not.
Events: Triggers default event, and response event. No event if returns false.

voi d Srel ease()

Purpose: Releases the request channel. Note that the calling thread is not suspended,
and the master thread cannot run until the slave suspends itself.

Return: Returns immediately. No return value.

Events: No events.

voi d Srel easePE()

Purpose: Releases request channel preemptively. See M el easePE() .
Return: Returns immediately. No return value.
Events: No events.

voi d Sunr el easePE()

Purpose: Removes preemptive release from request channel. See
Munr el easePE() .

Return: Returns immediately. No return value.

Events: No events.

void Srel ease(sc_tinme Tine)

Purpose: Releases the request channel after Ti me time units. Note that the calling
thread is not suspended, and the master thread cannot run until the slave
suspends itself.

21



Return: Returns immediately. No return value.

Events: No events.

voi d Srel easeDat a()

Purpose: Releases the data request channel. Note that the calling thread is not
suspended, and the master thread cannot run until the slave suspends itself.
Used only with TL protocols, which have separate data and request

phases.
Return: Returns immediately. No return value.
Events: No events.

22



voi d Srel easeDat aPE()

Purpose:

Return:

Events:

Releases the data request channel preemptively. Used only with TL1
protocols, which have separate data and request phases. See
M el easePE() .

Returns immediately. No return value.

No events.

voi d Sunr el easeDat aPE()

Purpose:

Return:

Events:

Removes preemptive release from the data request channel. Used only
with TL1 protocols, which have separate data and request phases. See
Munr el easePE() .

Returns immediately. No return value.

No events.

void Srel easeData(sc_tinme Tinme)

Purpose:

Return:

Events:

voi d Sregi

Purpose:

Return:

Events:

Releases the data request channel after Ti me time units. Note that the
calling thread is not suspended, and the master thread cannot run until the
slave suspends itself. Used only with TL1 protocols, which have separate
data and request phases.

Returns immediately. No return value.

No events.

sterDirect| F(Sdirectl F<TdataC > *SlaveDirectlF)

Registers the direct interface of the slave at the channel. This method must
be called if the slave has implemented the Mput Di r ect () method,
which can be used by the master to directly read or write data to the slave
without affecting the timing of the system

Returns immediately. No return value.

No event.

23



bool SputDirect(int SlavelD, bool IsWite, Td* DataPoi nter

Purpose:

Return:

Events:

Ta Address, int Numrds)

This method belongs to the direct interface of the master and must be
implemented in the master. This method allows the slave to directly read
or write data to the master without affecting the timing of the system. If
the master has implemented this method, the master must register the
method at the channel by calling the M egi st er Di r ect | F() method
of the channel.

Returns immediately, returning true on success and false on failure. A
return of false usually means that the master has not implemented this
method; that is, the master does not support direct access.

No event.

4.1.4. Reset Methods (common for tI_master_if.h and tl_slave_if.h)

This section describes the methods for the reset methods

voi d reset()

Purpose:

Return:

Events:

Puts channel in reset state. Resets all channel state variables, and calls
data class reset. All in-band methods will return immediately with false
return value while reset is active. All blocking methods are released, and
return with false.

Void

All start and end events fire (to release all waits in the system)

voi d renmove_reset ()

Purpose:
Return:

Events:

Removes reset state from the channel after a delta cycle delay.
Void

ResetEndEvent.

bool get reset()

Purpose:

Return:

Tests if channel is in reset state.

True if reset, false otherwise.

24



Events: None.

4.2. OCP TL1 Data Class

A data class provides an implementation for a bus protocol. A user may create a data class that
suits a particular purpose. The data class implements the data access methods for the protocol.
The typical minimum data of any protocol are read data, write data, and address. The data class
should also implement data protection, such as current-next copies of the data fields. The
generic channel assumes that the data class implements public methods updat e_Fw( i nt
event Sel ect),update_FwD(i nt event Sel ect),and updat e_Bw(i nt

event Sel ect) , which are called at request, data request, and response updates.

We provide a data class for OCP protocol with the generic channel release package. A user may
modify this class for use with other protocols. A rudimentary OCP TL1 channel can be created
by using the generic channel class template with an argument of the OCP_TL1_Dat aCl class,
which is provided in the i ncl ude/ ocp_t1 1_dat a_cl . h header file. The

OCP_TL1 Dat ad class contains private member variables and public access methods such
that, by using them, OCP dataflow transactions and sideband signals can be exchanged between
the master and slave ports.

Notice that the generic channel with the OCP_TL1 DataCl described in this section is not the
same as the OCP specific TL1 channel. The generic channel and the OCP data class together
provide a foundation for the OCP specific TL1 channel, which implements an easy-to-use API
for the OCP. For more information on the OCP TLI1 specific channel, see the document A
SystemC™ OCP Transaction Level Communication Channel.

In general, for each master-driven OCP signal, M, there is a corresponding Mput MF () driving
method. In addition, Sget M () methods also exist for those signals and can be used by the
slave to sample the signals. Similarly for slave-driven OCP signals, S*, corresponding

Sput S*() and Mget S* () methods are provided. As for the OCP control and status sideband
signals, access methods for the system side and the core side are distinguished by having the
“Sys” prefix and the “C” prefix, respectively.

This naming scheme makes the behavior of most of the channel methods obvious. For those that
are not, some explanation is given in the following sections.
4.2.1. Enumerator Types

Two enumerator types OCPMCnd Ty pe and OCPSRespType are defined in an included header
file with the encoding as specified for the OCP MCmd signal and SResp signal, respectively.
The encodings are named according to the OCP specification (See www.ocpip.org).

25



The MCmd signal is encoded as follows:

enum OCPMCndType {
OCP_MCMD_I DLE = 0,
OCP_MCMD_WR,
OCP_MCMD_RD,
OCP_MCMVD_RDEX,
OCP_MCMD_RESERVED4,
OCP_MCVD_W\RNP,
OCP_MCVD_RESERVEDS,
OCP_MCMD_BCST

1

The SResp signal is encoded as follows:

enum OCPSRespType ({
OCP_SRESP_NULL = 0,
OCP_SRESP_DVA,
OCP_SRESP_RESERVED?,
OCP_SRESP_ERR

1

4.2.2. Mandatory (and Generic) Data Class Member Functions

There are several methods used by the channel itself and hence must always be defined. These
methods do not follow the general naming scheme described in the previous subsection because
they are not used through masters or slaves. The mandatory methods are:

bool 1sWiteRequest ()

/1 QOCP inplenmentation of the nethod

return((mMomd[1 — m ReqToggl e] == OCP_MCMD WR) ? true : false);
}
void Set WiteRequest ()
{
/1 QOCP inplenmentation of the nethod
m MCmd[ m ReqToggl e] = OCP_MCVD_WR;
}

voi d Set ReadRequest ()
/1 QOCP inplenentation of the nethod
m MCmd[ m ReqToggl e] = OCP_MCVD_RD;
}

4.2.3. OCP Request Group Signals

The request group signals can be written by the master (Mput * ) when the Myet Sbusy()
channel call returns false before Mput * Request * () . Typically, the request group signals are
written at a rising clock edge or a small delay later (the latter one with RTL/TLM cosimulation).

