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1 Introduction 
This document describes the SystemC channel model for Open Core Protocol (OCP) . 
This model is meant for system simulation of cores that use the OCP to connect to one 
another. A System on a Chip (SOC) with processors, memory, an interconnect, and I/O 
devices could use OCP channels to handle the connections from core to core as well as 
between the cores and the interconnect(s). 

The OCP channel models were designed with the goals of OCP correctness and ease of 
use. These models are useful for cores that require a model of the OCP that is close to 
cycle accurate. As a group, the OCP API commands are powerful and mask some of the 
complexity of the channel. The earlier versions (upto 2.1.0) of these models were based 
on a generic channel model. As Open SystemC Initiative (OSCI) has released a generic 
TLM package, which can be used for creating models of arbitrary interface protocols, we 
do not see a need for an OCP-provided generic channel, and generic transaction API. 

This document covers Transaction Level One (TL1), Transaction Level Two (TL2) and 
Transaction Level Tree (TL3). The communication abstraction levels are categorized 
according to those introduced in the white paper “SystemC™ based SoC 
Communication Modeling for the OCP™ Protocol.” (You can obtain a copy of this paper 
at www.ocpip.org.) The abstraction levels of the models described in this document are 
as follows: 

 

Transaction Level 

 

Layer-3: Generic Transactions 

Model approximately-timed functionality 

Bus-protocol-agnostic SoC architecture 

 

Layer-2: OCP Transactions 

Model approximately-timed functionality 

SoC architecture with details of OCP configurations 

 

Layer-1: OCP Transfers 

Cycle true but faster than RTL 

 

Layer-0: Signals and signal groups 

Register Transfer Level 

 

 

“TLx” and Layer-x are used for Transaction Level, Layer-x interchangeably. For example, 
the acronym “TL1” stands for Transaction Level One. 
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SystemC is a C++ modeling environment designed for both cycle based and higher level 
modeling of systems. This document assumes a basic understanding of the SystemC 
language. For more information on SystemC, go to www.systemc.org. 

The OCP is a non-proprietary, openly licensed, core-centric protocol for on-chip 
communications. To use the OCP channel model correctly, the user would be well 
served to have a solid understanding of the OCP protocol. The protocol is described in 
the Open Protocol Specification manual, which is available at: www.ocpip.org. The 
chapters on “Overview,” “Theory of Operation,” “Signals and Encoding,” and “Protocol 
Semantics” are essential for understanding the OCP protocol and for using the OCP 
channel model. 

1.1 Overview of Transaction Channels 
 

The OCP channel models are built specifically to implement the OCP. The channels are 
OCP correct and follow the definitions in the OCP standard. In addition, the OCP 
models were tailored to be easy for the core writer to use while still maintaining full 
OCP functionality. 

Each different channel interface is meant to be a stand-alone set of commands for 
implementing that particular channel model. Commands should not be mixed from 
multiple APIs. For example, a core that uses the OCP-specific TL1 API should only use 
commands from that API. 

1.2 Directory structure and Class Hierachy 
The OCP TL1 channel is a SystemC module (sc_module) that uses “request/update” 
methods for delta cycle delayed updates of the channel state. Figure 1 shows the 
principal features of the internal class hierarchy for the channel. The TL_Channel 
contains a pointer to the type of data that moves through the channel. In this case, the 
data is in the Open Core Protocol (OCP) Transaction Layer One (TL1) format. 
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Figure 1 OCP TL1 Channel Class Hierarchy  
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The OCP TL1 channel is derived from the TL_Channel class. The OCP_TL1_Channel 
class implements the OCP API commands that process requests, responses, and data 
handshakes. In addition, the OCP TL1 channel is built to ensure that the timing and 
the behavior of the channel is OCP-correct. Other commands in the OCP_TL1_Channel 
provide direct access to the events in the channel (CommCl) as well as the commands of 
the OCP TL1 Data Class. 

The interfaces OCP_TL1_SlaveIF and OCP_TL1_MasterIF provide port access to all of 
the OCP API commands. There are also OCP ports for the master and slave to provide 
OCP specific event finders so that methods in the user’s SystemC core model may be 
statically sensitive events in the channel. 
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Figure 2 OCP TL2 Channel Class Hierarchy 
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The performance oriented OCP TL2 channel is not layered upon the TL_Channel class. 
For more information on the TL2 channel, please see the OCP TL2 chapter. 

The OCP TL3 channel is built on OSCI TLM package, which is delivered with OCP code. 

Figure 3 illustrates the installed directory structure for the OCP SystemC channel 
models. 

Figure 3 OCP Channel Directory Tree 
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1.3 Datatypes 
The OCP transaction channels use C++ templates to set datatypes for OCP address and 
data fields.  The templating allows different bus widths to be supported in an efficient 
way but it does introduce a risk of incompatibility between models.  The same template 
parameters must be used for the OCP master port and OCP slave port if they are to be 
bound to the same OCP channel. 

The following choices of template parameters are recommended.  C++ and SystemC 
implementations in some cases offer alternative ‘type names’ for these and there is no 
problem using a data type which is compatible with one listed in this table, where 
‘compatible’ means that the compiler considers them the same: 

 

OCP addr_wdth or data_wdth C++/SystemC types 
recommended for templates 

0 < wdth ≤ 32 unsigned int 
uint32_t 
other compatible types 

32 < wdth ≤ 64 unsigned long long 
uint64 
uint64_t 
other compatible types 

64 < wdth ≤ 128 sc_biguint<128> 
no other options 

128 < wdth ≤ 256 sc_biguint<256> 
no other options 

2N-1 < wdth ≤ 2N sc_biguint< 2N > 
no other options 

 

Use of other non-compatible datatypes is strongly discouraged, including SystemC 
datatypes with non-power-of-2 widths, for example sc_biguint<192> or similar.  Use of 
types more precise than specified in the above table, for example uint64 for a 32-bit 
address bus, may sometimes be difficult to avoid, but users are warned that this may 
lead to compatibility problems. 
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2 OCP TL1 Channel Model 
The OCP TL1 channel implements OCP TL1 API commands for sending and accepting 
OCP requests, data, and responses.  

 

2.1 OCP TL1 Channel Constructors 
There are four constructors available.  The main difference is whether the instantiated 
channel is using an external clock or not.  If the master and slave use only non-
blocking methods, no timing is required in the channel, and the default constructor can 
be used.  This is the fastest configuration of the channel.  The master and slave use a 
clock and channel events to simulate progression of time, but the channel itself does 
not know of the time. 

The other timing mode, clocked channel, can be used with blocking methods.  (The 
older releases of the OCP channel had also self-timed mode, which is not compatible 
with clocked mode.)   

The constructors in this release are greatly simplified from earlier versions, and not 
always compatible with old models. This is unavoidable as the self-timed mode is not 
included anymore. Masters and slaves that use blocking methods should still work, but 
there are small differences in cycle to cycle behavior, so self-timed systems should be 
converted to clocked with great care. This is anyway a smaller price to pay than 
supporting two incompatible timing modes. The timing of any TL1 models is 
interoperable by construction when all models are clocked. 

The version 2.1.1 clocked constructor with monitor file name has been deprecated, 
because the monitors are now implemented completely outside the channel. 

Default Constructor 
The default constructor can configure non-timed channels.  Normally, this constructor 
would need only name as a parameter, the other parameters can be left as defaults. 

OCP_TL1_Channel(std::string name, 
    bool use_event = true,  
    bool use_default_event = true 
  ) 

name 
specifies the name of the module (channel) instance. 

use_event 
specifies whether the channel’s events for the synchronization of Mput*() and 
Sget*() methods as well as Sput*() and Mget*() methods are triggered 
(use_event = true) or not (use_event = false). Always set use_event to true. 
This parameter may be used in future for simulation speed optimization. 

use_default_event 
specifies whether the channel should trigger the default event. The channel may be 
faster if no default event is triggered. use_default_event can be false if none of 
the attached modules are sensitive to port events. This speeds up the simulation a 
little. 
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Simple Clocked Constructor 
OCP_TL1_Channel(std::string name, 
    <clock_object> * clk) 

name  
specifies the name of the module (channel) instance. 

<clock_object> ::= “sc_in_clk” | “sc_clock” | “sc_signal<bool>”  
A pointer to the object giving clock events. 

 

 

The OCP TL1 channel provides a number of constructors with different parameter 
combinations.  The use models of these options are not clear and most of the 
constructors are anyway deprecated.  To clarify the intended use-case of the officially 
supported constructors, two wrapper classes for the TL1 channel have been added. 

A corresponding trace monitor is provided for each wrapper class.  These trace monitors 
generate CoreCreator-compliant trace files for the OCP traffic. 

2.1.1 OCP TL1 Channel Clock Wrapper 
The OCP TL1 channel gets the clock through a constructor pointer-argument.  This 
makes is easier to instantiate the same channel class for clocked and non-clocked 
applications, since no sc_port-members are needed in the channel.  Unfortunately, it 
also makes the use of the TL1 channel more difficult with EDA tools, which depend on 
sc_port in binding.  To alleviate this situation, a wrapper class with a clock port is 
provided for the TL1 channel.  This class is called OCP_TL1_Channel_Clocked, and it 
inherits the OCP_TL1_Channel. 

The version 2.1.1 constructor with monitor file name has been deprecated, because the 
monitors are now implemented completely outside the channel. 

The clock wrapper has one constructor: 

OCP_TL1_Channel_Clocked(sc_module_name name) 

name  
specifies the name of the module (channel) instance. (Notice that the type of this 
parameter is sc_module_name, as appropriate.) 

 

The clock port is defined as: 

sc_in<bool> p_clk; 

 

In addition, the clock wrapper channel overloads the setConfiguration-method (see 
section 2.2) with a new method that reads the OCP configuration from a file: 

void setConfiguration(std::string configFileName) 

2.1.2 OCP TL1 Channel Untimed Wrapper 
The purpose of the untimed channel is to represent a simple interface for channels 
which are not attached to a clock.  This class is called OCP_TL1_Channel_Untimed, and 
inherits the OCP_TL1_Channel.  Modules attached to an untimed channel are not 
allowed to call the ocpWait() method. 
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The version 2.1.1 constructor with monitor file name has been deprecated because the 
monitors are now implemented completely outside the channel. 

The untimed wrapper has one constructor: 

OCP_TL1_Channel_Untimed(std::string name) 

name 
specifies the name of the module (channel) instance. 

In addition, the untimed wrapper channel overloads the setConfiguration method (see 
section 2.2) with a new method that reads the OCP configuration from a file: 

Void setConfiguration(std::string configFileName) 

2.2 Configuration of OCP TL1 Channel 
The OCP TL1 can be configured using the standard OCP configuration parameters.  
These describe aspects of the OCP interface such as bus widths, flow control options 
and transactions supported.  For the complete list of parameters and their meanings, 
refer to the Open Core Protocol Specification document.  The parameters of the OCP 
channel have the exact same names and function as the parameters in that document.  
Some of these parameters affect the behaviour of the OCP channel, such as the 
parameters respaccept and sthreadbusyexact.  Others do not, although they might 
affect the behaviour of an attached monitor.  All parameters are stored in the channel 
and can be accessed from the master, the slave, and any other C++ object which has a 
reference to the OCP channel. 

If the channel is configured, this must happen during the elaboration phase of the 
SystemC simulation or at end-of-elaboration.  If the channel is not configured then a 
default configuration is adopted, which is basically the set of defaults for the OCP 
parameters as specified in the Open Core Protocol Specification.  The default 
configuration is not normally useful. 

Internally the OCP TL1 channel stores the parameters in an object of the class ParamCl 
which is derived from the class OCPParameters.  The OCP parameters are public data 
members of the OCPParameters class and hence of the ParamCl class. 

2.2.1 Configuration from Cores 
The channel can be configured by the master and slave modules bound to it.  This 
happens at end-of-elaboration.  If both the master and slve configure the channel, the 
channel analyses the two configurations and determines: 

• If they are compatible, according to the compatibility rules from Open Core Protocol 
Specification. 

• The single OCP configuration resulting from their combination 
Note that this functionality may not be complete in release 2.1.3.  The constraints on 
master/slave compatibility may be tighter than absolutely necessary. 

If only one of the master and slave configures the channel, then the other may register 
itself in the channel as a configuration listener.  The channel will then inform it when 
any changes to the configuration are made. 

If the master or the slave tries simply to read the configuration from the channel at end-
of-elaboration, there is a risk that the configuration will subsequently change.  
Therefore the method getParamCl() should not be used until after the simulation has 
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started, unless the user is certain that the channel configuration is done from the 
environment before end-of-elaboration. 

2.2.2 Configuration from Environment 
The channel may be configured directly from the environment.  Such a configuration is 
ignored if the channel is configured also by either the OCP master or the OCP slave. 

If the channel is configured from the environment, both the masters and the slave may 
register as configuration listeners. 

2.2.3 Parameter Map Format 
The channel may be configured using a MAP object that contains all of the parameter 
settings, for example: 

setOCPMasterConfiguration( map<string,string>& parameterMap ); 
 

The MAP object is a C++ Standard Template Library (STL) object that is an associative 
array. In this case, the MAP is string-to-string with the key string being the name of the 
parameter and the value string being the parameter value. This parameter MAP may be 
automatically generated by a configuration tool. It may be hand coded in the source 
code for the master or slave, or in the main.cc program, or it may be built by reading in 
parameter data from a file. 

Each entry in the parameter map is a pair of strings. The left side (the key side) of the 
pair is the parameter name. The right side (the value side) is the parameter value. The 
parameter name is a string, and it must exactly match the OCP standard parameter 
name. For example, “cmdaccept” is the OCP parameter to indicate that the 
SCmdAccept signal is part of the OCP channel. You must be careful in the use of case 
or nonstandard spellings (such as “CMDAccept” or “SCommandAccept”), which will not 
give you the desired result. 

The value side of the parameter map has the following format: 

 type_char:value 

Where type_char is a single character is one of the following:  

“i” specifies an integer or Boolean 

“f” specifies a floating point value 

“s” specifies a string. 

Note that a colon (:) is required, and the value is the value of the parameter. Also, the 
value should not contain any spaces. For example: 

“i:1”  An integer value 1 or the Boolean value TRUE.  

“f:3.14159” The floating point value for PI. 

“s:little” The string value “little.” 

For a usage example see section 6.1. 

2.2.4 Building the Parameter Map from a File 
The channel may also be configured by using a text file. Additionally this can be useful 
because the file name may be passed to the main program that builds the simulation. 
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Also, the file name may be changed on the command line so the parameters are 
changed without having to recompile the model. 

In the example below, the parameters are in a file as lines of pairs of space separated 
strings: 

cmdaccept i:1 
addr_wdth i:40 
endian s:both 

 

The user’s code then reads the strings from the file and stores them into an STL map. 
The map is then passed to the channel’s setConfiguration function. 

2.3 OCP TL1 Enum Types and Template Classes 
The OCP TL1 API commands pass requests, responses and data handshakes through 
as single structures. This section describes those structures (actually template classes) 
as well as the Enum types used by elements of those structures. 

2.3.1 OCPMCmdType Enum 
The OCPMCmdType enumerator defines the master command names. The enumerator 
values are listed in Table 1. This Enum type is defined as Enum OCPMCmdType 

Table 1  OCPMCmdType Enum Labels and Values 

Label Value Description 
OCP_MCMD_IDLE 0 Idle command 

OCP_MCMD_WR 1 Write command 

OCP_MCMD_RD 2 Read command 

OCP_MCMD_RDEX 3 Exclusive read command 

OCP_MCMD_RDL 4 Read linked command 

OCP_MCMD_WRNP 5 Non-posted write command 

OCP_MCMD_WRC 6 Write conditional command 

OCP_MCMD_BCST 7 Broadcast command 

2.3.2 OCPRespType Enum 
The OCPSRESPType enumerator defines the slave response names. The enumerator 
values are listed in Table 2. This Enum type is defined as Enum OCPSRESPType. 

Table 2  OCPRespType Enum Labels and Values 

Label Value Description 
OCP_SRESP_NULL 0 Null response 

OCP_SRESP_DVA 1 Data valid/accept response 

OCP_SRESP_FAIL 2 Request failed 

OCP_SRESP_ERR 3 Error response 
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2.3.3 OCPMBurstSeqType Enum 
The OCPMBurstSeqType enumerator defines the OCP master burst sequence types. The 
enumerator values are listed in Table 3. This Enum type is defined as Enum 
OCPMBurstSeqType 

Table 3  OCPMBurstSeqType Enum Labels and Values 

Label Value Description 
OCP_MBURSTSEQ_INCR 0 Incrementing 

OCP_MBURSTSEQ_DFLT1 1 Custom (packed) 

OCP_MBURSTSEQ_WRAP 2 Wrapping 

OCP_MBURSTSEQ_DFLT2 3 Custom (not packed) 

OCP_MBURSTSEQ_XOR 4 Exclusive OR 

OCP_MBURSTSEQ_STRM 5 Streaming 

OCP_MBURSTSEQ_UNKN 6 Unknown 

OCP_MBURSTSEQ_RESERVED 7 Reserved 
 

2.3.4 OCPRequestGrp Template Class 
The OCPRequestGrp class is used for sending and receiving requests.  All the signals 
that make up the request group are to be found here. This template class is defined as 

Template<class Td, class Ta>  
class OCPRequestGrp 

2.3.4.1 Data Type and Address Type 
The class template parameters Td and Ta indicate the data type and address type of the 
MData and MAddr signals, respectively. By making this a template, any sized data or 
address width may be supported. 

2.3.4.2 Members 
Some configurations of the OCP will not use all the members in the class. In that case, 
the unused members are invalid and should not be referenced or used. Table 4 lists the 
member names and their data types for OCPRequestGrp. 

Table 4  OCPRequestGrp Member Types 

Name Data Type Description 
MCmd OCPMCmdType Master command 

MAddr AddrType Master address 

MAddrSpace unsigned int Master address space 

MData DataType Master data, when no data 
handshake 

MDataInfo Unsigned int Extra information sent with the write 
data 

MByteEn unsigned int Master byte enable 

MThreadID unsigned int Master thread identifier 
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Name Data Type Description 
MConnId unsigned int Master connection identifier 

MTagID unsigned int Master tag identifier (See OCP 2.1 
specification) 

MTagInOrder bool Force tag-in-order (See OCP 2.1 
specification) 

MReqInfo unsigned int Extra information sent with the 
response. 

MAtomicLength unsigned int Length of atomic burst 

MBurstLength unsigned int Burst length 

MBurstPrecise bool Given burst length is precise 

MBurstSeq OCPMBurstSeqType Address sequence of burst 

MBurstSingleReq bool Burst uses single request/multiple data 
protocol 

MRefLast bool Last response in burst 

2.3.4.3 Constructor 
OCPRequestGroup(bool has_mdata = true) 
 
OCPRequestGroup(const OCPRequestGrp& src) 
 

The first form constructs a default OCPRequestGrp object and uses the has_mdata 
parameter to indicate whether or not there is a data handshake. The value for 
has_mdata should be true for channels without data handshaking where all data is 
transmitted with the request. It should be false for write requests when data 
handshaking is enabled because the data will come through the data handshake, not 
the request. 

The second form is the copy constructor, which copies the src into a new 
OCPRequestGroup object. 

2.3.4.4 Assignment Operator (=) 
OCPRequestGroup& operator=(const OCPRequestGroup& rhs) 
 

The assignment operator assigns one OCPRequestGroup object to another. 

2.3.4.5 copy 
void copy(const OCPRequestGrp& src) 
 

Copies one OCPRequestGrp object to another. 

2.3.5 OCPResponseGrp Template Class 
The OCPResponseGrp class is used to send and receive responses with the OCP TL1 
channel. All of the signals that make up the response group are to be found in this 
class. This template class is defined as 
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 Template<class Td>  
 OCPResponseGrp 

2.3.5.1 Data Type 
The class template parameter Td indicates the data type of the SData signal. This allows 
the response to contain any width of data. Note that the type of the response data must 
match the type of request and data handshake data. 

2.3.5.2 Members 
Some configurations of the OCP will not use all of the members in the class. This 
corresponds to the fact that some OCP implementations do not use all of the OCP 
signals. In that case, the unused members are invalid and should not be referenced or 
used. Table 5 lists the names and their data types of OCPResponseGrp. 

Table 5  OCPResponseGrp Member Types 

Name Type Description 
SResp OCPSRespType Slave response 

SData DataType Data returned by slave 

SThreadID unsigned int Slave thread identifier 

STagID unsigned int Slave tag identifier (See OCP 2.1 
specification) 

STagInOrder bool Force tag-in-order (See OCP 2.1 
specification) 

SdataInfo unsigned int Extra information sent with the 
response data. 

SrespInfo unsigned int Extra information sent out with the 
response. 

SrespLast bool Last response in burst 

2.3.5.3 Constructor 
OCPResponseGrp(void) 
 
OCPResponseGrp(const OCPResponseGrp& src) 
 

The first form constructs a default OCPResponseGrp object. The second form is the 
copy constructor which copies the src into a new OCPResponseGrp object. 

2.3.5.4 Assignment Operator (=) 
OCPResponseGrp& operator=(const OCPResponseGrp& rhs) 
 

The assignment operator assigns one OCPResponseGrp object to another. 

2.3.5.5 copy 
void copy(const OCPResponseGrp& src) 
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Copies one OCPResponseGrp object to another. 

2.3.6 OCPDataHSGrp Template Class 
The OCPDataHsGrp class is a structure used to send and receive data handshake data. 
All of the OCP signals that make up the data group are to be found in this class. This 
template class is defined as 

 Template<class Td> 
 Class OCPDataHSGrp 

2.3.6.1 Data Type 
The class template parameter Td indicates the data type of the Mdata signal. For 
instance, it can be int or uint64 to represent a data width of up to 32 bits and 64 bits, 
respectively. Note that the data type used for the DataHSGrp should match the data 
type used for the request and response group. 