26



The signals can be read by the slave (Sget * ) when the Sget Request () channel function
returns true at a clock rising edge or at channel default event. The methods for the OCP request
group signals are as follows:

voi d Mput MAddr (Ta a)
Ta Sget MAddr ()

voi d Mput MAddr Space(int a)
int Sget MAddr Space()

voi d Mput MByt eEn(i nt a)
int Sget MByteEn()

voi d Mput MCnd( OCCPMCd Ty pe  a)
OCPMCndType Sget MCnd()
OCPMCndType SreadMCnd(voi d) const

voi d Mput MConnl D(i nt a)
int Sget MConnl ()

voi d Mout MDat a( Td d)
voi d Sget MDat a( Td &d)
Td SgetMData() // This is a different form of Sget Mdata()

voi d Mput MThreadl D(i nt a)
int SgetMrhreadl D()

voi d Mput MBur st Preci se(bool a)

bool Sget MBur st Preci se(voi d) const

voi d Mput MBur st Seq( OCPMBur st SeqType a)
OCPMBuUr st SeqType Sget MBur st Seq(voi d) const
voi d Mout MBur st Si ngl eReq( bool a)

bool Sget MBur st Si ngl eReq(voi d) const

voi d Mput MReqglLast (bool a)

bool Sget MReqlLast (voi d) const

Warning:  Sget MCnd( ) returns the OCP MCnd field and resets the MCmd
signal; that is, the Sget MCnd( ) is not persistent. This behavior,
although different from the OCP MCmd signal in the RTL level, is
alright because the data class calls are not used for synchronization.
SreadMCnd() does not reset MCmd.

4.2.4. OCP Data Request Group Signals

The data request group signals can be written by the master (Mput * ) when the
Myet SbusyDat a() channel call returns false before Mput Dat aRequest * () . Typically,

27



the request group signals are written at a rising clock edge or a small delay later (the latter one
with RTL/TLM co-simulation). These signals are to be used with OCP interfaces, which have
data handshake enabled. Notice that the Mout MDat aHS() and Sget MDat aHS() are used
instead of Mput MDat a() and Sget MDat a() . Those calls should not be intermixed.

The signals can be read by the slave (Sget * ) when the Sget Dat aRequest () channel
function returns true, at a clock rising edge, or at channel default event. The methods for the
OCP data request group signals is as follows:

voi d Mout MDat aHS( Td d)
voi d Sget MDat aHS( Td &d)
Td Sget MDat aHS()

voi d Mput MDat avVal i d(bool a) // Should not be used
bool Sget MDat aVal i d()
bool SreadMbat aval i d(voi d) const

voi d Mout MDat aThreadl D(i nt a)
int Sget Mbat aThreadl D()

Warning:  Sget MDat aVal i d() returns the OCP MDat aVal i d field and
resets the master’s MDataValid signal; that is, the
Sget MDat aVal i d() is not persistent. This behavior, although
different from OCP MDataValid signal in RTL level, is all right
because the data class calls are not used for synchronization.
Sr eadMDat aVal i d(voi d) const does not reset the
MDataValid.

4.2.5. OCP Response Group Signals

The response group signals can be written by the slave (Sput * ) when the Sget Mousy()
channel call returns false, before Sput * Response* () . Typically, the request group signals

are written at a rising clock edge or a small delay later (the latter one with RTL/TLM co-
simulation).

The signals can be read by the master (Myet * ) when the Myet Response() channel function
returns true, at a clock rising edge, or at channel default event. The methods for the OCP
response group signals is as follows:

voi d Sput SDat a( Td d)
void Mget SDat a( Td &d)
Td Myet SDat a()

voi d Sput SResp( OCPSRespType a)

OCPSRespType Myet SResp()
OCPSRespType M eadSResp(void) const

28



voi d Sput SThreadl D(i nt a)
int MetSThreadl ()

voi d Sput SDat al nf o(unsi gned i nt d)
voi d Myet SDat al nf o(unsi gned int &d) const

voi d Sput SRespl nfo(unsi gned int d)

voi d Mget SRespl nfo(unsi gned int &d) const
voi d Sput SResplLast (bool d)

voi d Myet SResplLast (bool &d) const

bool Myet SRespLast (voi d) const

Warning: Myet SResp() returns the OCP SResp field and changes the slave’s
SResp signal; that is. Mgjet SResp() is not persistent. This
behavior, although different from OCP SResp signal in the RTL
level, is alright because the data class calls are not used for
synchronization. M eadSResp() does not reset SResp.

4.2.6. Example: Address Transfer Methods

The address transfer methods are shown here as an example to illustrate how the private member
variables, m_MAddr[0] and m_MAddr[1], are set when their access methods are called. The
Mput MAddr () method is used to drive a new address onto the OCP MAddr signal. The

Sget MAddr () method is used to sample the OCP MAddr signal. Note that the data class is
templatized over the address type (Ta). This allows switching between, for example, 32-bit
addresses and 64-bit addresses without rewriting code. The toggling happens at least one delta
cycle after the transaction is initiated through the channel. This provides the necessary inertia so
that data does not just trickle through the channel. The update process can be either an inertial
update or an immediate update, depending on the setting of the m_Synchr on variable. The
inertial update ensures that current data members are never updated at the same clock edge they
are read. This is required in TL1 for independence of thread execution order.

The following are the example methods.

voi d Mput MAddr (Ta a) {
m MAddr [ m ReqToggl e] = a;
}

Ta Sget MAddr () {
return mMAddr[1 — m ReqToggl e];
}

The update Fw(int eventSelect) method is called by the generic channel at the request update()
phase, toggling the toggle:

29



voi d update_Fw(int eventSel ect) {

m ReqToggl e = 1 - m ReqToggl e;

4.2.7. TL1 versus RTL

The TL1 protocol sequences are similar to RTL sequences, with only small differences. It is
possible to recreate accurate OCP timing diagrams with correctly constructed masters and slaves.
The OCP fields internal to the data class do not follow OCP timing accurately because the
generic channel synchronization must be combined with the data class in order to implement the
full protocol. For example, the MCd field is reset when Sget MCnd( ) is called. Therefore, to
recreate the MCmd signal for RTL, Sget Request (), Sr el ease(), and the clock must be
used.

Because the TL1 event model is far simpler than the RTL event model for purposes of simulation
speed, arbitrary RTL delays and signal glitches cannot be fed into TL1 channel. The data fields
must remain stable once the transaction is committed. This causes extra difficulties for creating
RTL-TLM converters similar to co-simulation of RTL and cycle-based models. The difficulties
arise from the very essence of the abstraction levels and are unavoidable in our opinion. The
RTL side of the RTL-TLM converter must take care of glitch removal.

4.2.8. Example: Sending and Receiving Write Transactions

The following pseudo-code segments show, as an example, how an OCP write transaction can be
sent over an OCP channel using the OCP_TL1_ Dat aC class’ public methods. It is assumed
that this is a posted write transaction, thus, no response is sent.

e

/1 on the master sending side
I
wait(); // Wait for clock rising edge

if (!MgetShusy()) { // Check if slave can accept request
Mout MConnl I( 0) ;
Mout MThr eadl D( 0) ;
Mout MAddr ( 0x30) ;
Mout MDat a( ( Td) wr _dat a) ;
Mout Wi t eRequest () ;

R R R
/1 on the slave receiving side

wait(); // Wait for clock rising edge

30



if (SgetRequest(true)) {
int nconnid = Sget MConnl () ;
int mhreadid = Sget Mrhreadl () ;
Ta address = Sget MAddr () ;
OCPMCdType ntnd = Sget MCnd() ;
Td w _data = Sget Mbat a();

}

Calling the Mout MConnl D() , Mput MThr eadl () , and Mput MAddr () methods sets the
OCP MConnlID, MThreadID, and MAddr signals, respectively. The address passed into the
Mput MAddr () method should be on an OCP-word boundary. The Mput W i t eRequest ()
call indicates that an OCP write transaction is going to be delivered. The Mput MDat a()
method is used to send the write data onto the OCP channel.

On the slave side, the Sget MConnl D() , Sget Mrhr eadl X ) , Sget MAddr () , and
Sget MCd() methods are called to retrieve values of the OCP MConnID, MThreadID,
MAddr, and MCmd signals, respectively. The Sget MDat a( ) method is used to receive the
write data.

Note that the slave sees the request at the next clock edge after the master has called

Mput Wit eRequest (), and the master sees the release at the next cycle after the slave has
released the channel with Sget Request (t r ue) -method. A transaction last therefore two
cycles in this example.

In the following pseudo-code, the slave uses pre-emptive release method to release all incoming
requests. The slave must be prepared to get the request, and consume the data at every clock
cycle. A transaction lasts therefore one cycle in this example.

I LR R
/1 on the master sending side
I
wait(); // Wait for clock rising edge
if (!MyetShusy()) { // Check if slave can accept request
Mout MConnl D( 0) ;
Mout MThr eadl D( 0) ;
Mout MAddr ( 0x30) ;
Mout MDat a( ( Td) wr _dat a) ;

Mout Wi t eRequest () ;
}
R T R
/1 on the slave receiving side
N R T R
Srel easePE(); // Release the channel for all transactions
wait(); // Wait for clock rising edge

if (SgetRequest(false)) { // the Srel easePE() overrides the argunent
int nconnid = Sget MConnl D() ;
int mhreadid = Sget Mrhreadl () ;
Ta address = Sget MAddr () ;
OCPMCmdType ntd = Sget MCnd( ) ;

31



Td w_data

Sget MDat a() ;

32



4.2.9. Example: Sending and Receiving Read Responses

The following pseudo-code segments show, as an example, how a single-OCP-word read
transaction can be exchanged between the master and slave of an OCP connection.

N R TR R
/1 on the master sending side
N R R
/1 sending a read request

wait(); // Wait for rising clock edge

Mout MAddr ( 0x30) ;
Mout ReadRequest () ;

whil e(true) {
wait();
/1 receiving a read response and data
i f (Myet Response(1)) {
OCPSRespType sresp = Mget SResp();
if (sresp == OCP_SRESP DVA) {
Td rd_data = Met Sbhat a() ;
}

br eak;

33



] mmm e e
/1 on the slave side

)
wait(); // Wait for rising clock edge

if (SgetRequest(1l)) {
Ta address = Sget MAddr () ;
OCPMCdType ntd = Sget MCnd( ) ;
if (ncnd == OCP_MCMD_RD) {
/1 Response code (data valid)
Sput SResp( OCP_SRESP_DVA) ;
Sput SDat a(rd_dat a) ;
Sput Response() ;

}
}
This time the Mput MCnd( ) and Mput Bur st Len() calls together send a single-OCP-word
read request to the OCP channel. When the slave receives a request, it first checks whether it is a
read request. In this example, after the read data is obtained, the slave sends back an OCP DVA

response and the single-OCP-word read data by calling the Sput SResp() and Sput SDat a()
methods, respectively.

On the master side, when a read response has arrived, the master uses the Mpet SResp() and
Myget SDat a() methods to retrieve the status of the response and the read data, respectively.

4.3. OCP TL2 Data Class

In principle, the same data class could be used for TL2 and TL1. We have created separate
classes, since the TL2 requirements are much simpler, and the data class can be implemented
more efficiently. For example, current-next copies of data are not needed since there is no clock,
and no sub-clock cycle events. The data integrity can be fully guaranteed with the flow control
that the generic channel provides. Pointer passing is usually sufficient, without need to copy the
data at all. (Destruction of buffers is the responsibility of the sender.)

We provide a TL2 data class for OCP protocol with the generic channel release package. A user
may modify this class for use with other protocols. A rudimentary OCP TL2 channel can be
created by using the generic channel class template with an argument of the OCP_TL2_Dat aCl
class, which is provided in the i ncl ude/ ocp_t| 2_dat a_cl . h header file. The
OCP_TL2_Dat ad class contains private member variables and public access methods such
that, by using them, OCP dataflow transactions and sideband signals can be exchanged between
the master and slave ports. (See also section 4.2 “OCP TL1 Data Class.”)

In general, for each master-driven OCP signal, M*, there is a corresponding Mput Mf () driving
method. In addition, Sget MF () methods also exist for those signals and can be used by the
slave to sample the signals. Similarly for slave-driven OCP signals, S*, corresponding

Sput S*() and Mget S* () methods are provided. As for the OCP control and status sideband

34



signals, the access methods for the system side signals are distinguished with “Sys” prefix, and
the core side signals are distinguished with a “C” prefix. This naming scheme makes the
behavior of most of the channel methods obvious. For those that are not, some explanation is
given in the following sections.

To the user, the TL2 data class looks very similar as the TL1 with a few additional members. The
TL2 transaction typically contains a full OCP burst. The data fields are set at the beginning of the
burst and stay constant during the burst. For example, the address field of the transaction is the
first address of the burst, and the slave derives the other addresses from the burst related fields.

Because some fields, like byte enable, may change at each transfer of a burst, it is possible to
break the burst into several transactions (sometimes called “chunks’) when necessary. To do so,
four additional data class members that are TL2-specific have been added: M eqChunkLen,
SrespChunkLen, M eqChunkLen, MReqChunkLast , and ‘Sr espChunkLen. The

M eqChunkLen and Sr espChunkLen members are used to specify the chunk length for both
request and response transfers. The MReqChunkLast and SRespChunkLast members
indicate if the current chunk is the last one of a complete OCP request/response burst or not.
Usage of these members is illustrated on Figure 4.

Master sending an OCP request burst (BurstLength="10"):
3 request chunks with different ‘MReqInfo’ values

Chunk 1 Chunk 2 Chunk 3
L N N N ] e 000
* MReglInfo = ‘0x41’ * MReglInfo = ‘0x63"’ * MReqlInfo = ‘0x12"’
« MReqChunkLen =4 « MReqChunkLen =4 * MReqChunkLen =4
« MRegChunkLast = false « MRegChunkLast = false * MReqChunkLast = true

Slave sending an OCP response burst (BurstLenght="10"):
2 response chunks with different ‘SResplinfo’ values

Chunk 1 Chunk 2
L B
* SRespinfo = ‘0x52" * SResplinfo = ‘0x37’
¢ SRespChunkLen =5 * SRespChunkLen =5
* SRespChunkLast = false * SRespChunkLast = true

Figure 2. Usage of the chunk-related data class members

35



4.3.1. OCP Request Group Signals

The request group signals can be written by the master (Mput * ) right before the
Mput * Request * () call. The data protection toggle switches state at each request. The slave
may read the signals (Sget*) right after the Sget Request * () returns true.

The following are the methods for the OCP request group signals:

voi d Mout MAddr (Ta a)
Ta Sget MAddr ()

voi d Mput MAddr Space(unsi gned int a)
unsi gned int Sget MAddr Space()

voi d Mput At om cLen(unsigned int a)

Purpose: Sets Request Transaction data length. Can be used in lieu of w-parameter
of Mout MDat a() function. Not part of OCP 1.0 but necessary for TL2 to
work.

unsi gned int Sget At om cLen()

Purpose: Returns the Request Transaction data length. Can be used in lieu of w-
parameter of Sget MDat a() function. Not part of OCP 1.0, but
necessary for TL2 to work.

voi d Mput MBur st Seq( OCPMBur st Type a)
OCPMBuUr st SeqType Sget MBur st Seq()

voi d Mput MByt eEn(i nt a)
int Sget MByteEn()

voi d Mput MCnd( OCCPMCd Ty pe  a)
OCPMCnd Type Sget MCnd ()

voi d Mput MConnl D(i nt a)
int Sget MConnl D()

voi d Mput MThr eadl D(unsi gned int a)
unsi gned int Sget Mrhreadl ()

voi d Mput MBur st Lengt h(unsi gned i nt a)
unsi gned i nt Sget MBur st Lengt h()

voi d Mout MBur st Preci se (bool a)
bool Sget MBur st Precise ()

36



voi d Mout MBur st Si ngl eReq( bool a)
bool Sget MBur st Si ngl eReq()

voi d Mput MReql nfo (unsigned int a)
unsi gned int Sget MReqlnfo ()

voi d Mput MReqgLast (bool a)
bool Sget MReqlLast ()

voi d Mput MDat a( Td* d, unsigned int w = 1,
bool |ast_of a burst = true)

Parameters:

d is the pointer to data array

wis the data array length (request chunk length)

| ast _of _a_ bur st is the last datum of a burst transfer is sent with this
transaction

Td* Sget Mbat a(unsigned int& w, bool & | ast_of _a burst)
Parameters:

wis the data array length (request chunk length)
| ast _of a_bur st is the last datum of a burst transfer is sent with this
chunk.