2.3.6.2 Members 
Some configurations of the OCP will not use all of the members in the class. This is due 
to the fact that not every OCP configuration uses all of the OCP signals. In that case, 
the unused fields are invalid and should not be referenced or used. Table 6 lists the 
member names and their data types of OCPDataHSgrp. 

Table 6 OCPDataHSGrp Member Types 

Name Type Description 
Mdata DataType The master data being sent to the slave 

MdataThreadID unsigned int The thread identifier for the write data 

MDataTagID unsigned int Data tag identifier (See OCP 2.1 
specification) 

MDataByteEn unsigned int The data byte enable field 

MDataInfo unsigned int The data info field. 

MDataLast bool Is this the last data transfer in a burst? 

MDataValid bool Synchronization bit. True when the master 
places the data onto the channel. False 
after the slave has accepted the data. 

2.3.6.3 Constructor 
OCPDataHSGrp(void) 
 
OCPDataHSGrp(const OCPDataHSGrp& src) 
 

The first form constructs a default (empty) data handshake structure. The second form 
copies the passed datahandshake data into the new object. 

2.3.6.4 Assignment Operator (=) 
OCPDataHSGrp& operator=(const OCPDataHSGrp& rhs) 
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The assignment operator assigns one OCPDataHSGrp object to another. 

2.3.6.5 copy 
 void copy(const OCPDataHsGrp& src) 
 

Copies one OCPDataHSGrp object to another. 

2.3.7 OCP_TL1_Master_TimingCl Class 
This class contains a set of sc_time members, which store information about the timing 
characteristics of an OCP TL1 master. 

2.3.7.1 Members 

Table 7 OCP_TL1_Master_TimingCl Member Types 

Name Type Description 
RequestGrpStartTime sc_time Time after cycle start when 

startOCPRequest() is called 

DataHSGrpStartTime sc_time Time after cycle start when 
startOCPDataHS() is called 

MThreadBusyStartTime sc_time Time after cycle start when 
putMThreadBusy() is called 

MRespAcceptStartTime sc_time Time after cycle start when 
putMRespAccept(bool x) is called 

2.3.7.2 Equality Operator == 
The operator “==” is available for 2 objects of the class OCP_TL1_Master_TimingCl. 

2.3.8 OCP_TL1_Slave_TimingCl Class 
This class contains a set of sc_time members, which store information about the timing 
characteristics of an OCP TL1 slave. 

2.3.8.1 Members 

Table 8 OCP_TL1_Slave_TimingCl Member Types 

Name Type Description 
ResponseGrpStartTime sc_time Time after cycle start when 

startOCPResponse() is called 

SThreadBusyStartTime sc_time Time after cycle start when 
putSThreadBusy() is called 

SDataThreadBusyStartTime sc_time Time after cycle start when 
putSDataThreadBusy() is called 

SCmdAcceptStartTime sc_time Time after cycle start when 
putSCmdAccept(bool x) is called 

SDataAcceptStartTime sc_time Time after cycle start when 
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putSDataAccept(bool x) is called 

2.3.8.2 Equality Operator == 
The operator “==” is available for 2 objects of the class OCP_TL1_Slave_TimingCl. 

2.4 TL1 Master Interface Methods (ocp_tl1_master.if.h) 
The methods described in this section handle the OCP TL1 master’s transaction request 
phase, response phase, and data handshake.  There are also methods for OCP 
configuration management and cycle-accurate timing information distribution. 

All methods return immediately if the channel is in reset state.  The non-void methods 
return false if called during reset.  It is advisable to make sure that the threads trusting 
blocking methods for sequencing call a wait if a blocking method returns false, to avoid 
infinite loops. 

 

2.4.1 Reset 
This section describes the methods for the master’s reset phase. 

bool getReset() 

Purpose: Check if channel is in reset state. 

Return: Returns true if the channel is in reset, false otherwise. 

Events: No event. 

 

void MResetAssert() 

Purpose: Puts channel in reset state.  Resets all channel state variables, and calls 
data class reset.  All in-band methods will return immediately with false 
return value while reset is active.  All blocking methods are released, and 
return with false. 

Events: All start and end events fire (to release all waits in the system). 

 

void MResetDeassert() 

Purpose: Removes reset state from the channel. 

Events: ResetEndEvent. 

 

sc_event& ResetStartEvent() 

Purpose: This event is triggered when channel reset starts. 

Return: Reset start event. 

 

sc_event& ResetEndEvent() 

Purpose: This event is triggered when channel reset ends. 
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Return: Reset end event. 

2.4.2 Request Phase 
This section describes the methods for the master’s TL1 request phase. 

bool getSBusy()const 

Purpose: Used to check whether a new request can be placed on the channel. 

Return: Returns true if the channel is not free for a new request.  This function 
does not check the threadbusy signal (if any). See also 
getSThreadBusy(). 

Events: No event. 

 

bool startOCPRequest( 
  const OCPRequestGrp<Td,Ta>& newRequest) 

Purpose: Places the passed request onto the channel. 

Return: Returns false if there is already a request on the channel which has not 
yet been accepted by the slave, or if the OCP is a configured as 
sthreadbusy-exact and the OCP thread is busy, or if the channel is in 
reset. 

Events: RequestStartEvent. RequestEndEvent, if the putSCmdAccept(1) has been 
called before, or if the SCmdAccept is not part of the channel. No event if 
return value is false. 

 

Notice: Behavior changed from release 2.1.  

bool startOCPRequestBlocking( 
  const OCPRequestGrp<Td,Ta>& newRequest)  

Purpose: Repeat - try request - Wait for a rising clock edge - until successful. 

startOCPRequestBlocking() returns once the request has started but 
before the slave has accepted the request. 

Notice: Not to be used for modeling OCP interfaces with multiple threads. 
Use non-blocking instead. Not to be called from multiple SC_TREADs. 

Return: Returns an immediate false if the channel is not clocked. Returns false 
after a clock if the channel is in reset state. Reset is synchronous.   

Events: RequestStartEvent. RequestEndEvent, if the putSCmdAccept(1) has been 
called before, or if the SCmdAccept is not part of the channel. No event if 
return value is false. 

 

bool getSCmdAccept() const 

Purpose: Get state of SCmdAccept. 

Note  
Despite the name, this behaves like an RTL version of SCmdAccept signal only after 
a request is put into the channel, and only at rising clock edge, that is only when 
SCmdAccept is not don’t-care according to OCP standard. 
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Return: Returns always true if parameter cmdaccept is 0, and !getSBusy() 
otherwise. 

Event: None. 

 

unsigned int getSThreadBusy( ) const 

Purpose: Returns the current value of the SThreadBusy signal in the channel. 

Return: The unsigned int returned contains the SThreadBusy signals for each 
of the threads in the channel. If a bit position is “1” then that thread is 
busy. 

Event: GetDataCl()->m_SThreadBusy.event 

 

sc_event& SThreadBusyEvent( ) const 

Purpose: This event is triggered when the slave changes the value of the 
SThreadBusy signal. 

Return:  The event associated with a change in SThreadBusy’s value 

 

sc_event& RequestStartEvent()  

Purpose: This event is triggered when a new request has been placed on the 
channel. A slave could wait this event so that it would restart when a 
new request was available. 

Return: RequestStartEvent. 

 

sc_event& RequestEndEvent()   

Purpose: This event is triggered when the request is accepted. 

Return: RequestEndEvent. 

 

void waitSCmdAccept(void) 

Purpose: If there is a current request on the channel, waitSCmdAccept() waits 
until the request has been accepted by the slave. This method returns 
immediately if there is no request on the channel or if that request has 
already been accepted. Note that if SCmdAccept is not part of the 
channel, this command will wait until request is automatically accepted 
by the channel (one delta cycle after the request is submitted.) 

Return: None. 

Event: None. 

2.4.3 Response Phase 
This section describes the methods for the master’s TL1 response phase. 

bool getOCPResponse(OCPResponseGrp<Td>& myResponse, 
                  bool acceptResponse = false) 
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Purpose: If there is an unread response available on the channel, the response is 
read and returned as myResponse.  If acceptResponse is true, 
putMRespAccept() is called. Note that if MRespAccept is not part of the 
OCP channel, the response is always automatically accepted, and the 
value of the acceptResponse parameter is ignored. 

Return: Returns false if there is no response available or if the response has 
already been read by a getResponse command or if there is a 
getResponseBlocking command in progress. 

Event: ResponseEndEvent, if the response has not been pre-accepted, and is 
accepted with this call. 

 

bool getOCPResponseBlocking(OCPResponseGrp<Td>& myResponse, 
      bool acceptResponse = false ) 

Purpose: Waits for a new, unread response to become available on the channel. 
The response is then read and returned as myResponse.  If 
acceptResponse is true, putMRespAccept() is called. Note that if 
MRespAccept is not part of the OCP channel, the response is always 
automatically accepted, and the value of the parameter acceptResponse 
is ignored. 

Notice: Not to be used for modeling OCP interfaces with multiple threads. 
Use non-blocking instead. Not to be called from multiple SC_TREADs. 

Return: Returns false if channel is in reset. 

 Notice that if a false can be expected (reset is used), this must be treated 
as a special case in the responding thread so no infinite loop is created. 
(The SC_THREAD must yield by using a wait statement.) 

Event: ResponseEndEvent, if the response has not been pre-accepted, and is 
accepted with this call. 

 

bool putMRespAccept()   

Purpose: Sets the MRespAccept signal in the OCP channel and releases the 
response. 

Return: Returns false if there is no response to accept or if the current response 
has already been accepted. Otherwise, putMRespAccept() returns true 
and the response will be accepted on the next delta cycle. Note that after 
the response has been accepted, the OCP channel signal SResp is then 
automatically reset to “OCP_SRESP_NULL”. 

Event: ResponseEndEvent, if there is an active response on the channel 

 

void putMRespAccept(bool accept = false)   

Purpose: Sets or unsets the MRespAccept signal in the OCP channel. Set can be 
called at any time during clock cycle, unset only at clock edge.  
Persistent once called. 

Event: ResponseEndEvent, if there is an active response on the channel. 
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void putMThreadBusy(unsigned int nextMThreadBusy) 
         

Purpose: At the next delta cycle, the OCP signal MThreadBusy will be set to the 
passed value 

Return: None. 

Event: None 

 

// Deprecated 

void putNextMThreadBusy() 

 

sc_event& ResponseStartEvent()  

Purpose: This event is triggered when a new response has been placed on the 
channel. 

Return: ResponseStartEvent.  

 

sc_event& ResponseEndEvent()  

Purpose: This event is triggered when the response is accepted. 

Return: ResponseEndEvent. 

2.4.4 Data Handshake 
This section describes the methods for the master’s TL1 data handshake. 

bool getSBusyDataHS() const  

Purpose: Used to check whether a new data handshake can be started on the 
channel. 

Return: Returns true if the channel is not free for a new data handshake. This 
function does not check the threadbusy signal (if any). See also 
getSDataThreadBusy(). 

Events: No event. 

 

bool startOCPDataHS( const OCPDataHSGrp<Td>& newData) 

Purpose: Places the passed data onto the channel and automatically sets the OCP 
signal MDataValid to true. 

Return: Returns false if there is already a data-handshake on the channel which 
has not yet been accepted by the slave, or if the OCP is a configured as 
datathreadbusy-exact and the OCP thread is busy, or if the channel is in 
reset. 

Events: DataHSStartEvent. DataHsEndEvent, if the putSDataAccept(1) has been 
called before, or if the SDataAccept is not part of the channel. No event if 
return value is false. 

 



21 

Notice: Behavior changed from release 2.1.  

bool startOCPDataHSBlocking( 
   const OCPDataHSGrp<Td>& newData) 

Purpose: Repeat - try request - wait for a rising clock edge - until successful. 

startOCPDataHSBlocking() returns once the handshake has started 
but before the slave has accepted the handshake. 

Notice: Not to be used for modeling OCP interfaces with multiple threads. 
Use non-blocking instead. Not to be called from multiple SC_TREADs. 

Return: Returns an immediate false if the channel is not clocked. Returns a false 
after a clock if the channel is in reset state. Reset is synchronous. 

Notice that if a false can be expected (reset is used), this must be treated 
as a special case in the requesting thread so no infinite loop is created. 

Events: DataHSStartEvent. DataHsEndEvent, if the putSDataAccept(1) has been 
called before, or if the SDataAccept is not part of the channel. No event if 
return value is false. 

 

bool getSDataAccept() const  

Purpose: Get state of SDataAccept. 

Note 
Despite the name, this behaves like an RTL version of SDataAccept signal only after 
a data request is put into the channel, and only at rising clock edge, that is only 
when SDataAccept is not don’t-care according to OCP standard. 

Return: Returns true, if dataaccept parameter is 0, and !getSBusyDataHS() 
otherwise.  

Event: No event. 

 

unsigned int getSDataThreadBusy( ) const   

Purpose: Returns the current value of the SDataThreadBusy signal in the channel. 

Return: The unsigned int returned has one bit for each thread on the channel. 
If a bit is “1”, that thread is busy and no more data transfers should be 
sent to that thread. 

Event: GetDataCl()->s_SDataThreadBusy.event 

 

sc_event& SDataThreadBusyEvent( ) const 

Purpose: This event is triggered when the slave changes the value of the 
SDataThreadBusy signal. 

Return: The event associated with a change in SDataThreadBusy’s value 

 

sc_event& DataHSStartEvent()  

Purpose: This event is triggered whenever a new data handshake transfer is 
started on the channel. 
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Return: DataHSStartEvent. 

 

sc_event& DataHSEndEvent()  

Purpose: This event is triggered when the current data handshake transfer has 
been accepted by the slave. 

Return: DataHSEndEvent. 

 

void waitSDataAccept(void) 

Purpose: If there a current data handshake on the channel, waitSDataAccept() 
waits until the data has been accepted by the slave. This method returns 
immediately if there is no data handshake on the channel or if that data 
has already been accepted. Note that if SDataAccept is not part of the 
channel, this command will wait until the data handshake is 
automatically accepted by the channel (one delta cycle after the data is 
submitted). 

Return: None. 

Event: None. 

2.4.5 Timing Distribution Methods 
This section describes methods implemented in the OCP TL1 channel to support timing 
distribution at end-of-elaboration. 

 

void setOCPTL1MasterTiming(OCP_TL1_Master_TimingCl master_timing) 

Purpose: OCP master must use this method to inform the channel of its timing 
parameters at end-of-elaboration, unless it conforms to default TL1 
timing. 

Return: None. 

 

void registerTimingSensitiveOCPTL1Master(OCP_TL1_Slave_TimingIF *master) 

Purpose: Timing-sensitive OCP masters may use this method to register 
themselves with the channel at end-of-elaboration.  Once this has been 
done, all timing information provided by the slave to the channel will be 
forwarded to the master by the channel.  
 
The pure virtual class OCP_TL1_Slave_TimingIF contains only the single 
method setOCPTL1SlaveTiming() which is also part of the 
OCP_TL1_Slave_IF (see below). 

Return: None. 

 

2.4.6 OCP Configuration Management Methods 
virtual void setOCPMasterConfiguration(MapStringType& passedMap) 
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Purpose: OCP master may use this method at end of elaboration to pass the 
configuration of its OCP port to the channel. 

Return: None. 

 

virtual void addOCPConfigurationListener(OCP_TL_Config_Listener& listener) 

Purpose: OCP master may use this method at end of elaboration to register itself 
as a configuration listener.  After registration any changes to the OCP 
configuration of the channel, for example because the slave sets the 
channel’s configuration, are passed on to the listener (see definition of 
OCP_TL_Config_Listener class below). 
Warning:  if the channel has already been configured by the slave when 
this is called, the listener will be informed (called-back) of the configuration 
before this method returns. 
Warning:  this method can be called multiple times during end of 
elaboration.  The listener needs to ignore all but the last time it is called-
back. 
This listener should not be called-back after end-of-elaboration, if the 
channel is being correctly used. 
This method is provided so that ‘generic’ OCP masters can be 
implemented.  A generic OCP master is an OCP master without a fixed 
OCP configuration, whose behaviour will adapt to the OCP configuration 
of the slave. 

Return: None. 

 

virtual const std::string     peekChannelName() 

Purpose: Allows the master to find out the name of the channel, which simplifies 
the implementation of a ‘generic’ OCP master with more than one OCP 
port. 

Return: Channel name as std::string. 

 

virtual ParamCl<TdataCl> *GetParamCl() 

Purpose: Simple access to the OCP parameters of the channel.  This method 
should not be used until after end-of-elaboration, unless it is certain that 
the channel has been configuredhand. 

Return: Pointer to ParamCl object of the channel. 

 

2.5 OCP TL1 Slave Interface Methods (ocp_tl1_slave_if.h) 
The methods described in this section handle the slave’s transaction level 1 request 
phase, response phase, and data handshake.  There are also methods for OCP 
configuration management and cycle-accurate timing information distribution. 

All methods return immediately if the channel is in reset state.  The non-void methods 
return false if called during reset.  It is advisable to make sure that the threads trusting 
blocking methods for sequencing call a wait if a blocking methods returns false, to avoid 
infinite loops. 
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2.5.1 Reset 
This section describes the methods for the slave’s reset phase. 

bool getReset() 

Purpose: Check if channel is in reset state. 

Return: Returns true if the channel is in reset, false otherwise. 

Events: No event. 

 

void SResetAssert() 

Purpose: Puts channel in reset state.  Resets all channel state variables, and calls 
data class reset.  All in-band methods will return immediately with false 
return value while reset is active.  All blocking methods are released, and 
return with false. 

Events: All start and end events fire (to release all waits in the system). 

 

void SResetDeassert() 

Purpose: Removes reset state from the channel. 

Events: ResetEndEvent. 

 

sc_event& ResetStartEvent() 

Purpose: This event is triggered when channel reset starts. 

Return: Reset start event. 

 

sc_event& ResetEndEvent() 

Purpose: This event is triggered when channel reset ends. 

Return: Reset end event. 

2.5.2 Request Phase 
This section describes the methods for the slave’s TL1 response phase. 

bool getOCPRequest(OCPRequestGrp<Td,Ta>& myRequest, 
     bool acceptRequest = false)  

Purpose: If there is an unread request available on the channel, the request is 
read and returned as “myRequest.” And if acceptRequest is true, 
putSCmdAccept() is called. Note that if the SCmdAccept signal is not 
part of the OCP channel, the request is always automatically accepted, 
and the value of the acceptRequest parameter is ignored. 

Return: Returns false if there is no request available or if the request has already 
been read by a getOCPRequest command or if there is a 
getOCPRequestBlocking command in progress. 



25 

Event: RequestEndEvent, if the response has not been pre-accepted, and is 
accepted with this call. 

 

bool getOCPRequestBlocking( 
   OCPRequestGrp<Td,Ta>& myRequest,  
   bool acceptRequest = false ) 

Purpose: Waits for a new, unread request to become available on the channel, 
then reads the request and returns it as myRequest. If acceptRequest is 
true then putSCmdAccept() is called to accept the request at the end of 
the delta cycle. Note that this function waits only until it has the new 
request. Also note that if the SCmdAccept signal is not part of the OCP 
channel, the request is always automatically accepted, and the value of 
the acceptRequest parameter is ignored. 

Notice: Not to be used for modeling OCP interfaces with multiple threads. 
Use non-blocking instead. Not to be called from multiple SC_TREADs. 

Return: Returns false if the channel is in reset. 

  Notice that if a false can be expected (reset is used), this must be treated 
as a special case in the responding SC_THREAD so no infinite loop is 
created.  

Event: RequestEndEvent, if the response has not been pre-accepted, and is 
accepted with this call. 

 

bool putSCmdAccept() 

Purpose: Sets the SCmdAccept signal in the OCP channel and “releases” the 
request. 

Return: Returns false if there is no request to accept or if the current request has 
already been accepted. Otherwise, putSCmdAccept() returns true and 
the request will be accepted on the next delta cycle. Note that after the 
command has been accepted, the OCP channel signal MCmd is then 
automatically reset to "OCP_MCMD_IDLE". 

Event: RequestEndEvent, if there is an active request on the channel. 

 

Void putSCmdAccept(bool accept = false) 

Purpose: Sets or unsets the SCmdAccept signal in the OCP. Set can be called at 
any time during clock cycle, unset only at clock edge.  Persistent once 
called.   

Event: RequestEndEvent, if there is an active request on the channel. 

 

void putSThreadBusy( unsigned int nextSThreadBusy ) 

Purpose: Sets the next value of the OCP signal SThreadBusy. This signal is 
updated at the end of the current delta cycle. 

Return: None. 

Event: None. 
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//Deprecated 

void putNextSThreadBusy() 

 

2.5.3 Response Phase 
This section describes the methods for the slave’s TL1 response phase. 

bool getMBusy() const 

Purpose: Used to check whether a new response can be placed on the channel. 

Return: Returns true if the channel is not free for a new response.  This function 
does not check the threadbusy signal (if any). See also 
getMThreadBusy(). 

Events: No event. 

 

bool startOCPResponse( 
   const OCPResponseGrp<Td>& newResponse ) 

Purpose: Places the passed response onto the channel. 

Return: Returns false if there is already a response on the channel which has not 
yet been accepted by the master, or if the OCP is a configured as mthreadbusy-
exact and the OCP thread is busy, or if the channel is in reset. 

Event: ResponseStartEvent. ResponseEndEvent, if the putMRespAccept(1) has 
been called before, or if the SRespAccept is not part of the channel. No 
event if return value is false. 

 

Notice: Behavior changed from release 2.1.  

bool startOCPResponseBlocking( 
   const OCPResponseGrp<Td>& newResponse ) 

Purpose: Repeat - try response - Wait for a rising clock edge until successful. 

startOCPResponseBlocking() returns once the response has started 
but before the master has accepted the response. 

Notice: Not to be used for modeling OCP interfaces with multiple threads. 
Use non-blocking instead. Not to be called from multiple SC_TREADs. 