Return: Pointer to data array

Td* Sget MDat a(i nt & w)
Parameters: ~ Wis the data array length (request chunk length)

Return: Pointer to data array

voi d Mput MReqChunkLen(unsi gned int w)

Purpose: Sets the request chunk length. Mout MReqChunkLen() can be used in
instead of w parameter of the Mout MDat a() function (for example,. to
send a multiple-chunk READ request). This method is not part of OCP
2.0, but necessary for TL2 to work.

37



unsi gned i

Purpose:

nt Sget MReqChunkLen()

Returns the request chunk length. Sget MReqChunkLen() can be used
instead of W parameter of the SgetMData() function (for example, to get a
multiple-chunk READ request). This method is not part of OCP 2.0 but is
necessary for TL2 to work.

voi d Mput MReqChunkLast (bool w)

Purpose:

unsi gned |

Purpose:

Useful for informing a slave that this chunk is the last of a complete
request burst. Mout MReqChunkLast () can be used instead of the

| ast _of _a_bur st parameter of the Mout MDat a() function (for
example, to send a multiple-chunk READ request). This method is not
part of OCP 2.0 but is necessary for TL2 to work.

nt Sget MReqChunkLast ()

Determine if this chunk is the last of a complete request burst. Can be used
in lieu of last of a burst-parameter of SgetMData() function (e.g. to get a

multiple-chunk READ request). This method is not part of OCP 2.0 but is
necessary for TL2 to work.

Notes: Sget MCnd( ) returns the OCP MCnd field and resets the MCmd signal;
that is, Sget MCrrd( ) is not persistent. This behavior, although different
from the OCP MCmd signal in the RTL level, is alright because the data
class calls are not used for synchronization

Mput MCnd (') should only be used in conjunction with
Mput MRequest () channel call because Mput MV i t eRequest ()
or Mout ReadRequest () calls overwrite the MCmd signal.

43.1.1. Timestamp Methods

These methods can be used by a master to indicate duration of a request packet. The
Mput EndTi me() method simulates the time it takes the master to output the current
transaction. In other words, the end time is the earliest time that the request packet is
completely through the interface if the slave does not perform any throttling. The time
stamps do not delay channel events. They are meant for additional information so that the
master can calculate the release time instant. The timestamp methods are as follows:

voi d Mput EndTi me(sc_time tt)

{

ReqEndTinme = tt;

}

38



sc_time Sget EndTi me()
{

}

4.3.2. OCP Data Request Group Signals

return RegEndTi ne;

At the TL2 level, Request and Data Request phases are merged, hence most of the data request
signals are redundant and do no need to be accessed. However, users could use the two following
methods to model the special MDat al nf 0 signal that may be different from the MReql nf 0 in
some implementations.

voi d Mput MDat al nf o(unsi gned int a)
unsi gned int Sget MDat al nf o()

4.3.3. OCP Response Group Signals

The response group signals can be written by the slave (Sput*) right before the
Sput * Request * () call. The data protection toggle switches the state at each response. The
master may read the signals (Mget*) right after the Myet Request * () returns true.

39



The methods for the OCP response group signals are as follows:

voi d Sput SDat al nfo (unsigned int a)
unsi gned int Met SDatal nfo ()

voi d Sput SResp (OCPSRespType a)
OCPSRespType Myet SResp ()

voi d Sput SRespl nfo (unsigned int a)
unsi gned int Mget SResplnfo ()

voi d Sput SResplLast (bool a)
bool Myet SRespLast ()

voi d Sput SThreadl D (unsi gned int a)
unsi gned int Met SThreadl D ()

voi d Sput SDat a( Td* d, unsigned int w = 1,
bool |ast_of a burst = true)

Parameters:  d is the pointer to data array.
wis the data array length (response chunk length).
| ast _of _a_bur st is the last datum of a burst transfer is sent with this
transaction.

Td* Myet SData(int& w, bool & | ast_of _a burst)

Parameters: ~ Wis the data array length (response chunk length)
| ast _of a_ bur st is the last cell of a burst transfer sent with this
transaction

Return: Pointer to data array

Td* Myet SDat a(unsi gned i nt& w)
Parameters:  Wis the data array length (response chunk length)

Return: Pointer to data array

40



voi d Sput SRespChunkLen(unsi gned int w)

Purpose:

unsi gned |

Purpose:

Sets the response chunk length. Sput SRespChunkLen() can be used
instead of the wparameter of the Sput SDat a() function (for example,
to send a multiple-chunk WRITE non-post response). This method is not
part of OCP 2.0 but is necessary for TL2 to work.

nt Sget SRespChunkLen()

Returns the response chunk length. Sget SRespChunkLen() can be
used instead of the wparameter of the Myjet SDat a() function (for
example, to get a multiple-chunk WRITE non-post request). This method
is not part of OCP 2.0 but is necessary for TL2 to work.

voi d Sput SRespChunkLast (bool w)

Purpose:

unsi gned |

Purpose:

Useful for informing a master that this chunk is the last of a complete
response burst. Sput SRespChunkLast () can be used instead of the
| ast _of _a_bur st parameter of the Sput SDat a() function (for
example,. to send a multiple-chunk WRITE non-post response). This
method is not part of OCP 2.0 but is necessary for TL2 to work.

nt Mjet SRespChunkLast ()

Determines if this chunk is the last of a complete response burst.

Myet SRespChunkLast () can be used instead of the

| ast _of _a_bur st parameter of Mget SDat a() function (for
example, to get a multiple-chunk WRITE non-post response). This method
is not part of OCP 2.0 but is necessary for TL2 to work.

41



4.3.3.1. Timestamp Methods

These methods can be used by the slave to indicate duration of response packet. The

Sput EndTi nme() method simulates the time it takes the slave to output the current
transaction. In other words, the end time is the earliest time the response packet is completely
through the interface, if the master does not do any throttling. The time stamps do not delay
channel events. They are meant for additional information so that the master can calculate the
release time instant. The timestamp methods are as follows:

voi d Sput EndTi me(sc_time tt)

{
ResEndTime = tt;
}
sc_time Met EndTi me()
{
return ResEndTi ne;
}

4.3.4. Example: Sending and Receiving (Burst) Write Transactions

The following pseudo-code segments are an example of how a 16-OCP-word write burst
transaction (made of only one chunk in this case) can be sent from (received by) the master
(slave) of an OCP channel using the public methods of the OCP_TL2_Dat aCl class. Assuming

this is a posted write transaction, thus, no response is exchanged.

R R

/1 on the master sending side

R R

Mout MConnl D( 0) ;

Mout MThr eadl D( 0) ;

Mout MAddr (0x30) ;

Mout MCd( OCP_MCVD_WR) ;  // Not mandatory since Mut WiteRequest Bl ocki ng()
/lis used

/1 assuming w _data ptr is pointed to the 16-word wite data

unsi gned int chunk_|ength = 16;

bool last_chunk_of _a burst=true; // Burst is made of only one chunk
Mout MDat a(wr _data_ptr, chunk_|ength, |ast_chunk_of a burst);

/1 the w _data_ptr and its contest can only be changed after the transaction
/1 is committed

Mout Wi t eRequest Bl ocki ng() ;

N R R

/1 on the slave receiving side

R R TR R

i f (Sget Request Bl ocking(1l)) {
int nconnid = Sget MConnl () ;
int mhreadid = Sget Mrhreadl () ;
Ta address = Sget MAddr () ;

42



OCPMCndType ntnd = Sget MCnd() ;
Td* wr_data _ptr = Sget MDat a(chunk_| ength, | ast_chunk_of a burst);

/1 after done with the data pointer, need to conmt this wite transaction

}

Calling the Mout MConnl D() , Mput MThr eadl D( ) , and Mput MAddr () methods sets up the
OCP MConnlID, MThreadID, and MAddr signals, respectively. The address passed into the
Mput MAddr () method should be on an OCP-word boundary. The Mput MCnd( ') call indicates
that an OCP write transaction is going to be delivered. The Mput MDat a() method is used to
send a 16-OCP-word chunk of write data of the write burst transaction onto the OCP channel;
plus, it is the last chunk of the burst transfer. (This is indicated by setting the last actual argument
to “true.”)

On the slave side, the SgetMConnID( ) , Sget Mrhr eadl D() , Sget MAddr () , and

Sget MCrd( ) methods are called to retrieve values of the OCP MConnID, MThreadID,
MAddr, and MCmd signals, respectively. The Sget MDat a() method is used to receive the
write data chunk pointer, plus, the data word length, and to tell whether or not this is the last
chunk of the current write burst transaction.

Note that for the Mout MDat a() method and the Sget MDat a() method, only pointer passing
is allowed in this version. Therefore, the data pointer and its content should not be changed until
the transaction is committed (that is, released). This does not cause any problems because the
channel uses data toggling for protection. Copying transactions execute considerably slower and
require dynamic memory allocation in the channel.

4.3.5. Example: Sending and Receiving (Burst) Read Responses

The following pseudo-code segments show as an example how a single-OCP-word read
transaction can be exchanged between the master and slave of an OCP connection. It is also
assumed that this OCP connection is configured without the MConnID and MThreadID signals.

R

/1 on the master sending side
e

/1 sending a read request

Mout MAddr ( 0x30) ;

Mout MCnd( OCP_MCVD_RD) ;

Mout MReqChunkLen(1); // chunk length

Mout MReqChunkLast (true); Burst is made of only one chunk
Mout ReadRequest () ;

/1 receiving a read response and data
i f (Met ResponseBl ocki ng(1)) {
OCPSRespType sresp = Mget SResp();
if (sresp == OCP_SRESP DVA) {
Td* rd_data _ptr = Myet SDat a(chunk_| engt h, | ast _chunk_of a burst);
}

43



N R R
/1 on the slave receiving side
e
i f (Sget RequestBl ocking(1)) {
Ta address = Sget MAddr () ;
OCPMCdType ntd = Sget MCnd() ;
if (ncnd == OCP_MCMD_RD) {
int chunk_l ength = Sget MReqChunkLen();
bool last_chunk_of a burst = Sget MReqChunkLast ();

/1 returning a read response and data
Sput SResp( OCP_SRESP_DVA) ;

/1 assuming rd data ptr is pointed to the single-word data
Sput SDat a(rd_data_ptr, chunk_length, last_chunk of a burst);
Sput ResponseBl ocki ng() |

}

This time the Mput MCnd( ) and Mput Bur st Len() calls together send a single-OCP-word
read request to the OCP channel. When the slave receives a request, it checks whether it is a read
request first. If a read request is received, the slave retrieves the word length of this read request
using the Sget M eqChunkLen() method. In this example, after the read data is obtained,
the slave sends back an OCP DVA response and the single-OCP-word read data by calling the
Sput SResp() and Sput SDat a() methods, respectively.

On the master side, when a read response arrives, the master uses the Myet SResp() and
Myget SDat a() methods to retrieve the status of the response and the read data, respectively.

Note that for the Sput SDat a() method and the Myet SDat a() method, only pointer passing
is allowed for now.

44



5. GENERIC CHANNEL EXAMPLES

This section presents examples for each transaction layer. The implementations of the examples
can be found in the directories exanpl es/ generi c_ocp_t1 1 and

exanpl es/ generi c_ocp_t| 2. Except for the OCP_TL2_Bus, the examples focus on the
usage of the communication methods of the channel, not on functionality inside the master/slave
modules. The OC_TL2_Bus is an example implementation of a non-cycle-true bus.

The code of the example descriptions is not duplicated. Explanations are focused on the different
concepts. The code can be accessed in the directories mentioned above. The code for the generic
TL channel can be found in directory i ncl ude. The file names in that directory start with
“tl ”, indicating that this is generic code common to all layers. The user-written and protocol-
specific files start with “ocp_tlx ”, where “x” is 1, 2, or 3 depending on the transaction layer of
the example. The top level C++ files are named top x.cpp. The C++ files for the example master
and slaves have a description at the beginning, which is worth reading.

5.1. Generic Channel TL1 Examples

TL1 examples are characterized by masters and slaves that have clock ports and use non-
blocking methods.

5.1.1. TL1 Example #0

The top level C++ file is called t op_async. cpp. The example master and slave files are
ocp_tl1 master_async.cppandocp_tl 1 sl ave_async. cpp. The example
illustrates a simple point-to-point connection involving one master, one channel instance, and
one slave. Use the Make_t1 1 _sync. gcc make file to build the example.

Note: This example is for illustration purposes only. There is no guarantee that it
will behave as expected. Use at your own risk.

5.1.1.1. Master implementation

The master uses two threads: a request sending thread and a response receiving thread. The
request thread is clock driven and issues requests at pre-defined clock cycles. It uses the non-
blocking calls Mout ReadRequest () and Mput Wi t eRequest () . The master’s
response thread is sensitive to the master port and is triggered once the slave has issued the
response. The response channel is released immediately, and because the thread is event-
triggered, this results to a single-cycle response. The response thread can be thought to be
level-triggered in RTL terms, sensitive to the SResp signal, and with the assumption that the
response group is stable once the response is issued. If you want to sample the response data
at the clock edge but handle the release mechanism asynchronously, see example #3
described in section 5.1.4.

45



5.1.1.2.  Slave Implementation

The slave uses two threads: one request receiving thread and one response sending thread.
The request thread is sensitive to the default event of the channel. This is an asynchronous
response mechanism, allowing for responses in the same cycle as the request was issued.
Once the master has sent a request, the slave gets triggered. The slave retrieves the request
data and parameter. It stores them in a FIFO queue so that it can receive more than one
request before issuing a response. The request thread releases the request channel using the
Sr el ease( Ti me) call. The time between receiving the request and releasing the request
channel models the slave’s request acknowledge delay. Because the acknowledge delay is
modeled through a channel method (as opposed to an explicit wai t () call in the request
thread), the slave request thread can continue execution. For read requests, the request thread
computes the response time (based on the time it acknowledged the request) and activates the
response thread. The request thread then waits for a new request. The response thread is
activated by an event triggered in the request thread. Additionally, the response thread has a
state variable indicating whether or not the event was triggered while the thread was busy
(for example, sending the response). Once the response thread has been activated, it checks
for correct timing and sends the response to the master.

This slave is totally asynchronous. It can be used as a model for implementing asynchronous
RAM modules.

5.1.2. TL1 Example #1

The top level C++ file is called t op_async_hs. cpp. The example master and slave files are
ocp_tl1 master_async_hs.cppandocp_tl 1 slave_async_hs. cpp. This
example is nearly identical with the previous one. The only difference is that here a data
handshake channel is used for transferring write data in a different phase from write commands.
Both slave has an extra thread for this purpose. The data handshake is similar to request
(command) handshake. This example uses asynchronous slave and separate threads, but the data
handshake can also be implemented completely synchronously and with a single thread.

Use the Make_t | 1_async_hs. gcc make file to build the example.

Note: This example is for illustration purposes only. There is no guarantee that
it will behave as expected. Use at your own risk.

5.1.3. TL1 Example #2

The top level C++ file is called t op_sync. cpp. The example master and slave files are
ocp_tl1 master_sync.cppandocp_tl1_slave_sync. cpp. The quirk in this
example is that slave uses pre-emptive synchronous release. Use the Make_t1 1 _sync. gcc
make file to build the example.