Return: Returns an immediate false if the channel is not clocked. Returns a false 
after a clock if the channel is in reset state. Reset is synchronous. 

 Notice that if a false can be expected (reset is used), this must be treated 
as a special case in the requesting thread so no infinite loop is created. 

Event: ResponseStartEvent. ResponseEndEvent, if the putMRespAccept(1) has 
been called before, or if the SRespAccept is not part of the channel. No 
event if return value is false. 

 

sc_event& RequestStartEvent()   
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Purpose: This event is triggered when a new request has been placed on the 
channel. 

Return: RequestStartEvent. 

 

sc_event& RequestEndEvent()   

Purpose: This event is triggered when the request is accepted. 

Return: RequestEndEvent. 

 

unsigned int getMThreadBusy()   

Purpose: Returns the current value of the MThreadBusy signal. This allows the 
slave to determine if a thread is busy before sending a response on that 
thread. 

Return: The unsigned int returned has one bit for each thread in the channel. 
If a bit position is “1”, that thread is busy. 

Event: GetDataCl()->m_MThreadBusy.event 

 

 

sc_event& MThreadBusyEvent( ) const 

Purpose: This event is triggered when the master changes the value of the 
MThreadBusy signal. 

Return: The event associated with a change in MThreadBusy’s value 

bool getMRespAccept()    

Purpose: Get state of MRespAccept signal. 

Note 
Despite the name, this behaves like an RTL version of MRespAccept signal only 
after a request is put into the channel, and only at rising clock edge, that is only 
when MRespAccept is not don’t-care according to OCP standard. 

Return: Returns true, if respaccept parameter is 0, and !getMBusy() otherwise. 

Event: No event. 

 

sc_event& ResponseStartEvent()  

Purpose: This event is triggered when a new response has been placed on the 
channel. 

Return: ResponseStartEvent. 

 

sc_event& ResponseEndEvent()   

Purpose: This event is triggered when the response is accepted. 

Return: ResponseEndEvent. 
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void waitMRespAccept(void) 

Purpose: If there a current response on the channel, waitMRespAccept()waits 
until the response has been accepted by the master. This method returns 
immediately if there is no response on the channel or if that response 
has already been accepted. Note that if MRespAccept is not part of the 
channel, this command will wait until the response is automatically 
accepted by the channel (one delta cycle after the response is submitted). 

Return: None. 

Event: None. 

2.5.4 Data Handshake 
This section describes the methods for the slave’s TL1 data handshake. 

bool getOCPDataHS(OCPDataHSGrp<Td>& myData,  
       bool acceptData = false ) 

Purpose: If there is an unread data handshake available on the channel, the data 
group is read and returned as myData.  If acceptData is true then 
putSDataAccept() is called. Note that if SDataAccept is not part of the 
OCP channel, data is always automatically accepted during the next 
delta cycle, and the value of the acceptData parameter is ignored. 

Return: Returns false if there is no data available or if the data has already been 
read by a getData command or if there is a getDataBlocking command 
in progress. 

Event:  None. 

 

bool getOPCDataHSBlocking(OCPResponseGrp<Td>& myData, 
    bool acceptData = false) 

Purpose: Waits for new, unread data to become available on the channel. The data 
is then read and returned as “myData.” And if acceptData is true then 
putSDataAccept() is called. getOPCDataHSBlocking() returns once 
the data has been placed on the channel. Note that if the SDataAccept 
signal is not part of the OCP channel, data is always automatically 
accepted, and the value of the acceptData parameter is ignored. 

Notice: Not to be used for modeling OCP interfaces with multiple threads. 
Use non-blocking instead. Not to be called from multiple SC_TREADs. 

Return: Returns false if channel is in reset. 

 Notice that if a false can be expected (reset is used), this must be treated 
as a special case in the data thread so no infinite loop is created. (The 
thread must yield by using a wait statement.) 

Event:  None. 

 

bool putSDataAccept()   

Purpose:  Sets the SDataAccept signal in the OCP channel and “releases” the data 
handshake. 
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Return: Returns false if there is no data to accept or if the current data has 
already been accepted. Otherwise, putSDataAccept() returns true and 
the data handshake will be accepted on the next delta cycle. Note that 
after the data has been accepted, the OCP channel signal MDataValid is 
automatically reset to false. 

Event:  DataHSEndEvent, if there is an active request on the channel. 

 

bool putSDataAccept(bool accept = false)   

Purpose:  Sets or unsets the SDataAccept signal in the OCP channel. Set can be 
called at any time during clock cycle, unset only at clock edge.  
Persistent once called. 

Return: Returns false if there is no data to accept or if the current data has 
already been accepted. Otherwise, putSDataAccept() returns true and 
the data handshake will be accepted on the next delta cycle. Note that 
after the data has been accepted, the OCP channel signal MDataValid is 
automatically reset to false. 

Event:  DataHSEndEvent, if there is an active request on the channel. 

 

sc_event& DataHSStartEvent()  

Purpose: This event is notified whenever any new data handshake data is placed 
on the channel. 

Return: DataHSStartEvent. 

 

sc_event& DataHSEndEvent()  

Purpose: This event is notified when the current data handshake data is accepted 
by the slave. 

Return: DataHSEndEvent. 

 

void putSDataThreadBusy(unsigned int nextSDataThreadBusy)     

Purpose: Sets the next value of the SDataThreadBusy signal on the channel. Each 
bit in the nextSDataThreadbusy parameter represents one thread in the 
channel. If a bit is “1” that means that the corresponding thread is now 
busy. 

Return: No return value. 

Event:  None. 

// Deprecated 

void putNextSDataThreadBusy() 

2.5.5 Timing Distribution Methods 
This section describes methods implemented in the OCP TL1 channel to support timing 
distribution at end-of-elaboration. 
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void setOCPTL1SlaveTiming(OCP_TL1_Slave_TimingCl slave_timing) 

Purpose: OCP slave must use this method to inform the channel of its timing 
parameters at end-of-elaboration, unless it conforms to default TL1 
timing. 

Return: None. 

 

void registerTimingSensitiveOCPTL1Slave(OCP_TL1_Master_TimingIF *slave) 

Purpose: Timing-sensitive OCP slaves may use this method to register themselves 
with the channel at end-of-elaboration.  Once this has been done, all 
timing information provided by the master to the channel will be 
forwarded to the slave by the channel. 
 
The pure virtual class OCP_TL1_Master_TimingIF contains only the 
single method setOCPTL1MasterTiming() which is also part of the 
OCP_TL1_Master_IF (see above). 

Return: None. 

2.5.6 OCP Configuration Management Methods 
virtual void setOCPSlaveConfiguration(MapStringType& passedMap) 

Purpose: OCP slave may use this method at end of elaboration to pass the 
configuration of its OCP port to the channel. 

Return: None. 

 

virtual void addOCPConfigurationListener(OCP_TL_Config_Listener& listener) 

Purpose: OCP slave may use this method at end of elaboration to register itself as 
a configuration listener.  After registration any changes to the OCP 
configuration of the channel, for example because the master sets the 
channel’s configuration, are passed on to the listener (see definition of 
OCP_TL_Config_Listener class below). 
Warning:  if the channel has already been configured by the master when 
this is called, the listener will be informed of the configuration (called-back) 
before this method returns. 
Warning:  this method can be called multiple times during end of 
elaboration.  The listener needs to ignore all but the last time it is called-
back. 
This listener should not be called-back after end-of-elaboration, if the 
channel is being correctly used. 
This method is provided so that ‘generic’ OCP slaves can be implemented.  
A generic OCP slave is an OCP slave without a fixed OCP configuration, 
whose behaviour will adapt to the OCP configuration of the master. 

Return: None. 

 

virtual const std::string     peekChannelName() 

Purpose: Allows the master to find out the name of the channel, which simplifies 
the implementation of a ‘generic’ OCP slave with more than one OCP 
port. 
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Return: Channel name as std::string. 

 

virtual ParamCl<TdataCl> *GetParamCl() 

Purpose: Simple access to the OCP parameters of the channel.  This method 
should not be used until after end-of-elaboration, unless it is certain that 
the channel has been configuredhand. 

Return: Pointer to ParamCl object of the channel. 

 

2.6 OCP TL1 Timing Interface Classes 
The pure virtual classes OCP_TL1_Slave_TimingIF and OCP_TL1_Master_TimingIF exist.  
These classes are defined in the header files ocp_tl1_slave_timing_if.h and 
ocp_tl1_master_timing_if.h respectively. 

Each contains a single method. 

OCP_TL1_Slave_TimingIF contains the method setOCPTL1SlaveTiming(), which is also 
part of the OCP_TL1_SlaveIF and documented in section 2.5.5 above. 

OCP_TL1_Master_TimingIF contains the method setOCPTL1MasterTiming(), which is 
also part of the OCP_TL1_MasterIF and documented in section 2.4.5 above. 

2.7 OCP TL1 Configuration Management Classes 
In normal operation, an OCP master is connected to an OCP slave, both of which know 
their configuration of their OCP ports.  Both of them inform the channel of their 
configuration and the channel verifies that they are compatible (see section 2.2).  In 
some cases however it is convenient to connect a ‘generic’ master or slave; one that 
adapts its configuration and behaviour to the configuration of whatever it is connected 
to.  For example a SystemC model of an OCP master might be able to generate WRAP 
bursts, but when connected to an OCP slave that does not support WRAP bursts it 
would instead use single accesses. 

In such a case the generic core registers itself in the channel as a configuration-listener.  
The channel si then able to call it back to inform it of changes to the OCP configuration.  
A pure virtual class is provided for this purpose.  A generic core should derive from this 
class and implement the method set_configuration, which is called by the channel 
whenever the configuration is revised by another core or the environment. 

Example code for extracting parameter values from the passedMap can be found in the 
distribution. 

class OCP_TL_Config_Listener { 

public: 

        virtual void set_configuration(MapStringType& passedMap, 
                                        std::string channelName)=0; 

}; 
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2.8 OCP TL1 Monitor Interface 
The OCP TL1 channel implements the OCP TL1 monitor interface.  This allows monitors 
to be connected to the channel, for performance analysis, trace dumping, protocol 
checking and so on. 

The methods of the monitor interface are listed below.  Multiple monitors may be used 
in parallel on a single OCP TL1 channel.  The basic principle is that the monitors poll 
the channel to find out what is happening.  This implies that the monitors are 
synchronized with the OCP clock cycles.  As there are some options (see section 12) 
around OCP clock cycle synchronization, a single monitor design may not be compatible 
with all uses of the OCP TL1 channel.  In particular different monitors may be needed 
for the untimed and timed channels. 

The methods of the interface are merely listed here.  More detailed documentation of 
their meaning is required but not yet available. 

 
template <typename TdataCl> 
class OCP_TL1_MonitorIF :  virtual public sc_interface 
{ 
public: 
 
  typedef typename TdataCl::DataType    Td; 
  typedef typename TdataCl::AddrType    Ta; 
  typedef OCPRequestGrp<Td,Ta>          request_type; 
  typedef OCPDataHSGrp<Td>              datahs_type; 
  typedef OCPResponseGrp<Td>            response_type; 
  typedef ParamCl<TdataCl>              paramcl_type; 
 
  // Monitor access 
  virtual  const OCPMCmdType getMCmdTrace ()   const = 0; 
  virtual  const bool getMDataValidTrace ()    const = 0; 
  virtual  const OCPSRespType getSRespTrace () const = 0; 
 
  // port names 
  virtual const std::string   peekChannelName()       const = 0; 
  virtual const std::string   peekMasterPortName()    const = 0; 
  virtual const std::string   peekSlavePortName()     const = 0; 
 
  // transactions 
  virtual const request_type&   peekOCPRequest()        const = 0; 
  virtual const datahs_type&    peekDataHS()            const = 0; 
  virtual const response_type&  peekOCPResponse()       const = 0; 
 
  virtual const bool            peekRequestEnd()        const = 0; 
  virtual const bool            peekRequestStart()      const = 0; 
  virtual const bool            peekRequestEarlyEnd()   const = 0; 
   
  virtual const bool            peekResponseEnd()       const = 0; 
  virtual const bool            peekResponseStart()     const = 0; 
  virtual const bool            peekResponseEarlyEnd()  const = 0; 
 
  virtual const bool            peekDataRequestEnd()    const = 0; 
  virtual const bool            peekDataRequestStart()  const = 0; 
  virtual const bool            peekDataRequestEarlyEnd() const = 0; 
 
  // thread busy  
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  virtual const unsigned int    peekSThreadBusy()       const = 0; 
  virtual const unsigned int    peekSDataThreadBusy()   const = 0; 
  virtual const unsigned int    peekMThreadBusy()       const = 0; 
 
  // reset 
  virtual const bool            peekMReset_n()          const = 0; 
  virtual const bool            peekSReset_n()          const = 0; 
 
  // sideband signals 
  virtual const bool            peekMError()            const = 0; 
  virtual const unsigned int    peekMFlag()             const = 0; 
  virtual const bool            peekSError()            const = 0; 
  virtual const unsigned int    peekSFlag()             const = 0; 
  virtual const bool            peekSInterrupt()        const = 0; 
  virtual const unsigned int    peekControl()           const = 0; 
  virtual const bool            peekControlWr()         const = 0; 
  virtual const bool            peekControlBusy()       const = 0; 
  virtual const unsigned int    peekStatus()            const = 0; 
  virtual const bool            peekStatusRd()          const = 0; 
  virtual const bool            peekStatusBusy()        const = 0; 
  virtual const bool            peekExitAfterOCPMon()   const = 0; 
     
 
  // OCP paramertes 
  virtual paramcl_type*         GetParamCl()                  = 0; 
}; 
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3 Overview of the OCP TL2  
The OCP Transaction Level Two channel model is designed for architectural evaluation 
and modeling. The OCP TL2 channel works at a higher abstraction level than the TL1 
channel. Instead of clocked cycle accurate support for all of the OCP signals, the OCP 
TL2 channel provides estimated timing as well as some signal abstraction to improve 
channel throughput and ease-of-use. 

This chapter is an overview of OCP TL2 channel and of the two SystemC channel 
models that have been built to implement it. The sections below cover the differences 
between OCP TL1 and OCP TL2, and when to use the TL2 channel. 

3.1 OCP TL1 vs OCP TL2 
The OCP TL2 channel is meant to run faster and to be easier to use than the OCP TL1 
channel. To achieve this goal, the OCP TL2 channel lacks the exact cycle accuracy of 
TL1, lacks timing enforcement, and simplifies the phase ordering of the channel. In 
addition, the OCP TL2 channel allows for burst-at-once which can greatly increase 
performance. Each of these topics is each covered below. 

3.1.1 Event Driven Models 
Unlike the OCP TL1 channel, the OCP TL2 channel is not explicitly clocked. A new TL2 
request may be placed on the channel as soon as the previous request has been 
accepted. Thus, if the slave accepts each request immediately, the master is free to send 
a new request immediately. Other than the request/accept flow, the channel model does 
not enforce any timing. Instead, it is up to the core models attached to the OCP TL2 
channel to provide the correct timing by sending their commands at the appropriate 
time. 

For example, the slave should wait an appropriate amount of time before accepting a 
request to allow for the request and data to cross the channel. The OCP TL2 channel 
provides some helper functions to make this calculation easier for the cores.  

One advantage of no channel clocking is that it allows a TL2 core to be completely event 
driven. A slave can be written “passively” with a SystemC SC_METHOD that is sensitive 
to the channel’s RequestStartEvent. Thus, the slave would only be activated when there 
is a new request on the channel to be processed. Such event driven models are more 
efficient and run much faster in SystemC than clocked models or models based on 
SC_THREADS.  

3.1.2 No Separate Data Handshake 
The OCP TL2 channel simplifies the interface by combining the request path with the 
data handshake path. In the OCP TL1 channel, these two paths are separate. As a 
result, a TL1 slave core must have three processes: one to handle incoming requests, 
one for incoming data, and a third to send back responses. In addition, the TL1 slave 
must buffer the incoming requests and then match the incoming data to the 
corresponding request. 

This is simplified with the OCP TL2 channel. Requests and data are always sent 
together. This means that a TL2 slave need only have two processes: one to receive 
requests and another to send responses. Additionally, there is no longer any overhead 
in trying to match data back to a request. 



35 

The downside of sending data and responses together is that some OCP timing 
information may be lost. Specifically, the actual hardware master may send data one or 
more cycles after a request. This behavior may be modeled directly in OCP TL1 by 
having the TL1 master model send a request in one cycle and data in the next. However, 
this cannot be modeled directly with the OCP TL2 channel since data and request are 
always sent together. The OCP TL2 channel partially solves this problem by providing a 
timing point “RqDL” set by the master that specifies the latency “L” between when the 
request “Rq” starts on the channel and when the data “D” starts on the channel. 

3.1.3 Simpler Phase Timing 
The OCP TL1 channel employs a set of checks to ensure that the data flow through the 
channel exactly follows the ordering rules of the OCP specification. In addition, the OCP 
TL1 channel uses delta cycles and delayed request/update schemes to give each phase 
its own delta cycle. This careful phase tracking is not needed for most OCP 
communications, especially when there is no separate data handshake phase. Thus, it 
is not used for OCP TL2. 

In the OCP TL2 channel, the next request may be sent as soon as the previous request 
has finished. The channel does not check and does not enforce that the next request 
should wait until the next OCP cycle. This makes the OCP TL2 channel faster, but it 
does put some of the timing burden on the TL2 core writer. 

3.1.4 Burst at Once 
The greatest performance advantage of the OCP TL2 channel over the TL1 channel is 
the ability to send bursts with a single command. In order to send a write burst of 
length eight over the OCP TL1 channel, the master must send eight individual write 
requests (and possibly eight individual write data handshakes) in order to get the full 
burst across the channel. With the OCP TL2 channel, a single command sends the 
whole burst request at once. This eliminates much of the overhead and greatly improves 
the throughput of the channel. 

3.1.5 Passing Pointers 
The OCP TL2 channel achieves its “burst at once” commands through the use of 
pointers. While write data and read data responses are sent one at a time in OCP TL1, 
they are sent as an array in the OCP TL2. Thus, instead of a data word, the OCP TL2 
channel passes a pointer to the first data word in an array of data words. Of course, the 
OCP TL2 channel can also be used to send writes and reads of single data words. In 
this case, the data pointer is still used but it only points to a single data word (or an 
array of one). 

Any time pointers are used, it is important to establish who owns the memory pointed 
to by the pointer. For the OCP TL2 channel, the memory is owned by the core sending 
the request or the response. The values pointed to by the pointer are to remain valid 
until the request (or response) is accepted by the other side.  

For example, the master wants to send an eight-word burst write command over the 
OCP TL2 channel. The master creates an array of data at least eight words long. The 
Master then copies the data to be written into the new array. The master then makes a 
request group and sets the “MDataPtr” value to the data array. The Master then calls 
“sendOCPRequest” to place the request on the channel. At this point, the master is 
committed to keeping the data array valid and constant until the request is over and 
the master receives the RequestEndEvent from the channel. 
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One “gotcha” to look out for: avoid using data arrays that are automatic variables as 
they will get automatically deleted at the end of the function call they were defined in. 
Rather, it is safer to use an array just for sending data that is a class data member. 
That way the array will not be deleted and can be reused for each request. 

3.2 Using the OCP TL2 Channel 
When used as intended, the OCP TL2 channel can give increased performance with 
close to cycle accurate timing. The following guidelines will help to get the best results 
from the channel. 

3.2.1 Timing 
The OCP TL2 channel does not have cycle accurate timing as the OCP TL1 channel does 
nor does it have the timing and ordering checks that are built into TL1. However, it is 
possible to get quite accurate timing when using the TL2 channel, as long as the 
underlying OCP connection is understood and followed. 

The timing of the channel is set by the two cores that are connected to it. Anytime that 
there is no request on the channel, the channel allows the master to send a new 
request. The channel will then not allow another request until the current request has 
been accepted by the slave. Thus, it is “accept” functions that drive the timing of the 
channel.  

It is up to the slave to calculate how long it would take the request to cross the channel 
and how long it would then take the slave to process the request. The slave should then 
accept the request after that length of time has elapsed. Similarly, it is up to the master 
to calculate how long it would take a response to cross the OCP connection and 
additionally how long it would take for the master to process it and be ready for a new 
response. The master should then accept the response after that length of time. 

The OCP TL2 channel provides delayed accept functions to make this easier. In 
addition, there are timing variables and helper functions that can automatically 
calculate the OCP timing of a request or response.  

3.2.2 Events 
In order to get the best performance from the OCP TL2 channel, it is advisable to make 
the cores connected to it event-driven. In general, an OCP TL2 core should have an 
SC_METHOD for sending and another for receiving. Each method should be sensitive to 
an OCP TL2 event. 

For example, a master would have a method for sending new requests that is sensitive 
to the channel’s RequestEndEvent. When the previous request has been accepted by 
the slave, the channel triggers the RequestEndEvent. A method in master that is 
sensitive to this event will then be activated and it can send a new request to the 
channel. 

The OCP TL2 channel also supports blocking calls that must be used with an 
SC_THREAD process. However, an SC_THREAD process is slower than an SC_METHOD 
and developers interested in greater model performance should aim for an event driven 
simulation. 
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3.2.3 OCP Burst Signals 
The OCP specification includes a collection of signals that specify the details of each 
individual transfer of an OCP burst transaction. While these signals are certainly useful 
at the hardware level and at the cycle accurate TL1 level, their use is less clear for an 
OCP TL2 connection which allows an entire burst to be sent as a single command. This 
section covers the OCP burst signals as a group and then gives guidelines for specific 
burst signals as well. 

As a group, the OCP Burst signals are meant to help through the individual transfers of 
a burst. Many of them change with each of individual request or response of the burst. 
For example, for imprecise bursts, the MBurstLength may count down as there are 
fewer and fewer requests left to send in the burst. Since the OCP TL2 channel allows an 
entire burst in a single command, how does one set a burst signals that changes 
throughout the burst?  