46



5.1.3.1. Master implementation
The master is similar to example #1, but the response thread is clocked, resulting to two cycle
transactions, since pre-emptive release is not used.
5.1.3.2.  Slave Implementation
The master is similar to example #1, but the release thread is clocked, resulting to two cycle
transactions, since pre-emptive release is not used.

5.1.4. TL1 Example #3

The top level C++ file is still called t op_sync2. cpp. The example master and slave files are
ocp_tl1 master_sync.cpp,ocp_tl 1l slave_sync2.cpp. Usethe
Make tl 1 sync2. gcc make file to build the example.

5.1.4.1. Master implementation

The master is the same as in example #2.

5.1.4.2. Slave Implementation
The slave is otherwise similar to example #2, but now pre-emptive release call is used
resulting to one-cycle transactions.
5.2. Generic Channel TL2 Examples
TL2 examples are characterized by the following features:
No clock ports
Time is estimated
Mostly blocking methods are used

There are two layer-2 examples: a point-to-point connection example and a 3-masters-1-bus-4-
slaves system. Note that the point-to-point connection is produced by the same master and slave
modules that are also used in the master-bus-slave system, proving that no bus is needed to
connect masters with slaves.

5.2.1. TL2 Example #0

The top level C++ file is called ocp_t | 2_t op0. cpp. The example master and slave files are
ocp_tl2 master.cppandocp_tl 2_ sl ave. cpp, respectively. The example has a
simple point-to-point connection involving one master, one channel instance, and one slave.

47



Depending on a random number, the master sends either read or write requests for a burst of data
to the slave.

5.2.1.1. Master Implementation

The master has the following constructor:

OCP_TL2_ Master( sc_nodul e_nane nane,
int 1D,
int Priority,

bool Pi pelined = fal se,
bool WiteResponse = true,
i nt ReadAccept Cycl es = 0,

int WiteAcceptCycles = 0,

i nt ReadResponseCycles = 0,

int WiteResponseCycles = 0 )

| Dis a number identifying the master. | D must be unique among all masters attached to
the same bus.

Priority isa positive number specifying the priority for bus access relative to the
other masters. Higher numbers means higher priority. Masters can have the same priority.

Pi pel i ned is a switch to change between non-pipelined and pipelined operation mode
of the bus.

W i t eResponse is a switch to enable/disable the sending of a response to a master’s
write request. Note that all modules involved in a system must use the same value.

ReadAccept Cycl es, Wit eAccept Cycl es, ReadResponseCycl es, and
Wit eResponseCycl es specify the number of waiting cycles per OCP word by
which the master delays the acceptance of a response or the sending of a request,
respectively.

The master can be pipelined or non-pipelined, depending on a constructor parameter. In the
non-pipelined case, the master uses one thread, which handles request sending and response
receiving. In that case, a new request can only be sent if the response of the previous request
has been received. In the pipelined case, the master uses two threads: a request sending
thread and a response receiving thread. Sending requests and receiving responses are
completely independent from each other. The master sends requests at predefined time
instances and accepts responses whenever the slave sends one. Because blocking methods are
used, no sensitive list is needed. Time delays between sending two consecutive requests are
modeled through wai t () statements. The same holds true for responses. The wait cycles
are configurable through constructor parameters.

The example master has an additional thread, called Mast er D, which shows how to use the
direct access methods. To execute this thread, use the constructor of the master accordingly.

48



The master has the following timing:
Write request transfer:
0 Accept: wait NumNrds * WiteAccept Cycl es cycles
0 Response: wait Wi t eResponseCycl es cycles
Read request transfer:
0 Accept: wait ReadAccept Cycl es cycles
0 Response: wait Num\Wr ds * ReadResponseCycl es cycles
Note that in the non-pipelined case the response is started after the request, while in the
pipelined case request and response are started in parallel.
5.2.1.2.  Slave Implementation

The slave has the following constructor:

OCP_TL2_Sl ave( sc_nodul e_nane nane,
int 1D,
Ta St art Addr ess,
Ta EndAddr ess,

bool Pi pelined = fal se,
bool Wit eResponse = true,
i nt ReadAccept Cycl es = 0,

int WiteAcceptCycles = 0,

i nt ReadResponseCycles = 0,

int WiteResponseCycles = 0 )

| Dis a number identifying the slave. | D must be unique among all slaves attached to the
same bus.

St ar t Addr ess is the start address of the slave’s memory region.

EndAddr ess is the end address of the slave’s memory region. The bus requires 1K-
address alignment.

Pi pel i ned is a switch to change between non-pipelined and pipelined operation mode
of the bus.

Wit eResponse is a switch to enable/disable the sending of a response to a master’s
write request. Note that all modules involved in a system must use the same value.

ReadAccept Cycl es, Wit eAccept Cycl es, ReadResponseCycl es, and
Wit eResponseCycl es specify the number of waiting cycles per OCP word that the
slave delays the acceptance of a request or the sending of a response, respectively.

49



The slave can be pipelined or non-pipelined, depending on a constructor parameter. In the
non-pipelined case, the slave uses one thread, which handles request receiving and response
sending. In that case, a new request can only be received after the response of the previous
request has been sent. In the pipelined case, the slave uses two threads: a request receiving
thread and a response sending thread. The slave uses blocking methods in both cases, so no
sensitivity list is necessary. In the pipelined case, the request thread accepts a request
whenever the master sends one. It then activates the response thread and is ready to receive
another request. Because requests and responses are not synchronized, the request parameters
are stored in a FIFO. This enables the slave to process several requests before sending a
response. If the FIFO is full, the request thread is suspended until a couple of responses have
been sent, and the FIFO is ready to store the new request parameters. The response thread
checks a state variable, indicating whether or not there are pending responses. If there are
none, the response thread waits for an event triggered by the request thread. Otherwise, the
response thread keeps sending responses.

The slave has the following timing:
Write request transfer:
0 Accept: wait NumArds * Wit eAccept Cycl es cycles
0 Response: wait Wit eResponseCycl es cycles
Read request transfer:
0 Accept: wait ReadAccept Cycl es cycles
0 Response: wait Num\WWr ds * ReadResponseCycl es cycles
Note that in the non-pipelined case the response is started after the request, while in the
pipelined case request and response are started in parallel.
5.2.2. TL2 Example #1

The top level C++ file is called ocp_t | 2_t opl. cpp. The example master and slave files are
againocp_t| 2_master.cpp andocp_t| 2_sl ave. cpp, respectively, which are
described in the previous section. Additionally, there is an example bus (file

ocp_t 1 2_bus. cpp). Example #1 models a master-bus-slave system with three master
instances and four slave instances. Depending on a random number, the masters send either read
or write requests for a burst of data to the slave. The master ID is a constructor parameter, which
controls the random number, the address that the masters send the requests to, and the burst
length.

50



5.2.2.1. Bus Implementation

The bus has the following constructor:

OCP_TL2_Bus( sc_nodul e_name narne,
int BuslD,

bool Pi pelined = fal se,
bool WiteResponse = true,
int ReadWaitCycles = 0,

int WiteWitCycles =0)

Bus| Dis a number identifying the bus. Bus| D must be unique among all busses in a
system.

Pi pel i ned is a switch that changes between non-pipelined and pipelined operation
mode of the bus.

Wit eResponse is a switch to enable/disable the sending of a response to a master’s
write request. Note that all modules involved in a system must use the same value.

ReadWai t Cycl es specifies the number of waiting cycles per OCP word by which the
bus delays the transport of the read request/response.

Wit eWai t Cycl es specifies the number of waiting cycles per OCP word by which
the bus delays the transport of the write request/response.

The bus is a module that acts as master and slave. For the masters attached to the bus, the bus
is a slave. For the slaves attached to the bus, the bus is a master. The bus can be pipelined or
non-pipelined, depending on a constructor parameter. In the non-pipelined case, the bus uses
one thread that handles the receiving of requests from the master, sending requests to the
slave, receiving responses from the slave, and sending responses to the master. In that case, a
new request from a master can only be processed after the response of the previous request
has been sent to the master. In the pipelined case, the bus uses two threads: a request thread
which handles receiving requests from the master and sending requests to the slave and a
response thread that performs receiving responses from the slave and sending responses to
the master. These two threads are not synchronized, so the bus can process several requests
before sending a response. The basic functionality of the pipelined bus is as follows:

Masters send requests to bus.
0 The master-bus request channels are locked.

0 The bus is triggered that there are pending requests.

51



Bus collects all pending requests.
0 Bus performs arbitration to select one master.
0 Bus performs address decoding to select the addressed slave.

0 Bus copies the data from the master-bus request channel to the bus-slave request
channel.

0 Bus sends request to the addressed slave and locks the bus-slave-request channel.
0 Bus frees the master-bus request channel.

0 Bus waits for an answer coming from a slave.

The slaves send responses and unlock the corresponding bus-slave request channel.
0 Bus-slave response channel is locked.

0 Bus is triggered that there are pending responses.

The bus collects all pending responses.

0 Bus selects the first pending response.

0 Bus copies the data from the bus-slave response channel to the master-bus response
channel.

0 Bus sends response to the master.

0 Bus frees the bus-slave response channel.

master processes the response data and frees the master-bus response channel.
The functionality in the non-pipelined case is similar.

The bus uses a two-tier arbitration scheme. The first tier arbitration scheme selects the master
with the highest priority. If there is more than one master with the highest priority, the second
tier arbitration scheme is performed. That is a fair-among-equals algorithm based on the
number of processed requests for each master.

The timing of the bus is as follows:
Write request transfer: wait NumAbrds * Wit eWai t Cycl es cycles
Read request transfer: wait 1 * ReadWai t Cycl es cycles
Write response transfer: wait 1 * Wit eWait Cycl es cycles

Read response transfer: wait NumWAbr ds * ReadWai t Cycl es cycles

52



6. AUXILIARY CLASSES

6.1. CommCl (tl_comm_cl.h)

This class contains the states and events used by the communication mechanism of the Channel.

Access is provided to this class for base generic channel users. Users of OCP specific commands
never need to worry about the ConmCl  class because their commands handle all interactions for
them.

The states and events in the CormTCl class must not be changed by masters and slaves, although
the generic channel gives full access to this class. The purpose of exporting these states and
events is to give masters and slaves read access. Again, these accesses must be read only. For the
intended normal use of the Channel, this class should not be changed.

6.2. ParamCl (ocp_tl_param.h)

The Par anCl class is a Transaction Level parameter class. This parameter class provides a
means for storing parameters like master priorities or slave addresses. When the channel is used
for OCP commands, the parameter class also stores all of the OCP parameter settings for the
channel. Its basic usage model is to write values to this class in the elaboration phase and read
these values from the parameter class at the beginning of the simulation.

Note: These parameter names exactly match those described in the Open Channel
Protocol Specification. For more detail and information about these
parameters, refer to the specification.

6.2.1. Constructor

The Par anCl () constructor takes no arguments and is called automatically by the channel
when a new channel is created. When a new Par anCl object is created, all of the OCP
parameters are set to their default values as defined by the Open Core Protocol Specification
document. When the channel's set Conf i gur at i on() function is called, it uses the passed
parameter map to set the values in the Par anCl object. The constructor is defined as

Par antC ()
6.2.2. Parameter Member Variables
The master or slave can read the parameters of the channel by issuing the command:

Par anCl <Tdat aCl > * Get Par anCl ()

This returns the Par anCl object used to hold the channel's parameters. To be compatible with
the base generic class, this is a non constant pointer. As a result, the core write operation could
use this pointer to change the parameter values of the channel. However, you should avoid this,

53



especially during the simulation run. The values in the Par anCl object should be considered to
be read-only by the core.

The current parameters include the following.

string nanme

Purpose: The name of the OCP channel. Set, but not used, by the OCP specific TL1
channel. May be used by the cores to identify the channel they are
attached to.

Default: "unnamed ocp20_channel"

int Masterl D

Purpose: A non-negative integer, which indicates the identification number of the
master core that is connected to an OCP channel. In generic TL2 example
#1 (see section 5.1.2), which models a multi-master-single-bus-and-multi-
slave system, the Mast er | D parameter is set by a master module and is
used by the bus module to identify its master-core interfaces.

Default: -1 (which is illegal)

int Priority

Purpose: A non-negative integer (higher value means higher priority), which
indicates the bus arbitration priority for the master core that is connected
to an OCP channel. In generic TL2 example #1 (see section 5.2.2), which
models a multi-master-single-bus- and-multi-slave system, the
Priority parameter is set by a master module and is used by the slave
bus module during arbitration.

Default: -1 (which is illegal)

int SlavelD

Purpose: A non-negative integer, which indicates the identification number of the
slave core that is connected to an OCP channel. In generic TL2 example
#1 (see section 5.2.2), which models a multi-master-single-bus-and-multi-
slave system, the SI avel D parameter is set by a slave module and is used
by the master bus module to identify its slave-core interfaces.

Default: -1 (which is illegal)

54



Ta Start Addr ess

Purpose: Indicates the beginning of the address space (region) of the slave core that
is connected to an OCP channel. In the generic TL2 example #1 (see
section 5.2.2, which models a multi-master-single-bus-and-multi-slave
system, the St ar t Addr ess and EndAddr ess parameters are set by a
slave module, and they are used by the master bus module for address
decoding; that is, to dispatch requests to their proper slave-core interfaces
(based on each request’s MAddr value). No address regions of slave-core
interfaces on the bus module can overlap with each other.

Default: 0

Ta EndAddr ess

Purpose: Indicate the end of the address space (region) of the slave core that is
connected to an OCP channel. In the generic TL2 example #1 (see section
5.2.2, which models a multi-master-single-bus-and-multi-slave system, the
St art Addr ess and EndAddr ess parameters are set by a slave
module, and they are used by the master bus module for address decoding;
that is, to dispatch requests to their proper slave-core interfaces (based on
each request’s MAddr value). No address regions of slave-core interfaces
on the bus module can overlap with each other.

Default: 0

fl oat ocp20version

Purpose: Specifies the version of OCP.

Default: 2.0

bool broadcast enabl e
Purpose: Enables the broadcast command when set to true.

Default: false

bool burst_aligned
Purpose: Forces burst to be aligned by a power of two when set to true.

Default: false

55



bool burstseq dfltl enable
Purpose: Enables DFLT1 burst mode.

Default: false

bool burstseq_dflt2 _enable
Purpose: Enables DFLT2 burst mode.

Default: false

bool burstseq_incr_enabl e
Purpose: Allows incrementing bursts.

Default: true

bool burstseq_strm enabl e
Purpose: Allows streaming bursts.

Default: false

bool burstseq_unkn_enabl e
Purpose: Enables UNKN burst mode.

Default: false

bool burstseq _w ap_enabl e
Purpose: Enables WRAP burst mode.

Default: false

bool burstseq_xor_enabl e
Purpose: Enables XOR burst.

Default: false

56



string endi an

Purpose: Specifies the endianess of the channel. The values for this parameter are:
“little”,“big”,“both”,and “neutral ”.

Default: “lTittl e”

bool force_aligned

Purpose: Forces the byte-enable patterns to be powers of two.

Default: false

bool nt hreadbusy_exact

Purpose: Specifies that the slave must use the MTheadbusy signal to send
responses, and the master must accept immediately on non-busy threads.

Default: false

bool rdl wc_enabl e

Purpose: Enables both the ReadLi nked command and the
Wi teCondi ti onal command on the channel.

Default: false

bool read_enabl e
Purpose: Enables support of the Read command.