One simple solution is to ignore the burst signals altogether when using the OCP TL2 
channel. The OCP TL2 API provides the basic signaling needed for burst-at-once 
transactions. The request group has a pointer to the entire burst of data, there is a field 
for how many requests are in this burst command (DataLength) as well as a flag to 
indicate whether or not this command is the last OCP TL2 command in the burst 
(LastOfBurst). These fields are enough to send bursts over the TL2 channel either as a 
single command or as a set of commands. 

But the OCP burst signals do have there place in the OCP TL2 channel, especially when 
the OCP TL2 channel is used to send bursts one request/response at a time. Here are 
the guidelines for each of the OCP burst signals. 

3.2.4 DataLength 
This is the number of write data words in the OCP TL2 write request, the number of 
data words to read in an OCP TL2 read request, and the number of data words in an 
OCP TL2 response. The DataLength field gives the number of data words in the array 
pointed to by MDataPtr or SDataPtr.  

Note that DataLength applies to the command and not necessarily to the whole burst. 
For example, say that master wanted to send at 16 burst read request to the slave. If 
the master sent it as a single command, then DataLength=16. If the master sends the 
burst request in two parts, the first OCP TL2 burst request might have a DataLength=8, 
and the second might have DataLength=8 as well. If the master wanted to send the 
burst as sixteen separate requests, then each of the requests would have 
DataLength=1. 

The DataLength field is required, even when its value is one. This is because the 
DataLength field is needed to dereference the pointers that passed with the OCP TL2 
request or response. 

 

3.2.5 LastOfBurst 
The LastOfBurst field indicates that this command is the last command of the burst. It 
is part of both the request group and the response group. If the entire burst is being 
sent as a single command, then LastOfBurst=true as this is the first and last command 
of the burst. If the burst is sent in two commands, then LastOfBurst=false for the first 
part and LastOfBurst=true for the second part. 
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3.2.6 MBurstSeq 
This field sets how the addressing is to be done for each data word in the burst. It is 
has the same meaning in the OCP TL2 channel as it does in the hardware. 

3.2.7 MBurstPrecise & MBurstLength 
This field is indicates whether the total length of the burst is known. If 
MBurstPrecise=true, then the MBurstLength field contains the total length of the burst 
and if MBurstPrecise=false then MBurstLength indicates how many data words might 
be remaining in the burst. 

If entire bursts are being sent as single commands, then these fields are not useful for 
the TL2 core writer as the total burst length is know when the command is received. 
However, these fields may be useful when a burst is sent as a set of several commands. 
In the case of MBurstPrecise=true, the field MBurstLength contains the total number of 
data words in the whole burst, while DataLength contains the number of data words in 
a particular individual request or response. 

For example, the master wants to send a precise 16 word write request to the slave 
through the OCP TL2 channel. Instead of sending the whole request at once, the master 
instead sends it as three separate request commands: the first with 6 data words, the 
second with 6 data words and the last with 4 data words. Here are the values for 
MBurstPrecise, MBurstLength, DataLength, and LastOfBurst fields for these three TL2 
request commands that together make up the 16-word write burst: 

Request #1:  MBurstPrecise=true, MBurstLength=16, DataLength=6, LastOfBurst=false. 

Request #2: MBurstPrecise=true, MBurstLength=16, DataLength=6, LastOfBurst=false. 

Request #3: MBurstPrecise=true, MBurstLength=16, DataLength=4, LastOfBurst=true. 

3.2.8 MBurstSingleReq 
This OCP field specifies that the transfer is to be sent with a single request phase for a 
burst of length N (SRMD semantics). An SRMD (Single Request, Multiple Data) read 
crosses in only one transfer while an MRMD (Multiple Requests, Multiple Data) read will 
have one transfer per data word. 

Note that when MBurstSingleReq=1 (SRMD semantics), sending a burst in chunks 
smaller than MBurstLength can still make sense for a write as it would specify different 
timing to issue data, but for a read the burst must be sent as a single request with 
DataLength matching MBurstLength. Responses to an SRMD read request can still be 
issued by the slave in multiple chunks amounting to the request's MBurstLength. This 
is not applicable for write requests with response, as OCP specifies that a single 
response is expected for an SRMD write burst. Thus the response to any write request 
with MBurstSingleReq=1 must have DataLength=1. 

The timing helper functions in the OCP TL2 channel take the SRMD or MRMD nature of 
the burst into account. 

3.2.9 MAtomicLength 
This OCP field is not used in the OCP TL2 channel. 
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3.2.10 MReqLast  
This field indicates that this is the last write word request or the last read word request 
of the burst. This signal is not very helpful when whole bursts and chunks of bursts 
may be sent at once. In the OCP TL2 channel, the field LastOfBurst is used instead.   

3.2.11 SRespLast 
This field indicates that this is the last response word of the burst. This signal is not 
very helpful when whole bursts and chunks of bursts may be sent at once. In the OCP 
TL2 channel, the field LastOfBurst is used instead. 

 

3.3 Benchmarking the Channels 
The benchmark tests below show that the OCP TL2 channel gets its greatest 
performance boost over the TL1 channel when bursts are sent as single commands. 

3.3.1 Overview of the Benchmark Tests 
In each of these tests, a simple master is connected to a simple core through the OCP 
channel model. The channel and the cores use Td (data type) & Ta (address type) = 
unsigned int. The OCP Channel has data handshake with command, data, and 
response accept. For writes, the command goes first and then the data goes in the next 
cycle. 

The TL1 master uses one thread method (to send requests), the rest of the TL1 master 
and all of the TL1 slave model is event driven. The TL2 master and slave models are all 
event driven. 

These tests were run on a dual processor Pentium III 1.26GHz machine. All simulations 
ran on a single processor. The tests were compiled under Linux with gcc 2.96 using the 
"-O" flag and the standard OSCI SystemC library. 

3.3.2 Single Data Word Writes and Reads 
The first test is a single data word write command followed by a single data word read. 
This sequence is looped through 10,000,000 times. 

Table 9  Single word reads and writes 

Model Run 1 (s) Run 2 (s) Run 3 (s) Avg Time (s) Data Words / sec 
TL1 86.37 86.26 85.80 86.14 232,171 

TL2 original 41.11 41.14 41.14 41.13 486,263 

TL2 performance 23.19 23.13 23.08 23.13 864,553 
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Figure 4 Throughput (Data Words/sec) for single writes and reads 

TL1 TL2 Org TL2 Perf
0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

 
 

3.3.3 Burst Writes and Reads 
The second test is a burst write of 16 data words followed by a burst read of 16 data 
words. The sequence is looped through 1,000,000 times for TL1 and 10,000,000 times 
for the TL2 channels.  

Table 10  Burst writes and reads 

Model Run 1 Run 2  Run 3 Avg Time  Data Words 
/ sec 

Notes 

TL1 115.54 116.07 115.36 115.66 276,681 1,000,000 loops 

TL2 original 41.58 41.57 41.72 41.62 7,687,996 10,000,000 loops 

TL2 performance 23.96 23.90 23.88 23.91 13,381,656 10,000,000 loops 
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Figure 5 Throughput (Data Words/sec) for burst 16 writes and reads 

TL1 TL2 Org TL2 Perf
0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

 
 

 

 



OCP TL2 Channel 42

4 OCP TL2 Channel Model 
 

4.1 Data Structures for the OCP TL2 Channel 
The following data classes are used to pass requests and responses through the OCP 
TL2 channel. These classes also contain conversion functions and constructors for 
compatibility with the original TL2 channel. 

4.1.1 OCPTL2RequestGrp Template Class 
The OCPTL2RequestGrp class is used for sending and receiving OCP TL2 burst 
requests.  This template class is defined as 

Template<class Td, class Ta>  
class OCPTL2RequestGrp 
 
Where Td is the data type and Ta is the address type. 

4.1.1.1 Data Type and Address Type 
The class template parameters Td and Ta indicate the data type and address type of the 
MDataPtr and MAddr signals, respectively. By making this a template, any sized data or 
address width may be supported. 

4.1.1.2 Members 
Some configurations of the OCP will not use all of the members in the class. In that 
case, the unused members are invalid and should not be referenced or used. The table 
below lists the member names and their data types for OCPTL2RequestGrp. 

Table 11  OCPTL2RequestGrp Members 

Name Data Type Description 
MCmd OCPMCmdType Master command 

MAddr AddrType Address of first data word of the request.  
According to the OCP specification MAddr is 
supposed to be a byte address that must be 
aligned with the OCP word size. 

MAddrSpace unsigned int Master address space 

MDataPtr DataType* Pointer to the first word of write data for the 
request. A burst of write data should be an array. If 
this is a read request, then MDataPtr = NULL. 
According to section 3.1.5 the data memory is 
owned by the master and only guaranteed to be 
valid until the slave has accepted the request. 
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Name Data Type Description 
DataLength unsigned int The number of data words in this request. If this is a 

write request, then DataLength is the number of 
data words in the array pointed to by MDataPtr. If 
this is a read request then DataLength is the 
number of data words to be read. 

MByteEn unsigned int Master byte enable field. Use this value if the 
(optional) MByteEnPtr is set to NULL. 

MByteEnPtr unsigned int* Pointer to an array of byte enable fields. The length 
of the array pointed to should be DataLength long. 
Each ByteEn field is to be used for the 
corresponding data word in the MDataPtr array. If 
the byte enable remains constant throughout the 
burst, set MByteEnPtr=NULL and use MByteEn 
instead.  

MDataInfo unsigned long long 
int 

Extra information sent with the write data 

MDataInfoPtr unsigned long long 
int* 

Pointer to an array of data info fields. The length of 
the array pointed to should be DataLength long. 
Each MDataInfo field in the array is to be used for 
the corresponding data word in the MDataPtr 
array. If the DataInfo remains constant throughout 
the burst, set MDataInfoPtr=NULL and use 
MDataInfo instead. 

MThreadID unsigned int Master thread identifier 

MConnID unsigned int Master connection identifier 

MTagID unsigned int Master tag identifier (see OCP 2.1 standard) 

MTagInOrder bool If true, force tag-in-order (see OCP 2.1 standard) 

MReqInfo unsigned long long 
int 

Extra information sent with the response. 

MBurstLength unsigned int If MBurstPrecise=true, this is the total length of the 
OCP burst. Note that is the OCP burst is sent as 
several requests then MBurstLength will be equal to 
the sum of the DataLength’s of each of the 
requests. 

MBurstPrecise bool Given burst length is precise 

MBurstSeq OCPMBurstSeqType Address sequence of burst 

LastOfBurst bool Is this burst request the last request of the OCP 
burst? 

 
Some notes on the usage of these fields: 

DataLength 
This is always the length of this chunk of the request burst. DataLength gives the 
length of the arrays pointed to by each of the pointer variables in the request 
structure. 

For read requests, the DataLength field indicates how many data words are to be 
read as part of this TL2 request. 

MByteEn & MbyteEnPtr 
The MByteEnPtr is an array of byte enable fields, one byte enable for each OCP 
data word. The MByteEnPtr allows accurate simulation of a channel where the byte 
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enable value is changed with each data word of the burst. If MByteEn changes with 
each data word, then the MByteEnPtr should be set and the MByteEn field should 
be ignored. If, however, the MByteEn stays constant then the MByteEnPtr should 
be set to NULL (the default) and the MByteEn field should be used.  

MDataInfo & MdataInfoPtr 
The MDataInfoPtr is an array of data info fields, one data info value for each OCP 
data word. Just as with the MByteEnPtr, the MDataInfoPtr allows accurate 
simulation of a channel where the data info value is changed with each data word 
of the burst. If data info changes with each data word, then the MDataInfoPtr 
should be set and the MDataInfo field should be ignored. If, however, the 
MDataInfo stays constant then the MDataInfoPtr should be set to NULL (the 
default) and the MDataInfo field should be used.  

MBurstPrecise & MBurstLength 
These fields allow for the specification of precise bursts in TL2. When 
MBurstPrecise is true, the MBurstLength field should contain the total length of the 
OCP burst request.  

For example, if a precise OCP burst write request of 16 data words were sent as 
three TL2 requests, each request could have the following fields: 

Request #1: MBurstPrecise = true; MBurstLength = 16; DataLength = 8; 
LastOfBurst=false; 

Request #2: MBurstPrecise = true; MBurstLength = 16; DataLength = 4; 
LastOfBurst=false; 

Request #3: MBurstPrecise = true; MBurstLength = 16; DataLength = 4; 
LastOfBurst=true; 

If the same OCP burst write of 16 data words were sent as one TL2 request, then 
the TL2 request would be: 

Request: MBurstPrecise = true; MBurstLength = 16; DataLength = 16; 
LastOfBurst=true; 

Note the difference between MBurstLength and DataLength: DataLength is required 
and specifies that number of data words in this TL2 request, MBurstLength is used 
for precise bursts and always holds the total number of data words in all of the TL2 
requests that make up the burst. 

4.1.2 OCPTL2ResponseGrp Template Class 
The OCPTL2ResponseGrp class is used to send and receive OCP TL2 burst responses 
with the OCP TL2 channel. This template class is defined as 

 Template<class Td>  
 OCPTL2ResponseGrp 

4.1.2.1 Data Type 
The class template parameter Td indicates the data type of the SDataPtr signal. This 
allows the response to contain any size of data. Note that the type of the response data 
must match the type of request data. 
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4.1.2.2 Members 
Some configurations of the OCP will not use all of the members in the class. This 
corresponds to the fact that some OCP implementations do not use all of the OCP 
signals. In that case, the unused members are invalid and should not be referenced or 
used. The table below lists the names and their data types of OCPTL2ResponseGrp. 

Table 12 OCPTL2ResponseGrp Member Types 

Name Type Description 
SResp OCPSRespType Slave response code 

SDataPtr DataType* Pointer to the data words returned by slave. This 
should be an array of data words that is 
DataLength long. Note that for responses without 
data, such as write acknowledgement responses, 
SDataPtr=NULL. According to section 3.1.5 the data 
memory is owned by the slave and only 
guaranteed to be valid until the master has 
accepted the response. 

DataLength unsigned int The number of data words in this response. If this 
response does not contain any data words, then 
DataLength=0. 

SThreadID unsigned int Slave thread identifier 

STagID unsigned int Slave tag identifier (see OCP 2.1 standard) 

STagInOrder bool Force tag-in-order (see OCP 2.1 standard) 

SDataInfo unsigned long long int Extra information about  the response data. 

SRespInfo unsigned long long int Extra information sent out with the response. 

LastOfBurst bool Is this the last response of the OCP burst? The OCP 
burst may be sent as one or as several separate 
responses. 

 
DataLength is always the length of this chunk of the response burst. DataLength gives 
the length of the array pointed to the SDataPtr.  

4.1.3 Timing Values 
For ease of use, the timing values are organized into two groups: the master timing 
group and the slave timing group. As the name implies, the values in the master timing 
group are set by the master and the values in the slave timing group are set by the 
slave. 

4.1.3.1 Master Timing Variables 
These timing values are set by the master side of the OCP connection. 

Table 13 OCP TL2 Master Timing Variables Structure 

MTimingGrp:  
int RqDL Request Data Latency 

int RqSndI Request Send Interval 

int DSndI Data Send Interval 
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int RpAL Response Accept Latency  
 

The Master Timing Variables are defined as follows. The Request Data Latency (RqDL) is 
the number of cycles between the start of a write request and the start of the 
corresponding data that is a associated with that write request. This variable only 
applies to write requests on channels with data handshake. 

The Request Send Interval (RqSndI) is the number of cycles between read requests in a 
read burst when the master is connected to a very fast slave. This is the fastest that the 
master can send read requests. If RqSndI is set to 1, this means that the master is 
capable of sending out a read request every cycle. A RqSndI of 3 means that the master 
is much slower and only able to issue a read request every three cycles. 

The Data Send Interval (DSndI) is the number of cycles between the data words  in a 
burst write request. In the case of data handshake, this is the distance between the 
data words on the data path through the channel. In the case of no data handshake, 
this is the number of cycles between the write requests (that contain the data words). A 
DSndI of 1 means the master can send a new write data word every single cycle. A 
DSndI of 2 means that the master can send a new write request only ever other cycle.  

The Response Accept Latency (RpAL) indicates how long the master will wait to accept a 
response from the slave after the response arrives on the channel. An RpAL of 1 means 
the master can accept a response every single cycle. An RpAL of 10 means that the 
master is much slower and only able to process a new response every 10 cycles. 

4.1.3.2 Slave Timing Variables 

Table 14 OCP TL2 Slave Timing Variables Structure 

STimingGrp  
int RqAL Request Accept Latency 

int DAL Data Accept Latency 

int RpSndI Response Send Interval 
 

The Slave Timing Variables are similar to the Master’s timing variables and are defined 
as follows. The Request Accept Latency (RqAL) is the minimum number of cycles 
between read requests required by the slave.  A very fast slave would have an RqAL of 1 
which would meant that the slave could process and accept a read request every cycle. 
A slower slave might have an RqAL of 4 which means that the slave can only handle a 
new read request every 4 cycles. 

The Data Accept Latency (DAL) variable defines the minimum interval between the data 
words of a write request burst. It specifies how many cycles the slave requires to accept 
each data word of a write request burst. A DAL of 1 means the slave is capable of 
processing a new write request every 1 cycles (every cycle).  

Finally, the Response Send Interval (RpSndI) gives the number of cycles between 
responses if the slave were connected to a very fast master. That is, if the slave were 
able to run at full speed, how many cycles would there be between responses? A RpSndI 
of 4 indicates that the slave could send a new response every 4 cycles, while a RpSndI 
of 1 means that the slave is capable of sending a new response every cycle. 
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4.2 Building the OCP TL2 Channel 

4.2.1 Constructor 
The OCP TL2 channel has the following constructor: 

OCP_TL2_Channel(sc_module_name name,  
                ostream *traceStreamPtr=NULL) 

Name 
Name of the module (channel) instance. 

TraceStreamPtr 
Pointer to an output stream to use to print debugging information. 

4.2.2 Configuring the Channel Clock Period 
The OCP TL2 channel operates in integer cycles. To set the length of the clock period of 
an OCP channel cycle, use the following command: 

void setPeriod( const sc_time& clkPer )  

 

Sets the time taken by one OCP cycle period. Only called from the “outside.” Not called 
by master or slave. 

4.2.3 Setting the Parameters 
The Tl2 channel is configured in the same way as the TL1 channel.  The same options 
are available, namely configuration from the environment or configuration from the 
master and slave cores, with the same callback mechanism to allow the implementation 
of generic cores.  In fact the classes and methods used are exactly the same as for TL1, 
with one exception.  For full details see sections 2.2 and 2.7.  The exception is that in 
TL2, the channel method getParamCl returns a pointer to OCPParameters rather than a 
pointer to ParamCl as it does in TL1. 

Briefly, the parameters of the channel are set using a string to string map. 

void setConfiguration( MapStringType& passedMap ) 

void setOCPMasterConfiguration( MapStringType& passedMap ) 

void setOCPSlaveConfiguration( MapStringType& passedMap ) 

Where passedMap is a map< string, string>  where the left side string is the parameter 
name (as defined in the OCP specification) and the right side is in the form of 
“type:value” where type is “i” for integer or “s” for string.  

4.3 OCP TL2 Master Interface Methods (ocp_tl2_master_if.h) 
The methods described in this section handle the OCP TL2 channel interface for a 
master core model. 

API Function Description 
Request Commands  
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bool  
sendOCPRequest( 
          OCPTL2RequestGrp Rq) 

Puts an OCP TL2 request on the channel. Returns true if 
the request was successfully placed on the channel. 
False otherwise. 

bool  
sendOCPRequestBlocking( 
          OCPTL2RequestGrp Rq);  

Puts an OCP TL2 request on the channel, waiting until 
the channel is free if necessary. Waits until the slave 
accepts the request and then returns. 
Blocking calls may only be called from SC_THREAD 
processes. 

bool requestInProgress() True is there is currently an active request on the 
channel. 

Response Commands  

bool 
getOCPResponse( 
         OCPTL2ResponseGrp& Resp) 

Gets a new response from the channel and returns 
true. Returns false if no new response transaction 
available. 

bool  
getOCPResponseBlocking( 
         OCPTL2ResponseGrp& Resp) 

Waits for a new, unread OCP TL2 response to come on 
to the channel and then gets it. 
Can only be called from an SC_THREAD process. 
Notice: Not to be used for modeling OCP interfaces 
with multiple threads. Use non-blocking instead. Not to 
be called from multiple SC_TREADs. 

bool acceptResponse() Accepts the response immediately and returns true. 
Returns false if no response to accept. 

bool 
acceptResponse( 
          const sc_time& accept_time) 

Accepts the response in the future, accept_time 
SystemC time units from now. 
Returns false if no response to accept. 

bool 
acceptResponse(int cycles) 

Accepts the response in the future, cycles OCP cycle 
periods from now. If cycles=0 then the accept is 
immediate. If cycles=-1 then the response is accepted 
after the current values of the timing variables indicate 
that it should have completed. That is, if cycles < 0 then 
cycles = getTL2RespDuration(); 
Returns false if no response to accept. 

bool 
responseInProgress() 

True if there is currently an active response on the 
channel. 

ThreadBusy Commands  

putMThreadBusyBit( 
       bool value,  
       unsigned int ThreadID); 

Sets MThreadBusy thread bit # ThreadID to value. 

bool  
getSThreadBusyBit(  
       unsigned int ThreadID); 

Returns the value of SThreadBusy bit # ThreadID. 

Channel Timing Functions  

const sc_time&  
getPeriod(void) const 

Get the time taken by one OCP cycle period in the 
channel. 

Timing Value Functions  

putMasterTiming( 
     MTimingGrp mTimes); 

Set new values for all of the master timing variables. 

getMasterTiming( 
     MTimingGrp& mTimes); 

Get the current values for all of the master timing 
variables. 
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getSlaveTiming( 
     STimingGrp& sTimes); 

Get the current values for all of the slave timing 
variables. 

Timing Helper Functions  

int  
getWDI(); 

Gets the Write Data Interval, the number of cycles 
between data words in a write request. Called by 
master or slave. If the channel does not have a data 
handshake path, this function returns the number of 
cycles between write requests. (Note that this value is 
calculated from Master Data Send Interval and Slave 
Data Accept Interval). 

int 
getRqI(); 

Gets the Read Request Interval, the number of cycles 
between the individual read requests in a read request 
burst. Called by master or slave. 

int  
getTL2ReqDuration(); 

The estimated minimum number of cycles the current 
request will be on the channel. This value is computed 
from the timing values as well as from the channel 
configuration. Called by master or slave. 

int  
getRDI(); 

Gets the Response Data Interval, the number of cycles 
between data words in a read response. Called by 
master or slave. Note that this value is computed from 
timing values set by the master and slave as well as by 
from the channel configuration.  

int  
getTL2RespDuration(); 

The estimated minimum number of cycles the current 
response will be on the channel. This value is computed 
from the timing values, the number of data words in the 
response and the channel configuration. Called by 
master or slave. 

void setOCPMasterConfiguration( 
MapStringType& passedMap) 

Method for the master to inform the channel of the 
configuration of its OCP port during end-of-elaboration 

void addOCPConfigurationListener( 
OCP_TL_Config_Listener& listener) 

Method for the master to register itself to be called-
back when the channel configuration changes, for 
example when set by the slave. 

const std::string peekChannelName() Method to get the channel name, needed when a 
multiple-port configuration listener is called back, to 
distinguish the OCP port to which the callback refers. 

4.4 OCP TL2 Slave Interface Methods (ocp_tl2_slave_h) 
The methods described in this section handle the OCP TL2 channel interface for a slave 
core model. 

API Function Description 
Request Commands  

bool  
getOCPRequest( 
            OCPTL2RequestGrp& Rq) 

Gets a new request from the channel and returns true, 
otherwise returns false if no new request available. 

bool  
getOCPRequestBlocking( 
            OCPTL2RequestGrp& Rq) 

Gets a new request from the channel if available, 
otherwise waits for a new request and then gets it. 
Notice: Not to be used for modeling OCP interfaces 
with multiple threads. Use non-blocking instead. Not to 
be called from multiple SC_TREADs. 
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bool  
acceptRequest(void) 

Accepts the request immediately and returns true. 
Returns false if no request to accept. 

bool 
acceptRequest( 
       const sc_time& accept_time) 

Accepts the request in the future, accept_time 
SystemC time units from now. 
Returns false if no request to accept. 

bool 
acceptRequest(int cycles) 

Accepts the request in the future, cycles OCP cycle 
times from now. If cycles=0 then the accept is 
immediate. If cycles=-1 then the request is accepted 
after the timing points indicate that it should have 
completed. That is, if cycles < 0 then cycles = 
getTL2ReqDuration(); 
Returns false if no request to accept. 

bool  
requestInProgress() 

True is there is currently an active request on the 
channel. 

Response Commands  

bool 
sendOCPResponse( 
          OCPTL2ResponseGrp Resp) 

Puts an OCP TL2 response on the channel. Called by 
slave. Returns true if channel was open for a new 
response. False otherwise. 

bool  
sendOCPResponseBlocking(  
          OCPTL2ResponseGrp Resp) 

Waits for the OCP TL2 response channel to become 
free. Puts an OCP TL2 response on the channel.  

bool 
responseInProgress() 

True if there is currently an active response on the 
channel. 

ThreadBusy Commands  

bool getMThreadBusyBit(  
       unsigned int ThreadID); 

Returns the value of MThreadBusy bit # ThreadID. 

putSThreadBusyBit( 
       bool value,  
       unsigned int ThreadID ); 

Sets SThreadBusy bit # ThreadID to value. 

bool  
getSThreadBusyBit( 
       unsigned int ThreadID); 

Returns the value of SThreadBusy bit # ThreadID. 

Channel Timing Functions  

const sc_time&  
getPeriod(void) const 

Get the time taken by one OCP cycle period in the 
channel. 

Timing Value Functions  

getMasterTiming( 
     MTimingGrp& mTimes); 

Get the current values for all of the master timing 
variables. 

putSlaveTiming( 
     STimingGrp sTimes); 

Set new values for all of the slave timing variables. 

getSlaveTiming( 
     STimingGrp& sTimes); 

Get the current values for all of the slave timing 
variables. 

Timing Helper Functions  
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int  
getWDI(); 

Gets the Write Data Interval, the number of cycles 
between data words in a write request. Called by 
master or slave. If the channel does not have a data 
handshake path, this function returns the number of 
cycles between write requests. (Note that this value is 
calculated from Master Data Send Interval and Slave 
Data Accept Interval). 

int 
getRqI(); 

Gets the Read Request Interval, the number of cycles 
between the individual read requests in a read request 
burst. Called by master or slave. 

int  
getTL2ReqDuration(); 

The estimated minimum number of cycles the current 
request will be on the channel. This value is computed 
from the timing values as well as from the channel 
configuration. Called by master or slave. 

int  
getRDI(); 

Gets the Response Data Interval, the number of cycles 
between data words in a read response. Called by 
master or slave. Note that this value is computed from 
timing values set by the master and slave as well as by 
from the channel configuration.  

int  
getTL2RespDuration(); 

The estimated minimum number of cycles the current 
response will be on the channel. This value is computed 
from the timing values, the number of data words in the 
response and the channel configuration. Called by 
master or slave. 

void setOCPSlaveConfiguration( 
MapStringType& passedMap) 

Method for the slave to inform the channel of the 
configuration of its OCP port during end-of-elaboration 

void addOCPConfigurationListener( 
OCP_TL_Config_Listener& listener) 

Method for the slave to register itself to be called-back 
when the channel configuration changes, for example 
when set by the master. 

const std::string 
peekChannelName() 

Method to get the channel name, needed when a 
multiple-port configuration listener is called back, to 
distinguish the OCP port to which the callback refers. 

 

4.5 OCP TL2 Channel Events 
The methods described in this section handle give access to the events generated by the 
OCP TL2 channel. While most events are available to both the master and the slave, 
some events are meant for only one side or the other and when this is the case it is 
indicated in the table below. 

API Event Function Description 
DataFlow Events  

sc_event&  
RequestStartEvent() 

Event finder for the channel event that is triggered when a 
new request is placed on the channel. 

sc_event&  
RequestEndEvent() 

Event finder for the channel event that is triggered when the 
request is accepted by the slave and the channel is 
released. 

sc_event&  
ResponseStartEvent() 

Event finder for the channel event that is triggered when a 
new response is placed on the channel. 
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sc_event&  
ResponseEndEvent() 

Event finder for the channel event that is triggered when the 
response is accepted by the master and the channel is 
released. 

ThreadBusy Events  

sc_event&  
MThreadBusyEvent() 

Event finder for the channel event that is triggered 
whenever MThreadBusy signal changes. This event finder is 
available to the Slave only. 

sc_event&  
SThreadBusyEvent() 

Event finder for the channel event that is triggered 
whenever SThreadBusy signal changes. This event finder is 
available to the Master only. 

Channel Timing Events  

sc_event& 
MasterTimingEvent() 

Event finder for the channel event that is triggered 
whenever the master’s timing variables are changed. This 
event finder is available to the slave only. 

sc_event& 
SlaveTimingEvent() 

Event finder for the channel event that is triggered 
whenever the slave changes its timing variables on the 
channel. This event finder is available to the master only. 

Sideband Signal Events  

sc_event& 
SidebandMasterEvent() 

Event finder for the event that is triggered whenever the 
master changes one of its sideband signals. This event finder 
is available to the slave only. 

sc_event& 
SidebandSlaveEvent() 

Event finder for the event that is triggered whenever the 
slave changes one of its sideband signals. This event finder is 
available to the master only. 

sc_event& 
SidebandCoreEvent() 

Event finder for the event that is triggered whenever the 
“Core” side of the OCP connection  changes one of its 
sideband signals. This event finder should be used by the 
“System” side only. 

sc_event& 
SidebandSystemEvent() 

Event finder for the event that is triggered whenever the 
“System” side of the OCP connection  changes one of its 
sideband signals. This event finder should be used by the 
“Core” side only. 

 

4.6 Reset 
The OCP TL2 channel has limited reset support. The reset commands set and unset the 
reset flags in the channel. They do not change or reset the current state of the channel. 
Nor do they interrupt blocking commands. If a reset signal is desired, then it is up to 
the master and slave cores to take appropriate action by immediately accepting 
outstanding requests and responses and refraining from sending any new requests or 
responses until the reset is over. 

Reset API Function Description 
sc_event&  
ResetStartEvent() 

Event finder for the channel event that is triggered when a reset is 
asserted on the channel. 

sc_event&  
ResetEndEvent() 

Event finder for the channel event that is triggered when a reset is 
ended on the channel. 

bool 
getReset() 

Checks if channel is in reset state. Returns true if the channel is in 
reset, false otherwise. Called by the master or slave. 
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void 
MResetAssert() 

Called by the master only. Sets the MReset_n flag to false. Triggers 
the ResetStartEvent. 

void  
MResetDeassert() 

Called by the master only. Sets the MReset_n flag to true. Triggers 
the ResetEndEvent. 

void 
SResetAssert() 

Called by the slave only. Sets the SReset_n flag to false. Triggers 
the ResetStartEvent. 

void  
SResetDeassert() 

Called by the slave only. Sets the SReset_n flag to true. Triggers the 
ResetEndEvent. 

 

4.7 Timing Model for the OCP TL2 Channel 
The timing model for the OCP TL2 channel aims to reap the benefits of increased 
channel speed due to OCP burst transaction granularity while mitigating the trade-off 
by providing sub granularity timing information that can be used to more accurately 
estimate the timing of the individual OCP transfers that underlie each OCP burst 
transaction. 

4.7.1 Time in the OCP TL2 Channel 
For speed and efficiency, the OCP TL2 channel runs un-clocked with the timing taken 
care of in the master and slave core modules that are connected to it. The timing of the 
OCP channel is determined by the when the channel’s transaction functions (send and 
accept) are called. This in turn is determined by the cores connected to the channel as 
they are the ones that call the channel’s functions. The channel itself operates passively 
without a notion of time. The channel is only active when one of its functions has been 
called by an attached core. Once a function has been called, the channel will do its 
processing and may also generate events. 

The starting time and ending time of each OCP burst request and response are available 
to the core modules in the course of the simulation. In addition to the start and end 
timing information, the core modules may also need the timing of the underlying OCP 
transfers that the burst transaction represents. In the following section, a method is 
described for doing the above by utilizing the latency definitions listed in the OCP 2.0 
Specification and additional timing variables added to the channel. 

4.7.2 Timing for Different Burst Types 
The timing model covers OCP write bursts, read bursts, and non-posted write bursts, 
where the burst size can be 1 or any other number. The timing model works with a 
combination of different MRMD (Multiple Requests, Multiple Data) and SRMD (Single 
Request, Multiple Data) burst transaction types. For instance, an OCP connection (and 
the channel model representing it) can be configured at elaboration time to deliver any 
combination of the following burst types: 

Imprecise MRMD burst 

Precise MRMD burst 

SRMD burst 
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The most complicated case is an OCP connection that allows imprecise MRMD burst 
delivery, precise MRMD burst delivery, and SRMD burst delivery at the same time1. Size 
of 3 bursts are used as examples in Figure 3 to Figure 10 to demonstrate what kind of 
TL2 timing information can be important to both the master and slave core modules. 

4.7.3 A Guide to the Timing Figures 
In these TL2 timing figures, activities for the OCP request phase (Req), the 
datahandshake phase (DHS), and the response phase (Resp) within a burst are 
represented horizontally -- simulation time goes from left to right. Each dashed, vertical 
line indicates a timing point (can be an estimated one) that happens inside a burst 
transaction and can be used by the TL2 master (on the top of the figure) and slave (on 
the bottom of the figure) modules to improve timing accuracy. A timing point usually 
represents either the beginning or the end of an OCP phase activity inside a burst. The 
alphabetical order among letters shown inside the two dashed boxes attached to a 
timing point line tells which one needs to happen before the other. The number shown 
inside a dashed box, if any, indicates the OCP transfer count. Latency between two 
interesting timing points is shown by a horizontal, double arrow line segment tagged 
with a fixed latency or a latency estimation function. 

Each triangle represents a TL2 channel (API) call that may need to be issued by the 
master module or the slave module to the OCP TL2 channel model. Note that the times 
when these calls are made to the OCP TL2 channel model are associated with actual 
simulation times given by the operation of the simulation. The other timing points are 
then estimated using both the actual timing points from the API calls and the timing 
variables passed to the channel. 

For each OCP burst, there can be many interesting timing points and latency numbers 
associated with the underlying transfers. The following is a summary list of these 
variables used (details are given later): 

Triangle 1. This is the last chance for the master to set the OCP TL2 timing variables for 
this transaction. This is the start time of the TL2 burst request. This is also the start 
time of the first request of the burst.  

Dashed box A is the starting point (the send time) of a write or read OCP request. 

Dashed box B is the ending point (the accept time) of a write OCP data or a read OCP 
request. 

Triangle 2 is the end of the OCP TL2 burst request transaction. This is the time when 
the TL2 slave accepts the OCP TL2 burst request. This is also the accept time of the last 
OCP data word transfer of the burst. This is the last chance for the slave to set the OCP 
TL2 timing variables for the next request. 

Triangle 3 is the start time of the TL2 burst response. This is also the start time of the 
first response of the burst. This is also the last time for the slave to set its timing 
variables for this response. 

Dashed box C is the starting point of an OCP response phase. 

Triangle 4 is the end of the OCP TL2 burst response. This is the time that the TL2 
master accepts the OCP TL2 response. This is also the last time for the master to set its 
timing variables for the next response. 

                                                 
1 If SRMD burst is allowed on an OCP connection, the datahandshake is always turned 

on. 
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Dashed box D is the ending point of an OCP response phase. 

Fixed latency numbers are defined in the OCP Specification  

RqAL Request accept latency 

RqDL Request-data latency 

DAL  Data accept latency 

RpAL Response accept latency 

Expected rates: 
RqSndR 

Master’s send rate of the read requests in a burst. The request send interval, 
RqSndI = 1/RqSndR. 

DSndR 
Master’s send rate of the write OCP data words in a burst. The data send interval, 
DSndI = 1/DSndR. 

RpSndR 
Slave’s send rate of the write responses in a burst. The response send interval, 
RpSndI = 1/RpSndR. 

Latency estimation functions: 
avgWDI = max(DSndI,DAL) 

Estimated average write data interval, given the master’s write data send rate 
(DSndR) and the slave’s data accept latency (DAL) 

avgRRqI = max(RqSndI,RqAL) 
Estimated average read request interval, given the master’s read request send 
interval (RqSndR) and the slave’s request accept latency (RqAL) 

avgRDI = max(RpSndR,RpAL) 
Estimated average read data interval, given the slave’s response send interval 
(RpSndR) and the master’s response accept latency (RpAL) 

avgWRpI = max(RpSndR,RpAL) 
Estimated average write response interval, given the slave’s response send rate 
(RpSndR) and the master’s response accept latency (RpAL) <note: same as avgRDI> 
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4.7.4 Write Requests 

Figure 6 Timing information for MRMD posted Write Burst with datahandshake  
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Figure 7 Timing information for MRMD posted Write Burst w/o datahandshake 
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4.7.5 OCP Posted Write Burst Timing 

Figure 8 Timing information for SRMD posted Write Burst 
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The current OCP TL2 channel models only the OCP burst transaction-level timing but 
no individual OCP transfer-level timing. For a posted write burst of size 3, it gives us 
only two timing points: 

The starting time of the burst given by the master module when the master issues a 
posted write burst request unto the OCP TL2 channel – corresponding to the timing 
point “Triangle 1” shown in Figure 6 

The ending time of the burst given by the slave module when the slave accepts the 
whole burst and releases the request path of the OCP TL2 channel – corresponding to 
the timing point “Triangle 2” shown in Figure 6 

In order to have a more accurate timing in the master and slave modules, the 
approximate start times and ending times of each of the write data words become 
valuable. For instance, the master module and the slave module can use these timing 
estimations to mimic the releasing and allocating resources, respectively. Details on 
how to compute these OCP transfer-level timing points are described below. 

4.7.5.1 Start Time of the First Data Word 
Timing point A1 can be determined by the master’s RqDL. This is the interval (in cycles) 
between the time when the master places the request on the channel and the time that 
master places the corresponding data word on to the channel. When the slave receives 
the OCP TL2 write burst request from the master at time A1, the slave knows the start 
time of the first OCP write request of the burst and can compute the start time of the 
first data word as: 

A1 = A + RqDL 

When data handshake is turned off on the OCP connection, the value of RqDL is 0; 
therefore, timing point A and A1 always happen in the same time (as shown in Figure 7. 

4.7.5.2 Time between Two Data Write Words 
Another important timing information between OCP transfers is the average time 
between the i-th data word and the (i+1)-th data word of a burst; i.e., the average Write 
Data Interval (avgWDI). The start time of the i-th data word, Bi, can be computed 
approximately as: 

Define: Ai  := Ai-1 + avgWDI 
 

The avgWDI is determined by two factors: how fast the master can send data down the 
channel (Data Send Rate, DSndR), and how long the slave waits to accept the data 
(DAL). Since the master cannot send a new data word until the slave accepts the 
previous data word, both the master and slave have a hand in determining this value. 
As shown in Figure 6, we represent the write data interval value by the following 
function: 

avgWDI = max(DSndI, DAL) 
 

To make this tractable, the DSndR (Data Send Rate) is defined to be the data rate the 
master can send data down the channel if the slave were to instantly accept all data. 
And DSndI, the data send interval, is simply 1/DSndR. Thus DSndI is the interval 
between the data words if the master were connected to a perfectly fast slave. If a 
master could send data over the channel every single cycle, then the DSndI would be 1. 
If the master could only send data every other cycle, then the DSndI would be 2. 
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The DAL, data accept interval, is number of cycles the slave will take to accept each 
data word. If the slave does not need to use backpressure to delay acceptance of data 
words, the DAL would be set to 1 (meaning that the slave could accept a new data word 
every cycle). 

4.7.5.3 End Time of the OCP Write Burst 
This is the time (B3 on Figure 6) when the last data word has accepted by the slave. The 
slave needs to decide this timing point and after this time the channel is free to start a 
new burst. A master can use the avgWDI formula as described in the previous sub-
section to determine, approximately, when an OCP data word within a burst is 
consumed by the slave.  

Note that the slave must accept the OCP TL2 Burst transaction even if the OCP 
SCmdAccept (or SDataAccept) signal is not part of the OCP channel. In the OCP TL2 
model, accepting a request indicates that the correct amount of time has passed for the 
slave to have processed the data and also indicates that the slave is ready to receive 
another TL2 burst request from the master.  In the lower level OCP TL1 channel model, 
the slave must toggle the SCmdAccept or SDataAccept for each individual request 
transfer and data word if those signals are part of the OCP connection. At the TL2 level, 
the slave accepts the whole OCP burst transaction at once and must do so regardless of 
the OCP signals used to send that burst.  

Note that because the OCP TL2 channel does not explicitly model the data handshake 
path, some of the parallelism available in an OCP connection can be lost. For instance, 
the first OCP request of a burst can be sent after the last request of a previous OCP 
burst has been accepted -- even if the data word associated with this last request of the 
previous burst has not yet been accepted. In the OCP TL2 model described in the 
previous paragraph, the first request of a new burst cannot be sent until both the 
previous OCP burst’s last request and data have been accepted by the slave. This 
difference can contribute to timing inaccuracy especially when the master tightly 
interlaces write requests (which send data) with reads (which do not) over an OCP 
channel with data handshake turned. The problem can be overcome by careful 
bookkeeping in the slave combined with early accepts of read requests that follow write 
bursts. 

4.7.5.4 SRMD Posted Write Burst 
The difference between a SRMD (Single Request / Multiple Data) posted write burst (as 
shown in Figure 8] and a MRMD (Multiple Requests / Multiple Data) one (as shown in 
Figure 6) is to send only one request instead of N request phases. 

4.7.5.5 Posted Write with Responses 
Posted writes also have responses. We will skip this topic now and cover it when the 
non-posted write burst is discussed later. 



61 

4.7.6 Read Requests 

Figure 9 Timing Information for MRMD Read Burst 
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Figure 10 Timing information for SRMD Read Burst 
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4.7.7 OCP Read Burst Timing 
Unlike a posted write burst (a write without a response) described in the previous 
section, a read burst is modeled using a read burst, request-side transaction and a read 
burst, response-side transaction in parallel. Thus, a read burst’s response-side 
transaction can be overlapped with another read burst’s request-side transaction, in 
terms of simulation timing. 

Similar timing points described for a posted write burst are also listed for a read burst 
(as shown in Figure 9); except the following: 

 There is no request-side data word delivery (i.e., no data handshake) 

 There are new terms of RqSndR, RqAL, and avgRRqI 

Details about new timing points/variables for the read burst are described below. 