Default: true

bool readex_enabl e
Purpose: Enables support of the ReadEx command.

Default: false

57



bool sdat at hreadbusy_exact

Purpose: Specifies that the master must use SDataThreadBusy signal to send new
data, and the slave must accept new data immediately on non-busy
threads.

Default: false

bool st hreadbusy_exact

Purpose: Specifies the master must use SThreadBusy signal to send a new request,
and the slave must accept new request immediately on non-busy threads.

Default: false

bool wite_enable
Purpose: Enables support of the Wi t e command.

Default: true

bool writenonpost_enabl e
Purpose: Enables support of the Wi t eNonPost command.

Default: false

bool dat ahandshake

Purpose: Indicates whether there is a separate channel for request data when set to
true.
Default: false

bool reqdata_t oget her

Purpose: Specifies whether the master always puts a request and data in the same
cycle, and the slave always accepts them together in the same cycle.

Default: false

58



bool writeresp _enable

Purpose: Indicates whether responses are sent for write commands

Default: false

bool addr

Purpose: Indicates whether MAddr (Request Address) is part of the OCP.
Default: true

i nt addr_wdt h

Purpose: The user must set the address width if the addr parameter is set to true.
Default: None.

bool addrspace
Purpose: Indicates whether the MAddrSpace signal is part of the OCP.

Default: None

i nt addrspace_wdth
Purpose: Indicates the width of the address space.

Default: None.

bool atom clength

Purpose: Specifies whether there are a minimum number of transfers to hold
together during a burst.

Default: false

int atom clength_wdth

Purpose: Specifies the minimum number of transfers to be held together during a
burst when the at om cl engt h parameter is set to true.

Default: None.

59



bool burstlength

Purpose: Specifies whether there is a set number of transfers in a burst

Default: false

int burstlength_wdth
Purpose: Specifies the number of transfers in a burst.

Default: None.

bool burstprecise
Purpose: Specifies whether the length of a burst is known at the start of the burst.

Default: false

bool burstseq
Purpose: Specifies whether there is a sequence of addresses in a burst

Default: false

bool burstsinglereq

Purpose: Specifies whether a single request is allowed to generate multiple data
transfers in a burst.

Default: false

bool byteen
Purpose: Specifies whether MByteEn is part of the OCP.

Default: false

bool cndaccept

Purpose: Specifies whether the SCmdAccept is part of the channel. If false, all
requests are automatically accepted.

Default: true

60



bool connid

Purpose: Specifies whether the MConnl D connection identifier is part of the
Request group.
Default: 0

int connid wdth
Purpose: Specifies the width of MConnl D.

Default: None

bool dataaccept

Purpose: Specifies whether the SDataAccept is part of the channel. If false, all data
requests are automatically accepted.

Default: true

bool dat al ast

Purpose: Specifies whether the MDat aLast burst signal is part of the OCP.
Default: false

int data_wdth

Purpose: Specifies the width of MData.

Default: None

bool ndata

Purpose: Specifies whether MData is part of the OCP.

Default: true

bool ndat abyt een
Purpose: Specifies whether the MDataByteEn signal is in the OCP

Default: false

61



bool ndatai nfo
Purpose: Specifies whether the MDatalnfo signal is in the OCP

Default: false

i nt ndat ai nfo_wdt h

Purpose: Specifies the width of the MDatalnfo signal when the ndat ai nf o
parameter is true.

Default: None

i nt ndat ai nf obyte_wdt h

Purpose: Specifies the number of bits of MDat al nf o that are associated with each
data byte of MData.
Default: 1

bool sdat at hr eadbusy
Purpose: Specifies whether SDataThreadBusy is part of the OCP channel.

Default: false

bool nt hreadbusy
Purpose: Specifies whether the MThreadBusy signal is part of the OCP channel.

Default: false

bool reqinfo
Purpose: Specifies whether the MReqInfo signal is part of the OCP channel.

Default: false

int reqinfo_wdth
Purpose: Specifies the width of MReqlInfo signal.

Default: None.

62



bool reql ast

Purpose: Specifies whether the MReqLast burst signal part of the OCP channel.
Default: false

bool resp

Purpose: Specifies whether the SResp signal part of the OCP channel.

Default: true

bool respaccept

Purpose: Specifies whether the MRespAccept is part of the channel. If false, all
responses are automatically accepted.

Default: false

bool respinfo
Purpose: Specifies whether the SResplinfo signal is part of the OCP channel.

Default: false

int respinfo_wdth
Purpose: Specifies the width of the SResplInfo signal.

Default: None

bool respl ast
Purpose: Specifies whether the SRespLast burst signal is part of the OCP channel.

Default: false

bool sdata
Purpose: Specifies whether the SData signal part of the OCP channel.

Default: false

63



bool sdatainfo
Purpose: Specifies whether the SDatalnfo signal is supported.

Default: false

i nt sdatainfo_wdth
Purpose: Specifies the width of SDatalnfo signal.

Default: None. The OCP specification states that the user must set this parameter;
however, if the user does not specify a value, the channel will set it to 1.

i nt sdat ai nfobyte wdth

Purpose: Specifies the number of bits in the SDatalnfo signal devoted to each byte
of SDat a.
Default: None. The OCP specification requires that the user set this parameter.

Thus, there is no standard default value; however, if the user fails to
provide a value for this parameter, the channel will set it to 1.

bool st hreadbusy
Purpose: Specifies whether the SThreadBusy signal is supported

Default: false

int threads

Purpose: Specifies the number of threads allowed.

Default: 1

bool control
Purpose: Specifies whether the sideband Control signal is supported.

Default: false

64



bool control busy
Purpose: Specifies whether the sideband ControlBusy signal supported.

Default: false

int control _wdth
Purpose: Specifies the width of the ControlBusy signal.

Default: None. The OCP specification requires that the user set this parameter.
Thus, there is no standard default value; however, if the user fails to
provide a value for this parameter, the channel will set it to 1.

bool controlw
Purpose: Specifies whether the sideband ControlWr signal is supported

Default: false

bool interrupt
Purpose: Specifies whether the sideband Sinterrupt signal supported.

Default: false

bool nmerror

Purpose: Specifies whether the sideband MError signal is supported.
Default: false

bool nfl ag

Purpose: Specifies whether the sideband MFlag signal is supported.
Default: false

65



int nflag_wdth
Purpose: Specifies the width of sideband MFlag signal.

Default: None. The OCP specification requires that the user set this parameter.
Thus, there is no standard default value; however, if the user fails to
provide a value for this parameter, the channel will set it to 1.

bool nreset
Purpose: Specifies whether the sideband MReset signal supported.

Default: None. The OCP specification requires that the user set this parameter.
Thus, there is no standard default value; however, if the user fails to
provide a value for this parameter, the channel will set it to false.

bool serror
Purpose: Specifies whether the sideband SError signal is supported.

Default: false

bool sflag
Purpose: Specifies whether the sideband SFlag signal is supported.

Default: false

int sflag_wdth
Purpose: Specifies the width of the sideband SFlag signal.

Default: None. The OCP specification requires that the user set this parameter.
Thus, there is no standard default value; however, if the user fails to
provide a value for this parameter, the channel will set it to 1.

bool sreset
Purpose: Specifies whether the SReset signal is part of the OCP channel.

Default: None. The OCP specification does not specify a default value. However, if
the user does not specify a value, the channel sets it to false.

66



bool status
Purpose: Specifies whether the sideband Status signal is supported.

Default: false

bool statusbusy
Purpose: Specifies whether the sideband StatusBusy signal is supported

Default: false

bool statusrd
Purpose: Specifies whether the sideband StatusRd signal supported.

Default: false

int status_wdth
Purpose: Width of the St at us signal.

Default: None. The OCP specification requires that the user set this parameter.
Thus, there is no standard default value; however, if the user fails to
provide a value for this parameter, the channel will set it to 1.

67