4.7.7.1 Time between Two Read Requests 
For a MRMD read burst and on the request side, timing information about the 
individual OCP requests that make up the burst request can be calculated and is 
represented by the average time between the i-th read request and the (i+1)-th read 
request of a burst; i.e., the average Read Request Interval (avgRRqI). The start time of 
the i-th read request, Ai, can be computed approximately as: 

Define: Ai  := Ai-1 + avgRRqI  
 

The avgRRqI is determined by two factors: how fast the master can send requests down 
the channel (Request Send Rate, RqSndR or Request Send Interval, RqSndI = 
1/RqSndR), and how long the slave waits to accept the request (RqAL). Thus, both the 
master and slave have a hand in determining this value. We represent the read request 
interval value by the following function: 

avgRRqI = max(RqSndI, RqAL) 
 

To make this tractable, RqSndI is defined to be the interval between requests if the 
master were connected to a perfectly fast slave, which could instantly accept all 
requests. If the master could send a request every cycle, then RqSndI would be one. If 
the master could send requests every third cycle then RqSndI would be 3. If the slave 
does not need to use backpressure to delay acceptance of requests, the RqAL would be 
set to 1 (meaning that the slave could accept a new read request every cycle). 

4.7.7.2 Different Chunk Sizes for the Request Burst and Data Response Burst 
Read requests and read data responses are processed independently on different paths; 
thus, it is possible that the master could send a size of read burst requesting 3 data 
words and the slave could respond with two separate read response bursts of size 2 and 
size 1, respectively. 

4.7.7.3 Time of the First OCP Data Response 
The timing point C1 is the time of the first read data response sent over the OCP 
connection. This is also the same time as the start time of an OCP TL2 read burst data 
response. Note that the interval between A and C1 is known as the “First Read Latency”. 
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4.7.7.4 Time between Two Read Data Words 
Timing information between two consecutive OCP read data responses can be important 
and is represented by the average time between the i-th read data (and response) and 
the (i+1)-th read data (and response) of a burst; i.e., the average Read Data Interval 
(avgRDI). The start time of the i-th read data response, Ci, can be computed 
approximately as: 

Define: Ci  := Ci-1 + avgRDI,  where i >2 
 

The avgRDI is determined by two factors: how fast the slave can send response data 
words (RpSndI), and how long the master waits to accept the response data word  
(RpAL). Thus, both the slave and master have a hand in determining the avgRDI. As 
shown in Figure 9, we represent the read data (and response) interval value by the 
following function: 

avgRDI = max(RpSndI, RpAL) 
 

To make this tractable, RpSndI (Response Send Interval) is defined to be the number of 
cycles there would be between response data words if the master were to instantly 
accept response. A fast slave that could send a new response data word every cycle 
would have a RpSndI of 1. I slower slave that take 3 cycles to send each data word 
response would have a RpSndI of 3. If the master does not need to use backpressure to 
delay acceptance of data words and responses, the RpAL would be set to 1 (meaning 
that the master could accept a new read data response every cycle). 

4.7.7.5 SRMD Read Burst 
The difference between a SRMD read burst (as shown in Figure 10) and a MRMD one 
(as shown in Figure 9) is to only send one read request instead of N read request 
phases. 
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4.7.8 Non-Posted Writes 

Figure 11 MRMD Non-Posted Write Burst with data handshake  
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Figure 12 Timing information for MRMD non-posted Write Burst w/o datahandshake 
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Figure 13  Timing information for SRMD non-posted Write Burst 

S
lave Sends TL2

N
P W

rite R
esponse

M
aster S

ends TL2 B
urst

non-posted W
rite R

equest

SR
M

D
 non-posted w

rite burst

W
rite

R
eq

R
eq

D
H

S

R
esp

W
rite

D
ata1

W
rite

D
ata2

W
rite

D
ata3

M
aster

Slave

OCP

A
A

1

B
1

B
2

B
3

A
2

A
3

Tim
e

1

C

R
qD

L
avgW

D
I(D

SndI,D
A

L)
avgW

D
I(D

SndI,D
A

L)

D
A

L
D

A
L

D
A

L

3

W
rite R

esp

R
pA

L

D

2

4

M
aster A

ccepts TL2
N

P W
rite R

esponse

S
lave Accepts TL2

N
P

 W
rite R

equest

 



OCP TL2 Channel 68

4.7.9 Non-Posted Write Timing 
A non-posted write is a request that receives an acknowledgement response from the 
slave. The non-posted write’s timing model is like a composition of the posted write 
burst’s timing model and the response side of the read burst’s timing model (see Figure 
11 for details). On the request side, timing points and variables described in the posted 
write section apply here also. On the response side, the differences compared to the 
read burst one are as follows: 

 Even though no data words are delivered, the avgRDI function is used for the 
interval between responses (avgWRpI). 

 For a SRMD non-posted write burst, only one write response is sent back for a write 
burst transaction (see Figure 13, the Resp line). 

Details about the new timing points and variables for the non-posted write burst are 
described below. 

4.7.9.1 Time between Two MRMD Write Responses 
Timing information between two consecutive OCP write responses of a MRMD write 
burst can be important and is represented by the average time between the i-th write 
response and the (i+1)-th write response of a MRMD write burst; i.e., the average Write 
Response Interval (avgWRpI). The start time of the i-th write response, Ei, can be 
computed approximately as: 

Define: Ci  := Ci-1 + avgWRpI,  where i >2 
 

In order to reduce the complexity of the timing variables, it is assumed that the 
avgWRpI is the same as the avgRDI for read responses and this is used instead. Thus: 

Ci  := Ci-1 + avgRDI,  where i >2 & avgRDI = avgWRpI 
 

Where avgRDI is calculated exactly as with read responses. 

4.7.9.2 Posted Write Burst with Responses 
Note that the above response-side timing model can be applied to posted write burst 
with responses. 

4.7.10 OCP TL2 Timing Variables 
In order for the master and slave core models attached to an OCP TL2 channel to 
calculate the approximate timing points regarding individual OCP transfers of the 
bursts that they receive, the core models need to set and read the basic channel timing 
variables. Table 15 lists timing variables that are stored in the channel to help derive 
the timing points of the corresponding transfers. 

Table 15 TL2 Channel Timing Variables 

Timing 
Variables 

Set by Description 

RqAL Slave Request accept latency 

RqDL Master Request-data latency. The number of cycles between the 
start of the first request of a write burst and the start of the first 
write data word of the burst. Note that this variable is zero in 
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the case where there is no data handshake in the channel.  

DAL Slave Write data accept latency. The number of cycles it takes the 
slave to accept a write data word (for data handshake) or to 
accept a write request (when data handshake is not part of 
the channel). 

RpAL Master Response accept latency. How many cycles it take the 
master to accept a response. 

RqSndI Master Request Send Interval. Number of cycles between read 
requests when the master is sending to a very fast slave. If the 
master could send every cycle, RqSndI=1. If the master can 
only send a new request every other cycle, RqSndI=2. 

DSndI Master Data Send Interval. Number of cycles between write data 
words when the master is sending to a very fast slave. If the 
master could send a new data word every cycle, DSndI=1. If 
the master can only send a new write data word every other 
cycle, DSndI=2. 

RpSndI Slave Response Send Interval. Number of cycles between responses 
when the slave is sending to a very fast master. If the slave 
could send a new response every cycle, RpSndI=1. If the slave 
can only send a new response every third cycle, RpSndI=3. 

 
These timing variables are stored in the master and slave timing structures described in 
the trimming structures section above. 

4.7.11 OCP TL2 Timing Functions 
In addition to providing the timing variables, the TL2 channel also provides timing 
helper functions that calculate derived timing information commonly needed by core 
models. The functions are further described in the master and slave interface sections 
above. 

4.8 OCP TL2 Channel Monitor Interface 
 

The OCP TL2 channel implements the OCP TL2 monitor interface.  This allows monitors 
to be connected to the channel, for performance analysis, trace dumping, protocol 
checking and so on. 

The methods of the monitor interface are listed below.  Multiple monitors may be used 
in parallel on a single OCP TL2 channel.  A TL2 monitor support the OCP TL2 observer 
interface.  The monitor registers itself with the channel as observing certain aspects of 
the traffic, such as request-start-events.  The channel informs the monitor by call-back 
when observed events occur and the monitor is able in turn to poll (peek) the associated 
data values (eg the OCP request group) from the channel. 

The methods of the interfaces are merely listed here.  More detailed documentation of 
their meaning is required but not yet available.  There are four C++ interfaces: 

• Peek interface, for getting data values from channel transactions 

• Register interface, for registering a monitor with the channel 

• Monitor interface, which is simply the union of the peek and register interfaces 
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• Observer interface, from which the monitor is derived, to allow the channel to call it 
back.  In this interface the methods have default implementations (not shown below) 
which means that the monitor is not obliged to implement all methods anew. 

 
 
template <class Tdata, class Taddr> 
class OCP_TL2_Monitor_ObserverIF 
{ 
public: 
  typedef OCP_TL2_MonitorPeekIF<Tdata,Taddr> tl2_peek_type; 
 
  virtual void registerChannel(tl2_peek_type *,  
          bool master_is_node=false, 
          bool slave_is_node=false); 
 
  virtual void start_of_simulation(); 
 
  virtual void NotifyRequestStart(tl2_peek_type *); 
  virtual void NotifyRequestEnd(tl2_peek_type *); 
  virtual void NotifyResponseStart(tl2_peek_type *); 
  virtual void NotifyResponseEnd(tl2_peek_type *); 
 
  virtual void NotifyMThreadBusy(tl2_peek_type *); 
  virtual void NotifySThreadBusy(tl2_peek_type *); 
 
  // timing 
  virtual void NotifyMasterTiming(tl2_peek_type *); 
  virtual void NotifySlaveTiming(tl2_peek_type *); 
 
  // reset 
  virtual void NotifyResetStart(tl2_peek_type *); 
  virtual void NotifyResetEnd(tl2_peek_type *) ; 
 
  // sideband signals 
  virtual void NotifySidebandMaster(tl2_peek_type *); 
  virtual void NotifySidebandSlave(tl2_peek_type *); 
  virtual void NotifySidebandCore(tl2_peek_type *); 
  virtual void NotifySidebandSystem(tl2_peek_type *); 
}; 
 
 
 
template <class Tdata, class Taddr> 
class OCP_TL2_MonitorPeekIF :  virtual public sc_interface 
{ 
public: 
  typedef OCPTL2RequestGrp<Tdata,Taddr>   request_type; 
  typedef OCPTL2ResponseGrp<Tdata>   response_type; 
 
  // port names 
  virtual const string  peekChannelName() const = 0; 
  virtual const string  peekMasterPortName() const = 0; 
  virtual const string  peekSlavePortName() const = 0; 
 
  // transactions 
  virtual const request_type& peekOCPRequest() const = 0; 
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  virtual const response_type& peekOCPResponse() const = 0; 
  virtual bool   requestInProgress() const = 0; 
  virtual bool   responseInProgress() const = 0; 
 
  // thread busy  
  virtual const unsigned int peekMThreadBusy() const = 0; 
  virtual const unsigned int peekSThreadBusy() const = 0; 
 
  // timing 
  virtual const MTimingGrp& peekMasterTiming() const = 0; 
  virtual const STimingGrp& peekSlaveTiming() const = 0; 
 
  // timing helper 
  virtual int   getWDI()  const = 0; 
  virtual int   getRqI()  const = 0; 
  virtual int   getTL2ReqDuration() const = 0; 
  virtual int   getRDI()  const = 0; 
  virtual int   getTL2RespDuration() const = 0; 
 
  // reset 
  virtual bool   getReset()        = 0; 
 
  // sideband signals 
  virtual const OCPSidebandGrp& peekSideband()  const = 0; 
 
  // OCP paramertes 
  virtual OCPParameters* GetParamCl()        = 0; 
}; 
 
 
 
template <class Tdata, class Taddr> 
class OCP_TL2_MonitorRegisterIF :  virtual public sc_interface 
{ 
public: 
  typedef OCP_TL2_Monitor_ObserverIF<Tdata,Taddr> observer_type; 
 
  // transactions 
  virtual void   RegisterRequestStart (observer_type *) = 0; 
  virtual void   RegisterRequestEnd   (observer_type *) = 0; 
  virtual void   RegisterResponseStart(observer_type *) = 0; 
  virtual void   RegisterResponseEnd  (observer_type *)  = 0; 
  // thread busy  
  virtual void   RegisterMThreadBusy(observer_type *)  = 0; 
  virtual void   RegisterSThreadBusy(observer_type *)  = 0; 
 
  // timing 
  virtual void   RegisterMasterTiming(observer_type *) = 0; 
  virtual void   RegisterSlaveTiming (observer_type *) = 0; 
 
  // reset 
  virtual void   RegisterResetStart(observer_type *) = 0; 
  virtual void   RegisterResetEnd  (observer_type *) = 0; 
 
  // sideband signals 
  virtual void   RegisterSidebandMaster(observer_type *) = 0; 
  virtual void   RegisterSidebandSlave (observer_type *) = 0; 
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  virtual void   RegisterSidebandCore  (observer_type *) = 0; 
  virtual void   RegisterSidebandSystem(observer_type *) = 0; 
 
}; 
 
 
 
template <class Tdata, class Taddr> 
class OCP_TL2_MonitorIF :   
  virtual public OCP_TL2_MonitorPeekIF<Tdata,Taddr>, 
  virtual public OCP_TL2_MonitorRegisterIF<Tdata,Taddr> 
{}; 
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5 OCP TL3 Channel Model 

5.1 OCP TL3 Communication API 
 

The OCP TL3 implements the Architects View use model, which is defined in OCP TLM 
for Architectural Modeling white paper (www.ocpip.org). The Architects View use model 
requires a communication API, which supports timing approximate modeling of the 
platform architecture. On the other hand the API has to be agnostic to any particular 
bus protocol to enable the flexible and unbiased exploration of different communication 
architectures. In principle, these capabilities are delivered by the unidirectional non-
blocking transfer API in the OSCI TLM standard.  The OCP TL3 can be seen as a 
convenience layer for architectural modeling.  

The TL3 API was first presented in the OCP-IP White Paper for SoC Communication 
Modeling and implemented in the first release of the OCP-IP SystemC models. 

The TL3 Master API definition is listed and explained in the following table: 

  

 
API Function Description 
Regular Request Commands 

bool  
sendRequest(const REQ& req) 

Puts a request on the channel. Returns true if the 
request was successfully placed on the channel. 
False otherwise. 

bool  
sendRequestBlocking(const REQ& req);  

Puts a request on the channel, waiting until the 
channel is free if necessary. Waits until the slave 
accepts the request and then returns. 
Blocking calls may only be called from 
SC_THREAD processes. 

bool requestInProgress() const True if there is currently an active request on the 
channel. 

const sc_event RequestStartEvent() Returns the event that is triggered when the 
master places a new request on the channel. 

const sc_event RequestEndEvent() Returns the event that is triggered when the 
slave accepts the current request. 

Timed Request Commands 

bool  
sendRequest(const REQ&, const sc_time& t) 

Delays the sending of the request for time t. 
Otherwise identical to sendRequest. 

bool  
sendRequest(const REQ&, const int cycles) 

Delays the sending of the request for cycles 
number of clock ticks. Otherwise identical to 
sendRequest. 

Regular Response Commands 

Bool 
getResponse(RESP& resp) 

Gets a new response from the channel and 
returns true. Returns false if no new response 
transaction available. 
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bool  
getResponseBlocking(RESP& resp) 

Waits for a new, unread OCP TL2 response to 
come on to the channel and then gets it. 
Can only be called from an SC_THREAD process. 

bool acceptResponse() Accepts the response immediately and returns 
true. Returns false if no response to accept. 

bool 
responseInProgress() const 

True if there is currently an active response on 
the channel. 

const sc_event ResponseStartEvent() Returns the event that is triggered when the 
slave places a new response on the channel. 

const sc_event ResponseEndEvent() Returns the event that is triggered when the 
master accepts the current response. 

Timed Response Commands 

bool 
acceptResponse(const sc_time& t) 

Delays accept by t SystemC time units from now. 
Returns false if no response to accept. 

bool 
acceptResponse(const int cycles) 

Delays accept by cycles OCP clock periods from 
now. If cycles=0 then the accept is immediate. 
Returns false if no response to accept. 

Table 16: OCP TL3 Master Interface Definition 
 

 

The conversion of integer cycles into SystemC time is based on the clock-period, which 
is a member of the channel. The slave interface is not depicted as it is perfectly 
symmetrical to the master interface, with just Request and Response interchanged.  

5.2 Mapping TL3 onto OSCI TLM 
 

All the functions and events in the TL3 API can be implemented on top of the non-
blocking unidirectional OSCI TLM standard. This section demonstrates the mapping of 
the TL3 primitives onto the OSCI TLM API. In a similar way, the complete TL2 API 
including thread-busy, handshake-timing, and reset, can be mapped onto the TLM API. 
The TL2-TLM mapping is also included in the methodology example package, but not 
discussed in detail in this document. 
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Figure 14: Mapping the TL3 API onto the OSCI TLM standard 
  

The overall structure of the OSCI-TLM based OCP channel is depicted in the figure. 
From the outside perspective, the TLM based OCP channel looks just like any other 
OCP channel, i.e. it implements a master and a slave interface. As the only minor 
difference with the original OCP-TLM-channel does not implement master and a slave 
interfaces but uses the sc_export feature of SystemC 2.1.  

Inside the OCP TLM channel the interfaces are implemented by two separate modules, 
the master-transactor and the slave-transactor. Most importantly the master- and 
slave-transactor are completely separated, i.e. they communicate only via two OSCI 
TLM FIFOs. In that the mapping of the OCP API onto the TLM API is 100% complete. 
Each of these FIFOs is of course a size of 1, which corresponds to the current 
transaction in the OCP channel. 

The master- and slave-transactor are composed of policy-classes, which each 
implement one aspect of the OCP protocol. The put-policy implements everything 
related to the transmitting of data and the get-policy implements everything related to 
the receiving of data. Both policies are templatized with the transaction data structure, 
so they can be used for both master and slave side. Apart from reusing the code in the 
transactor this structure nicely emphasizes the symmetry of the OCP protocol: the 
sending of request is handled in the exact same way as the sending of response. 

The implicit timing annotation features of the TL3 API require additional functionality. 
The timed sendRequest (and sendResponse) methods are implemented using a special 
delay queue called ChronoQueue, which delays the sending of transactions by a specific 
amount of time. The timed requestAccept (and responseAccept) methods are 
implemented by the get policy itself by means of delayed event notification. 

The detailed mapping of OCP TL3 methods and events on the OSCI TLM standard is 
depicted in the following table: 

OCP TL3 Master API Function OSCI TLM Standard API 
Regular Request Commands 

bool sendRequest(const REQ& req) bool nb_put( const T &t 
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bool sendRequestBlocking(const REQ& req);  derived from sendRequest and RequestEndEvent 

bool requestInProgress() const !( bool can_nb_put() const ) 

const sc_event RequestStartEvent() local event 

const sc_event RequestEndEvent() const sc_event &ok_to_put() const 

Timed Request Commands 

bool sendRequest(const REQ&, const sc_time& t) 

bool sendRequest(const REQ&, const int cycles) 
derived from sendRequest and local delay 
queue 

Regular Response Commands 

bool getResponse(RESP& resp) bool nb_peek( T &t ) and local flag 

bool getResponseBlocking(RESP& resp) derived from getResponse 

bool acceptResponse() bool nb_get( T &t ) 

bool responseInProgress() const bool nb_can_peek() const 

const sc_event ResponseStartEvent() const sc_event &ok_to_peek() const 

const sc_event ResponseEndEvent() local event 

Timed Response Commands 

bool acceptResponse(const sc_time& t) 

bool acceptResponse(const int cycles) 
derived from acceptResponse and delayed 
event notification 

Table 17: TLM mapping of OCP TL3 master interface 
 

 

The regular request commands and events are implemented in the put-policy. These 
TL3 primitives have almost a one-to-one correspondence with the 
tlm_nonblocking_put_if of the TLM API. Only the RequestStartEvent is missing in the 
TLM API, but the occurrence of this event is of course known at the master side. Hence 
a local event in the put-policy is notified whenever a new request is put into the TLM 
FIFO.  

 

master slave
sendResponse()ResponseStart

ok_to_putget()

OCP method()

OCP event peek()

put()
TLM method()

TLM event

getResponse()

acceptResponse() ResponseEnd

ok_to_peek

 

Figure 15: Sequence of methods and events 
  

The get policy is slightly more sophisticated, because we need to mimic the get-accept 
mechanism of the OCP protocol. As illustrated in the figure, we cannot use the TLM-get 
method for the OCP-getResponse method, since the TLM-get is destructive and 
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immediately notifies the ok_to_put event on the producer side. According to the OCP 
protocol, this event is not supposed to be notified until the master has released the 
response channel by calling the acceptResponse method. Hence we need the full 
expressiveness of the tlm_nonblocking_get_peek_if, which provides with the required 
non-destructive peek method.  

In analogy to the put-policy, the get-policy provides a local ResponseEndEvent, which is 
notified upon the acceptance of the current response. Additionally, the get-policy needs 
a local SC_METHOD together with a separate event to implement the delayed accept 
methods.  

Please refer to the online documentation of the methodology package for detailed 
information on the implementation of the tlm_tl3_transactor_channel implementing the 
mapping. 

5.3 TL3 Timing 
 

The major purpose of the Architects View use-case is to investigate the performance of a 
given HW/SW partitioning and platform architecture based on an approximate timing 
model. Hence special care needs to be given to the modeling of timing.  

In principle the implicit timing annotation primitives in the TL3 API operate at the 
interval-level, i.e. the granularity is limited to the boundaries of transactions. Two 
timing parameters characterize the performance of any activity in the system: 

• The accept-delay Δtaccept specifies the minimum time between two consecutive 
start request events or two consecutive start response events. In essence the accept-
delay constraints the bandwidth of a block, i.e. during this period a slave module is 
busy with the processing of a request or a master module is busy with the processing of 
a response. 

• The latency Δtlatency specifies the time between the process activation and the 
sending of the transaction. At the target side, this parameter is called response-delay 
Δtresponse and denotes the duration between request start event and the response start 
event. 

In that way the timing requirements of arbitrary platform building blocks can be 
roughly specified. For example a pipelined ASIC block will exhibit an accept delay 
smaller than the response delay, whereas for a task executed on a programmable core it 
will be the other way around. Please note, that the accept-delay and latency are not 
specific for the performance modeling of a communication node or a processing 
element. 
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Figure 16: TL3 point-to-point timing annotation 
 

The diagram depicted above shows the implicit timing annotation methodology of the 
TL3 channel applied to a typical sequence of method calls (blue) and events (red): 

• The master initiates a transaction using the sendRequest API call 

• The channel immediately triggers the RequestStartEvent 

• The slave reads the data from the channel (not depicted) and at the same time 
uses the delayed acceptRequest method to specify the slave accept delay Δts,accept. The 
OCP TL3 slave interface also supports implicit timing annotation for the response delay 
in the sendResponse method, so even here the slave does not have to call wait(). (This 
feature is not implemented in the TL2 API, but is under consideration for the later 
versions.) 

• After Δts,accept the OCP channel self-acting releases the request path and notifies 
the RequestEndEvent  

• After Δts,response the OCP channel self-acting initiates the response phase by 
notifying the ResponseStartEvent. The remainder of the response phase is completely 
symmetric to the request phase. 

Of course both delays could also be specified explicitly by calling wait(Δtaccept) and 
wait(Δtresponse). However the explicit way of modeling timing is unfavorable in terms of 
simulation speed and orthogonalization of timing and behavior. The latter limitation is 
not obvious and shall be further explained by means of a simplified example depicted in 
the next figure.  
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thread(){ 
ocp->getRequest(req); 
wait(Δt_1);
ocp->acceptRequest();
wait(Δ_2); 
ocp->sendResponse(resp);

}

thread(){ 
ocp->getRequest(req); 
wait(Δt_1);
ocp->sendResponse(resp);
wait(Δt_2);
ocp->acceptRequest();

}

thread(){ 
ocp->getRequest(req); 
ocp->acceptRequest(Δt_1);
ocp->sendResponse(resp,Δt_2);

}

a) ASIC b) SW task c) implicit timing model
 

Figure 17: AV timing annotation 
 

In case a) the anticipated implementation of a SystemC thread is an ASIC block, so the 
accept delay is smaller than the response delay. Modeled explicitly the request must be 
accepted before the response is sent. To change the implementation into a SW task, the 
source code of the SystemC model needs to be modified according to b). The implicit 
timing model depicted in c) is more flexible, in that only the values of Δt_1 and Δt_2 
need to be modified to change the performance characteristic from ASIC to SW. 

The actual value of the timing parameters can either be a (configurable) constant, a 
data-dependent variable, or can be drawn from a stochastic distribution function. The 
TL2 and TL3 APIs allow specifying the implicit delay in terms of cycles as well as in 
terms of time. In case cycles are used, the channel calculates the effective delay by 
multiplying the cycle count with its clock period parameter. In principle this cycle-based 
annotation is favorable, because it enables a more efficient exploration of the impact of 
clock frequency on performance. The frequency could even be modified during runtime 
to investigate e.g. the impact of dynamic voltage scaling on system performance. A delay 
specification based on cycles is also more re-usable than a timing value, as it does not 
tie a TLM model to a certain technology.  

In principle we advocate the concept of individual timing annotation, i.e. the timing 
parameters should be maintained by the respective model. For example, a 
communication node should own the delay parameters related to communication 
latency and bandwidth. On the other hand, the computational element should own the 
delay parameters related to processing latency and bandwidth. It is absolutely 
discouraged to mix up the ownership of delay parameters, for example using the accept 
delay in a target processing element to annotate the communication latency.  

The major advantage of individual timing annotation is that it is modular and 
compositional, i.e. components can be successively composed to systems without 
reworking the timing annotation. Figure below shows the deployment of the individual 
interval-level timing annotation parameters in a typical request phase of a simple 
platform model. The platform comprises a shared bus connected to one or multiple 
initiators and one or multiple targets. 
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Figure 18: AV platform timing 
 

In case of a computational element like the target module on the right hand side, the 
assignment of accept- and response-delays to processing delays is straight-forward. For 
the communication node however, the accept delay representing the bandwidth is split 
into a pending delay and a transfer delay. The former corresponds to the send-delay of 
the request and has to be modeled explicitly, because it depends on the current traffic 
situation. In contrast the transfer delay can be arithmetically derived from the 
performance parameters and is therefore applicable for implicit timing annotation.  

The point of the figure is that neither the initiator nor the targets need to change their 
timing annotation, when a bus node is plugged between them. Of course the system-
level timing changes, but this merely turns out as a consequence of all the individual 
timing annotations. 

In summary, this section has introduced the AV timing model by means of timing 
annotation: 

• Implicit timing annotation refers to the modeling of timing by means of TLM 
communication API parameters in favor of using wait or delayed event notification. 

• Interval level timing annotation refers to the transaction granularity of the AV 
timing model, in that the timing resolution is limited to the start and end of 
transactions. 

• Individual timing annotation refers to a well-defined ownership policy of the 
timing annotation parameters in order to achieve a compositional performance model. 

The OCP TL2 API also supports implicit timing annotation at the word-level, which 
specifies in more detail the timing of individual beats in a burst. This is done by a set of 
timing parameters, which are defined in the master and slave timing-groups. Word-level 
annotation may increase the timing accuracy in case the data-handshaking feature of 
the OCP protocol is used (see section 6.8 of the OCP channel documentation [5]). 
However it is rather specific for OCP and hence not part of the protocol agnostic TL3 
API. 

5.3.1 Scalable Accuracy 
 

There is not necessarily a one-to-one relation between an OCP burst and a TL2 or TL3 
request. The LastOfBurst attribute in the TL2 data structures allows the user defined 
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segmentation of an OCP protocol burst into multiple chunks. This degree of freedom 
enables a scalable accuracy of the timing model:  

The user can transfer an OCP burst as a single TL2 request, i.e. LastOfBurst is always 
true, and the DataLength equals the total OCP burst size. However the granularity of 
TL2 timing annotation is tied to the TL2 transfers, and no predication can be made the 
timing within the transfer. The parameters in the TL2 timing group specify the timing of 
individual beats in a burst, but this assumes these timing parameters are constant 
during the complete burst. In summary, this is for sure the fastest way to transfer the 
data, but on the other the least accurate.  

On the other had, the user can decide to segment an OCP burst into multiple TL2 
request, e.g. a burst of 8 word is split into 2 TL2 requests of DataLength 4 each. Now 
the timing information can be applied to each of the requests, so the performance model 
is more accurate. On the other hand, more events are required to transfer the data, so 
naturally the simulation speed degrades.  

The decision on the granularity depends very much on the required accuracy of the 
performance model as well as on the dynamic in the system. As long as the state of a 
module does not change during an OCP burst, a finer granularity would not increase 
the accuracy. 

5.4 TL3 Channel Monitor Interface 
The TL3 channel implements the TL3 monitor interface.  This allows monitors to be 
connected to the channel, for performance analysis, trace dumping, protocol checking 
and so on. 

The methods of the monitor interface are listed below.  Multiple monitors may be used 
in parallel on a single TL3 channel.  A TL3 monitor supports the TL3 observer interface.  
The monitor registers itself with the channel as observing certain aspects of the traffic, 
such as request-start-events.  The channel informs the monitor by call-back when 
observed events occur and the monitor is able in turn to poll (peek) the associated data 
values (eg the request group) from the channel. 

The methods of the interfaces are merely listed here.  More detailed documentation of 
their meaning is required but not yet available.  There are four C++ interfaces: 

• Peek interface, for getting data values from channel transactions 

• Register interface, for registering a monitor with the channel 

• Monitor interface, which is simply the union of the peek and register interfaces 

• Observer interface, from which the monitor is derived, to allow the channel to call it 
back.  In this interface the methods have default implementations (not shown below) 
which means that the monitor is not obliged to implement all methods anew. 

 

 
template  
< typename REQ,  
  typename RESP 
> 
class OCP_TL3_Monitor_ObserverIF 
{ 
public: 
  typedef OCP_TL3_MonitorPeekIF<REQ,RESP> tl3_peek_type; 
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  virtual ~OCP_TL3_Monitor_ObserverIF() {}; 
 
  virtual void registerChannel(tl3_peek_type *,  
          bool master_is_node = false, 
          bool slave_is_node = false) = 0; 
 
  virtual void NotifyRequestStart(tl3_peek_type *)  = 0; 
  virtual void NotifyRequestEnd(tl3_peek_type *)  = 0; 
  virtual void NotifyResponseStart(tl3_peek_type *)  = 0; 
  virtual void NotifyResponseEnd(tl3_peek_type *)  = 0; 
 
}; 
 
 
 
template  
<  
  typename REQ,  
  typename RESP 
> 
class OCP_TL3_MonitorPeekIF :  virtual public sc_interface 
{ 
public: 
  typedef REQ   request_type; 
  typedef RESP   response_type; 
 
  // port names 
  virtual const std::string peekChannelName() const = 0; 
  virtual const std::string peekMasterPortName() const = 0; 
  virtual const std::string peekSlavePortName() const = 0; 
 
  // transactions 
  virtual const request_type& peekRequest() const = 0; 
  virtual const response_type& peekResponse() const = 0; 
  virtual bool   requestInProgress() const = 0; 
  virtual bool   responseInProgress() const = 0; 
}; 
 
 
 
template  
<  
  typename REQ,  
  typename RESP 
> 
class OCP_TL3_MonitorRegisterIF :  virtual public sc_interface 
{ 
public: 
  typedef OCP_TL3_Monitor_ObserverIF<REQ,RESP> observer_type; 
 
  // transactions 
  virtual void   RegisterRequestStart (observer_type *) = 0; 
  virtual void   RegisterRequestEnd   (observer_type *) = 0; 
  virtual void   RegisterResponseStart(observer_type *) = 0; 
  virtual void   RegisterResponseEnd  (observer_type *)  = 0; 
}; 
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template  
<  
  typename REQ,  
  typename RESP 
> 
class OCP_TL3_MonitorIF :   
  virtual public OCP_TL3_MonitorPeekIF<REQ,RESP>, 
  virtual public OCP_TL3_MonitorRegisterIF<REQ,RESP> 
{}; 
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6 Example Using OCP TL1 Channel and API 
The example described in this section demonstrates the use of the OCP TL1 channel in 
a simple reference master and slave. The first part of the example shows how the 
configuration parameters can be set in the OCP TL1 channel. This technique is 
expanded upon to configure a master and a slave core. 

The second part of the example shows a configurable reference master core that uses 
the OCP TL1 API. The third part of the example is a configurable slave core that also 
uses the OCP TL1 API. 

This example makes a heavy use of blocking TL1 methods, and timed wait statements.  
There are simpler examples included in the release package that use non-blocking 
methods and clocks. 

6.1 Configuring the OCP TL1 Simulation 
As described in section 2.2, in this example the OCP TL1 channel is configured using 
some of the available parameters. It does not use all the OCP configuration options.  
This example is of configuration by the environment, during elaboration. 

To configure the channel, the channel’s setConfiguration() function is called with a 
MAP object that contains all of the parameter settings: 

setConfiguration( map<string,string>& parameterMap ); 
 

In this example the configuration of the channel comes from the environment, and both 
master and slave adapt to it.  For models of “real” cores that do something more than 
simply excite the bus interface, the OCP parameters would often be known in advance 
and fixed.  In such cases configuration of the channel would be done from the cores, 
using the methods setOCPMasterConfiguration() and setOCPSlaveConfiguration(). 

The master and slave in this example use the getParamCl() method of the channel, at 
end of elaboration, to learn the channel’s configuration and adapt their behaviour.  This 
style of implementation is not recommended because it is not compatible with 
configuration of the channel from the other core.  Thus this master and slave work well 
together, but this master would not work properly with a slave using 
setOCPSlaveConfiguration(). 

6.1.1 Configurable Master and Slave 
The same parameter map scheme described in section 2.2 is used to configure the 
reference master and reference slave. The following table gives the parameters for the 
reference master. 

Table 18 Reference Master Parameters 

 
Parameter Name 

 
Type 

Default 
Value 

 
Description 

mrespaccept_delay i 1 The number of cycles to delay before 
accepting a response from the slave. 

mrespaccept_fixeddelay i 1 MRespAccept Delay Style. If this parameter is 
true (1), the master always waits for 
“mrespaccept_delay” cycles before 
accepting a response. If this parameter is false 
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(0), the master waits for a random number of 
cycles before accepting the response. This 
random number of cycles will vary uniformly 
from 0 to mrespaccept_delay. 

 
To configure the reference master, create a parameter map using the parameters above 
and then send it to the reference master using the following command: 

void Master<TdataCl>::setConfiguration( MapStringType& passedMap ) 
 

The following table gives the parameters for the reference slave: 

Table 19 Reference Slave Parameters 

Name Type Default 
Value 

Description 

latencyX i 3 This is actually a set of parameters, one for each 
thread in the channel. Each parameter sets the 
latency for one thread. The latency is the minimum 
number of cycles between when the request arrives 
and when the response is sent. As an example, the 
parameter latency0 will set how many cycles the 
slave will wait before accepting a request on thread 
number zero, while latency5 will set the latency 
cycles for thread 5 

limitreq_enable   i 0 (false) Should the slave limit how many requests it has 
outstanding? 

limitreq_max i 4 The maximum number of requests that the slave can 
have outstanding at any one time on any one 
thread. Note that this parameter is not used if 
limitreq_enable is false. 

 
Once the parameter map for the reference slave has been built, it can be sent to the 
slave with the following commands: 

void Slave<TdataCl>::setConfiguration( MapStringType& passedMap ) 
 

6.1.2 Building a Custom Configurable Core 
A user core may also be configurable and of course the core writer is free to use the 
parameter map scheme presented here to configure their own custom core. 

6.2 A Configurable Master Model 
This section provides an example of a configurable master model that has a single-
threaded master OCP interface and that can generate simple OCP traffic to mimic an 
initiator core. This master model not only has its own parameters but can also deal with 
different OCP parameter settings. For instance, the master model can talk to an OCP 
channel with the following settings: 

  - cmdaccept == 1, sthreadbusy == 0 or 1, and sthreadbusy_exact == 0 

  - cmdaccept == 0, sthreadbusy == 1, and sthreadbusy_exact == 1 

  - respaccept == 0, mthreadbusy == 0, and mthreadbusy_exact == 0 
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  - respaccept == 1, mthreadbusy == 0 or 1, and mthreadbusy_exact == 1 

  - respaccept == 0, mthreadbusy == 1, and mthreadbusy_exact == 1 
 

The address, the request type (WR or RD), and the write data of a request can also be 
specified. 

In addition, the latency between the acceptance of a previous request and sending of a 
current request can be controlled. Also, the latency between receiving a response and 
accepting the response can be controlled. 

Figure 8 shows a diagram of the configurable master model. This master model 
implements two SystemC thread processes (represented by the two ovals in the figure). 
(The master model is a derived class of the SystemC sc_module class.) The request 
thread process handles the sending of requests for the master core. The response 
thread process handles the receiving of responses for the master core. 

In the following sections, the source code (with explanations) of the master model is 
described to help you understand the implementation of the model. 

Figure 19 Master Model 
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6.2.1 Header File 
You must follow a few rules in defining the master core template class so that it can 
communicate with the OCP Channel. The following are comments on the code followed 
by the full master header file. 

First, include the OCP TL1 channel header files: 

 // OCP-IP Channel header files 
 #include "globals.h" 
 #include "ocp_tl1_master_port.h" 
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 #include "ocp_tl_param_cl.h" 
 

The file globals.h contains the definitions of the types used in the channel. This also 
includes the file ocp_tl1_data_cl.h that defines the data class used by the OCP TL1 
channel, which then includes ocp_globals.h. The header file ocp_globals.h in turn is 
used to define the structures used to pass requests and responses to the channel. If 
this core did not have a header file such as globals.h, it would need to directly include 
the header files ocp_tl1_data_cl.h and ocp_globals.h. 

The header ocp_tl1_master_port.h contains the master port to the OCP TL1 channel. In 
addition to providing the master interface to the channel, the port also provides event 
finders for all of the master and sideband events of the channel. 

The ocp_tl_param_cl.h header file contains the definition of the parameter class. The 
configurable master uses this class to read the channel’s configuration and then uses 
that information to set up its own configuration to match. 

The master class is a template class and the parameter of the template is the data class 
that the master will support over the OCP connection. A data class with 32-bit data 
width and a 32-bit address is specified as follows: 

OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> 
 

Where OCPCHANNELBit32 is defined as follows in the file globals.h: 

typedef unsigned int OCPCHANNELBit32; 
 

After including the header files, you must declare a SystemC port (sc_port). 
Specifically, you need to declare an OCP TL1 master port (ipP) for the Master class to 
communicate with an OCP SystemC TL1 channel. This is accomplished with the 
following statement: 

 OCP_TL1_MasterPort<TdataCl> ipP; 
 

The master port provides event finders for the channel events (such as RequestStart 
and RequestEnd). If these event finders are not needed, they could be declaared the as 
follows, which would also work: 

sc_port< OCP_TL1_MasterIF<TdataCl> > ipP; 
 

Next, declare functions that define SystemC thread or method processes used in your 
model. For example, in this master core model, the following functions are defined: 

 SC_HAS_PROCESS(Master); 

 void requestThreadProcess(); 

 void responseThreadProcess(); 

 void exerciseSidebandThreadProcess(); 

 

The macro SC_HAS_PROCESS(Master) tells SystemC that the master core is a SystemC 
module with its own processes. In this case, the thread processes that follow. Each of 
these processes are explained in detail in later sections. 

After declaring the functions for the thread or method processes, define a SystemC 
end_of_elaboration function. For example, 

 void end_of_elaboration();    // SystemC method 
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Now define a pointer that points to the OCP parameters of the OCP channel that is 
connected to the master core model’s ipP port: 

ParamCl<TdataCl>*  m_pOCPParam;  // pointer to OCP parameters 
 

The rest of the data members hold the parameter and configuration values of the 
master. 

The following is the complete header file for the master. 

#ifndef _SIMPLE_MASTER_H 
#define _SIMPLE_MASTER_H 
 
#include <iostream> 
#include "stdlib.h" 
#include "globals.h" 
 
// OCP-IP Channel header files 
#include "ocp_globals.h" 
#include "ocp_tl1_master_port.h" 
#include "ocp_tl_param_cl.h" 
 
// For multithreaded masters only 
// #include "master_data_queue.h" 
 
// define the Master transactor class 
template <typename TdataCl> 
class Master : public sc_module 
{ 
  public: 
    // -------------------------- 
    // public members and methods 
    // -------------------------- 
 
    // type definitions 
    typedef typename TdataCl::DataType Td; 
    typedef typename TdataCl::AddrType Ta; 
 
    // member definitions 
 
    // channel port 
    OCP_TL1_MasterPort<TdataCl> ipP; 
 
    // SystemC macros 
    // has SystemC processes 
    SC_HAS_PROCESS(Master); 
 
    // constructor and destructor 
    Master(sc_module_name, double, sc_time_unit,  
           int, ostream* debug_os_ptr = NULL); 
    ~Master(); 
 
    // methods 
    void setConfiguration( MapStringType& passedMap ); 
 
    // process methods 
    void requestThreadProcess(); 
    void responseThreadProcess(); 
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    void exerciseSidebandThreadProcess(); 
   
private: 
    // --------------------------- 
    // private members and methods 
    // --------------------------- 
 
    // SystemC methods 
    void end_of_elaboration(); 
 
    // member definitions 
 
    // master identification 
    int          m_ID; 
 
    // ocp clock information 
    double       m_ocpClkPeriod; 
    sc_time_unit m_ocpClkTimeUnit; 
 
    // model a per thread data queue 
    // used for multi-threaded master 
    // DataQueue<TdataCl> m_DataQueueThread0; 
 
    // 
    ostream* m_debug_os_ptr; 
 
    // Parameters from the OCP Channel: 
 
    // Class that holds all OCP parameters 
    ParamCl<TdataCl>* m_OCPParamP; 
 
    // The number of threads 
    int m_threads; 
     
    // is MAddrSpace part of the OCP channel? 
    bool m_addrspace; 
 
    // is SThreadBusy part of the channel? 
    bool m_sthreadbusy; 
 
    // Is SThreadBusy compliance required? 
    bool m_sthreadbusy_exact; 
 
    // is MThreadBusy part of the channel? 
    bool m_mthreadbusy; 
 
    // Is MThreadBusy compliance required? 
    bool m_mthreadbusy_exact; 
 
    // is MRespAccept part of the channel? 
    bool m_respaccept; 
 
    // is Data Handshake part of the channel? 
    bool m_datahandshake; 
 
    // is write response part of the channel? 
    bool m_writeresp_enable; 
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    // is the READ-EX command part of the channel 
    bool m_readex_enable; 
 
    // Are non-posted writes (write commands that receive responses)  
    // part of the channel? 
    bool m_writenonpost_enable;  
 
    //----------------------------------------- 
    //  Master Specific Parameters 
    //----------------------------------------- 
 
    // Response delay style - fixed or random 
    bool m_respaccept_fixeddelay; 
 
    // Delay in accepting responses (max delay for random) 
    int m_respaccept_delay; 
     
    // Map of string to string that holds the Master's paramter 
values 
    MapStringType m_ParamMap; 
 
}; 
 
#endif // _SIMPLE_MASTER_H 

6.2.2 Constructor 
In the master core model’s constructor, the following items are implemented: 

• The base sc_module class is initialized using the name parameter passed to the 
Master class. 

• The OCP master interface port (ipP) is also initialized and named “ipPort”. 

• The master’s configuration and parameters are given their initial default values. 

• Functions for sending a request from the master, processing a response from the 
slave, and for setting sideband signals on the channel are registered using the 
SystemC SC_THREAD macro. 

The following is the code for the constructor of the master core model: 

// -----------------------------------------------------------------
-- 
// constructor 
// -----------------------------------------------------------------
-- 
template<typename TdataCl> 
Master<TdataCl>::Master( 
    sc_module_name name, 
    double         ocp_clock_period, 
    sc_time_unit   ocp_clock_time_unit, 
    int            id, 
    ostream*       debug_os_ptr 
) : sc_module(name), 
    ipP("ipPort"), 
    m_ID(id), 
    m_ocpClkPeriod(ocp_clock_period), 
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    m_ocpClkTimeUnit(ocp_clock_time_unit), 
    m_debug_os_ptr(debug_os_ptr), 
    m_OCPParamP(NULL), 
    m_threads(1), 
    m_addrspace(false), 
    m_sthreadbusy(false), 
    m_sthreadbusy_exact(false), 
    m_mthreadbusy(false), 
    m_mthreadbusy_exact(false), 
    m_respaccept(true), 
    m_datahandshake(false), 
    m_writeresp_enable(false), 
    m_writenonpost_enable(false), 
    m_respaccept_delay(0) 
{ 
    // setup a SystemC thread process, which uses dynamic sensitive 
    SC_THREAD(requestThreadProcess); 
 
    // setup a SystemC thread process, which uses dynamic sensitive 
    SC_THREAD(responseThreadProcess); 
 
    // setup a SystemC thread process to drive any connected 
sideband signals 
    SC_THREAD(exerciseSidebandThreadProcess); 
} 
 

6.2.3 The end_of_elaboration() Method 
The end_of_elaboration() method is called by SystemC after the model has been built 
and connected, but before the simulation begins. Sometime during the construction of 
the models, the master’s setConfiguration function should have been called with a 
parameter map of the master’s parameters. During the end_of_elaboration() method, 
that master processes this parameter map to set its own master parameters. 

At the end of elaboration point, the OCP channel must have already been connected to 
the core. The master takes advantage of this to read the OCP parameters of the channel 
and then uses those parameters to configure itself to work with the channel it was 
connected to. 

The following are some important points regarding the code for the 
end_of_elaboration() method: 

• The GetParamCl() method returns a pointer that points to the OCP channel’s 
parameters. The master then uses this pointer to extract the channel’s parameters 
and to use them to configure itself. For example, 
m_OCPParamP = ipP->GetParamCl(); 
 

 The master uses functions in the ParamCl class that extract integers and Booleans from 
string formatted parameter maps. For example, the complex looking function call 

ParamCl<TdataCl>::getBoolOCPConfigValue(myPrefix, paramName, 
  m_respaccept_fixeddelay, m_ParamMap) 
 
returns true if the passed parameter map (m_ParamMap) contains a Boolean 
parameter named by the string “parameterName” where “parameterName” is the 
concatenation of “myPrefix” and “paramName”. (Note that “myPrefix” is 
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generally not used and set to “”. If the parameter map does contain the parameter, 
the value of m_respaccept_fixeddelay is set to the value of that parameter. 

The following is code for the end_of_elaboration method. 

// ------------------------------------------------------------------- 
// SystemC Method Master::end_of_elaboration() 
// ------------------------------------------------------------------- 
//  
//  At this point, everything has been built and connected. 
//  We are now free to get our OCP parameters and to set up our 
//  own variables that depend on them. 
// 
template<typename TdataCl> 
void Master<TdataCl>::end_of_elaboration() 
{ 
    // Call the System C version of this function first 
    sc_module::end_of_elaboration(); 
 
    //----------------------------------------- 
    //  OCP Parameters 
    //----------------------------------------- 
 
    // This Master adjusts to the OCP it is connected to. 
 
    // Now get my OCP parameters from the port. 
    m_OCPParamP = ipP->GetParamCl(); 
 
    // Get the number of threads 
    m_threads = m_OCPParamP->threads; 
     
    // This Reference Master is single threaded. 
    if (m_threads > 1) { 
        cout << "ERROR: Single threaded Master \"" << name()  
                 << "\" connected to OCP with " << m_threads  
                 << " threads." << endl;  
    } 
 
    // is the MAddrSpace field part of the OCP channel? 
    m_addrspace = m_OCPParamP->addrspace; 
 
    // is SThreadBusy part of the channel? 
    m_sthreadbusy = m_OCPParamP->sthreadbusy; 
 
    // Is SThreadBusy compliance required? 
    m_sthreadbusy_exact = m_OCPParamP->sthreadbusy_exact; 
 
    // is MThreadBusy part of the channel? 
    m_mthreadbusy = m_OCPParamP->mthreadbusy; 
 
    // Is MThreadBusy compliance required? 
    m_mthreadbusy_exact = m_OCPParamP->mthreadbusy_exact; 
 
    // is MRespAccept part of the channel? 
    m_respaccept = m_OCPParamP->respaccept; 
 
    // Just a double check here 
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    if (m_mthreadbusy_exact && m_respaccept) { 
        cout << "ERROR: Master \"" << name()  
        << "\" connected to OCP with both MThreadBusy_Exact and 
MRespAccept 
               active which are exclusive." << endl;  
    } 
 
    // is Data Handshake part of the channel? 
    m_datahandshake = m_OCPParamP->datahandshake; 
    // if so, quit. This core does not support it. 
    assert(m_datahandshake == false); 
 
    // is write response part of the channel? 
    m_writeresp_enable = m_OCPParamP->writeresp_enable; 
 
    // is READ-EX part of the channel? 
    m_readex_enable = m_OCPParamP->readex_enable; 
 
    // Are non-posted writes (write commands that receive responses)  
    //part of the channel? 
    m_writenonpost_enable = m_OCPParamP->writenonpost_enable; 
 
    //----------------------------------------- 
    //  Master Specific Parameters 
    //----------------------------------------- 
 
    // Retrieve any configuration parameters that were passed to this 
block 
    // in the setConfiguration command. 
 
#ifdef DEBUG 
    cout << "I am configuring a Master!" << endl; 
    cout << "Here is my configuration map for Master >"  
            << name() << "< that was passed to me." << endl; 
    MapStringType::iterator map_it; 
    for (map_it = m_ParamMap.begin(); map_it != m_ParamMap.end(); 
++map_it) { 
        cout << "map[" << map_it->first << "] = " << map_it->second << 
endl; 
    } 
    cout << endl; 
#endif 
 
    string myPrefix = ""; 
    string paramName = "undefined"; 
 
    // MRespAccept delay in OCP cycles  
    paramName = "mrespaccept_delay"; 
    if (!(ParamCl<TdataCl>::getIntOCPConfigValue(myPrefix, paramName,  
            m_respaccept_delay, m_ParamMap)) ) { 
        // Could not find the parameter so we must set it to a default 
#ifdef DEBUG  
        cout << "Warning: master paramter \"" << paramName  
              << "\" for Master \"" << name()  
               << "\" was not found in the parameter map." << endl; 
        cout << "         setting missing parameter to 1." << endl; 
#endif 
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        m_respaccept_delay = 1; 
    } 
 
    // MRespAccept Delay Style. 1=fixed delay : 0=random delay 
    paramName = "mrespaccept_fixeddelay"; 
    if (!(ParamCl<TdataCl>::getBoolOCPConfigValue(myPrefix, paramName, 
             m_respaccept_fixeddelay, m_ParamMap)) ) { 
        // Could not find the parameter so we must set it to a default 
#ifdef DEBUG  
        cout << "Warning: master paramter \"" << paramName  
              << "\" for Master \"" << name()  
              << "\" was not found in the parameter map." << endl; 
        cout << "         setting missing parameter to 1 (fixed 
delay)."  
                << endl; 
#endif 
        m_respaccept_fixeddelay = true; 
    } 
} 

 

6.2.4 SystemC Request Thread Process 
For this master core example, the master request thread process works from a table of 
requests. The delays between the sending out of each request are also set in a table. For 
each table entry, the master sends the corresponding request then waits the 
corresponding time before moving on to the next table entry. 

The Commands table is the table of commands to send out while the NumWait table 
contains the length of time to wait before sending out the next command. Each time is 
organized by row with each row being a “test” of up to four commands. 

The following is an explanation of the code below: 

Sets up the tables to be used by the process. The code then enters the infinite loop of 
the thread and waits for the first wait period before sending its first request. 

After the wait is over, the code checks to see if the slave has set threadbusy. Note that 
the parameter m_sthreadbusy was set by looking at the OCP channel’s parameters 
during the end_of_elaboration() method. If SThreadBusy is part of the channel, and 
if that signal has been asserted, the request process will continue to wait until the slave 
releases threadbusy by driving it to zero. 

Once the threadbusy hurtle has been cleared, the request process then tries to send a 
request. First it constructs the request by reading the next command from the table. If 
the command is incompatible with the channel that the master is connected to, the 
master changes the command to a simpler one that the channel can accept. If the 
command calls for data (that is, it is some sort of write command) new data is generated 
through a counter.  

The data is sent with the OCP TL1 channel command: 

ipP->startOCPRequestBlocking(req); 
 

This command places the newly generated request on the channel. If there is already a 
request on the channel (for example, if the previous request has not yet been accepted), 
that command will block until the channel is free and the new command can be placed 
on the channel. The function returns once the request has started, but before it has 
been accepted by the slave. A blocking call like this one may only be used within a 
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thread process. A SystemC method does not allow the context switching required by a 
blocking command. 

Finally, return to step 1, processing the table and setting up the wait time before the 
next command may be issued. 

The following is the code for the Request Thread Process. 

template<typename TdataCl> 
void Master<TdataCl>::requestThreadProcess() 
{ 
    Ta Addr[] = {0x1784, 0x20, 0x20, 0x40}; 
 
    // start time of requests 
    int NumWait[NUM_TESTS][4] = { 
            {100,   3, 0xF, 0xF}, 
            {7,   1,   3, 0xF}, 
            {6, 0xF, 0xF, 0xF}, 
            {10,  2,   1, 0xF}, 
            {7,   1,   3, 0xF}, 
            {6,   1,   1,   1}, 
            {7,   2, 0xF, 0xF}, 
            {8,   2,   1, 0xF},// no data handshake 
            {7,   2,   2,   2} 
        }; 
 
    // specifies the command to use 
    OCPMCmdType Commands[NUM_TESTS][4]  = { 
        {OCP_MCMD_WR, OCP_MCMD_RD, OCP_MCMD_IDLE, OCP_MCMD_IDLE}, 
        {OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_IDLE}, 
        {OCP_MCMD_RD, OCP_MCMD_IDLE, OCP_MCMD_IDLE, OCP_MCMD_IDLE}, 
        {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_IDLE}, 
        {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_IDLE 
        {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD}, 
        {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_IDLE, OCP_MCMD_IDLE}, 
        {OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_IDLE}, 
        {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD} 
    }; 
 
    // number of specified transactions in a test 
    int NumTr[] = {2, 3, 1, 3, 3, 4, 2, 3, 4}; 
 
    // ----------------------------------- 
    // (1) processing and preparation step 
    // ----------------------------------- 
 
    // initialize data 
    OCPRequestGrp<Td,Ta> req; 
    int              Count = 0; 
    int              Nr = 0; 
    sc_time          old_time; 
    sc_time          current_time; 
    bool             sthreadbusy; 
    unsigned int     my_data = 0; 
 
    // calculate the new waiting time 
    double  wait_for = NumWait[Nr][Count]; 
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    // Do requests contain data (or will it be sent separately) 
    // Always true as this core does not support data handshake 
    req.HasMData = true;         
 
    ipP->ocpWait(); 
 
    // main loop 
    while (true) { 
        // wait for the time to send the current request 
 
        if (m_debug_os_ptr) { 
            (*m_debug_os_ptr) << "DB (" << name() << "): " 
                         << "master wait_for = " << wait_for << 
endl; 
        } 
 
        ipP->ocpSafeWait(wait_for); 
 
        // remember the time 
        old_time = sc_time_stamp(); 
 
        // ------------------------------------------------ 
        // (2) is SThreadBusy? 
        // ------------------------------------------------ 
         
        // NOTE: we are single threaded so the thread busy signal 
        // looks like a boolean (0 or 1).  
        //   Abritration based on thread busy will be needed for a 
        //   multi-threaded model. 
        if (m_sthreadbusy_exact) { 
            sthreadbusy = ipP->getSThreadBusy(); 
            while (sthreadbusy) { 
                ipP->ocpWait(); 
                sthreadbusy = ipP->getSThreadBusy(); 
            } 
        } 
 
        // ------------------------------------------------ 
        // (3) send a request 
        // ------------------------------------------------ 
 
        // NOTE: data handshake is not handled by this simple 
example. 
 
        // Compute the next request 
        req.MCmd = Commands[Nr][Count]; 
 
        // is this an extended command to be sent over a basic  
        // channel? 
        if ( (!m_readex_enable) && (req.MCmd == OCP_MCMD_RDEX) ) { 
            // channel cannot handle READ-EX. Send simple READ. 
            req.MCmd = OCP_MCMD_RD; 
        } else if ((!m_writenonpost_enable) && (req.MCmd == 
OCP_MCMD_WRNP)){ 
            // channel cannout handle WRITE-NP. Send simple WRITE. 
            req.MCmd = OCP_MCMD_WR; 
        } 
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        // compute the address 
        req.MAddr = Addr[Count] + m_ID*0x40; 
        req.MByteEn = 0xf; 
        if (m_addrspace) { 
            req.MAddrSpace = 0x1; 
        } 
        // compute the data 
        switch (req.MCmd) { 
            case OCP_MCMD_WR: 
            case OCP_MCMD_WRNP: 
            case OCP_MCMD_WRC: 
            case OCP_MCMD_BCST: 
                // This is a write command - it has data 
                my_data++; 
                // put the data into the request 
                req.MData = my_data + m_ID*0x40; 
                break; 
            case OCP_MCMD_RD: 
            case OCP_MCMD_RDEX: 
            case OCP_MCMD_RDL: 
                // this is a read command - no data. 
                req.MData = 0; 
                break; 
            default: 
                cout << "ERROR: Master \"" << name()  
                     << "\" generates unknown command #" 
                          << req.MCmd << endl; 
        } 
 
        if (m_debug_os_ptr) { 
            (*m_debug_os_ptr) << "DB (" << name() << "): " 
                              << "send request." << endl; 
            (*m_debug_os_ptr) << "DB (" << name() << "): " 
                       << "    t = " << sc_simulation_time() << 
endl; 
            (*m_debug_os_ptr) << "DB (" << name() << "): " 
                              << "    MCmd: " << req.MCmd << endl; 
            (*m_debug_os_ptr) << "DB (" << name() << "): " 
                              << "    MData: " << req.MData << endl; 
            (*m_debug_os_ptr) << "DB (" << name() << "): " 
                           << "    MByteEn: " << req.MByteEn << 
endl; 
        } 
 
        // send the request 
        ipP->startOCPRequestBlocking(req); 
           
        // ------------------------------- 
        // (1) processing and preparation step 
        // ------------------------------- 
 
        // compute the next pointer 
        if (++Count >= NumTr[Nr]) { 
            Count = 0; 
            if (++Nr >= NUM_TESTS) Nr = 1; 
        } 
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        // calculate the new waiting time 
        wait_for = NumWait[Nr][Count]; 
        current_time = sc_time_stamp(); 
        double delta_time =  
              (current_time.value() - old_time.value()) / 1000; 
        if (delta_time >= wait_for) { 
            wait_for = 0; 
        } else { 
            wait_for = wait_for - delta_time; 
        } 
    } 
} 

6.2.5 SystemC Response Thread Process 
The code for the master’s response thread process is much simpler than that for the 
request. The code follows this pattern:  

• The master receives a response. 

• The master waits for a given amount of time. 

• The master accepts the response. 
The following is an explanation of the code below. 

Once the process enters the infinite loop of the thread, it starts waits for a response to 
come from the slave. The command 

ipP->getOCPResponseBlocking(resp); 
 

gets the current response from the OCP channel that is connected to the ipP port. If 
there is no request waiting on the OCP channel, the command blocks until a new 
request arrives. Because this is a blocking command, it may only be used in a thread 
process like this one. A SystemC method process does not allow for the context 
switching required by a blocking command. 

Once the request has arrived, the response delay is calculated using the master 
parameters set from the passed parameter map.  

The thread implements the delay based on the channel configuration. If the OCP 
channel has an MRespAccept signal, that signal is used to keep the slave from sending 
more responses. The following command is used to set MRespAccept to true to accept 
the response: 

ipP->putMRespAccept(); 
 

If instead, the slave is threadbusy_exact, the MThreadBusy signal is used to pause 
the slave. The following command is used to set MThreadBusy to true: 

ipP->putMThreadBusy(1); 
 

The same command (with a different parameter) is used to unset MThreadBusy as well, 
that is: 

ipP->putMThreadBusy(0); 
 

In between the two calls to putMThreadBusy(), the following command causes the 
response thread to wait for wait_for OCP channel cycles before resuming:  
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ipP->ocpWait(wait_for); 
 

The following is the code for the master’s response thread process. 

template<typename TdataCl> 
void Master<TdataCl>::responseThreadProcess() 
{ 
 
    // initialization 
    OCPResponseGrp<Td> resp; 
    double         wait_for; 
 
    ipP->ocpWait(); 
 
    // main loop 
    while (true) { 
        // ------------------------------------------------ 
        // (1) wait for a response (blocking wait) 
        // ------------------------------------------------ 
 
        // get the next response 
        ipP->getOCPResponseBlocking(resp); 
 
        // ------------------------ 
        // (2) process the response 
        // ------------------------ 
 
        // compute the response acceptance time 
        if (m_respaccept_fixeddelay) { 
           wait_for = m_respaccept_delay; 
        } else { 
           // Go random up to max delay 
           wait_for =  
            (int)((m_respaccept_delay+1) * rand() / (RAND_MAX + 
1.0)); 
        } 
 
        // -------------------------------------------------- 
        // (3) generate a one-cycle-pulse MRespAccept signal 
        // -------------------------------------------------- 
 
        if (m_respaccept) { 
            if (wait_for == 0) { 
                // send an one-cycle-pulse MRespAccept signal 
                ipP->putMRespAccept(); 
            } else { 
                // wait for the acceptance pulse cycle 
                ipP->ocpWait(wait_for); 
                //wait(ocpClkP->posedge_event()); 
 
                // send an one-cycle-pulse MRespAccept signal 
                ipP->putMRespAccept(); 
            } 
        } 
 
        if (m_mthreadbusy_exact) { 
           // use the MThreadBusy signal instead of resp accept 
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            if (wait_for > 0) { 
                // Set MThreadBusy 
                ipP->putMThreadBusy(1); 
                // keep MThreadBusy on  
                ipP->ocpWait(wait_for); 
                // now release it 
                ipP->putMThreadBusy(0); 
            } 
        } 
    } 
} 
 

6.2.6 SystemC Sideband Process 
The code example shown in this section is a simple process that illustrates how the 
OCP TL1 API can be used to set sideband signals in the OCP channel. 

The following is an explanation of the code below. 

Before the start of the infinite loop of the thread, the sideband process checks the 
channel’s parameters to determine which (if any) master sideband signals are available 
in the channel. 

Once the code reaches the main loop, the process waits then sets all of the master 
sideband signals that are connected to it. It updates the values to be set next time and 
then repeats.  

The following is the code for the master’s sideband thread process. 

template<typename TdataCl> 
void Master<TdataCl>::exerciseSidebandThreadProcess(void) 
{ 
    // Systematically send out sideband signals on  
    // any signals that are attached to us. 
    ipP->ocpWait(10); 
    int tweakCounter =0; 
    bool hasMError = m_OCPParamP->merror; 
    bool nextMError = false; 
    bool hasMFlag = m_OCPParamP->mflag; 
    int numMFlag = m_OCPParamP->mflag_wdth; 
    unsigned int nextMFlag = 0; 
    unsigned int maxMFlag = (1 << numMFlag) -1;  
 
    // main loop 
    while (true) { 
        // wait 10 cycles 
        ipP->ocpWait(10); 
 
        // Now count through my sideband changes 
        tweakCounter++; 
 
        // Drive MError 
        if (hasMError) { 
            if (tweakCounter%2 == 0) { 
                // Toggle MERROR 
                nextMError = !nextMError; 
                ipP->MputMError(nextMError); 
            } 
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        } 
 
        // Drive MFlags 
        if (hasMFlag) { 
            if (tweakCounter%1 == 0) { 
                // go to next MFlag 
                nextMFlag += 1; 
                if (nextMFlag > maxMFlag) { 
                    nextMFlag = 0; 
                } 
                ipP->MputMFlag(nextMFlag); 
            } 
        } 
    } 
} 
 

6.2.7 Template Instantiation 
The final line of the master.cc file makes sure that the compiler creates an instance of 
the Master template for the OCP_TL1_SIGNAL_CL type defined in the globals.h header 
file. The last line is 

template class Master< OCP_TL1_SIGNAL_CL >; 
 

6.3 A Configurable Slave Model 
This section provides an example of a configurable slave model, which reacts like a 
target memory core and takes in or delays the acceptances of OCP requests based on 
parameterized settings. The slave model has a single-threaded slave OCP interface. This 
slave model not only has its own parameters but can also deal with different OCP 
parameter settings. For instance, the slave model can talk to an OCP channel with the 
following settings: 

 - cmdaccept == 1, sthreadbusy == 0 or 1, and sthreadbusy_exact == 0 

 - cmdaccept == 0, sthreadbusy == 1, and sthreadbusy_exact == 1 

 - respaccept == 0, mthreadbusy == 0, and mthreadbusy_exact == 0 

 - respaccept == 1, mthreadbusy == 0 or 1, and mthreadbusy_exact == 1 

 - respaccept == 0, mthreadbusy == 1, and mthreadbusy_exact == 1 

 

Parameters belonging to the slave model itself are: 

latencyX  
This is the response latency for thread number X. There is a latency parameter for 
each thread in the channel. This parameter sets the minimum number of cycles 
between receiving the request and issuing the response. 

limitreq_enable and limitreq_max  
When the limitreq_enable parameter is set to 1, the outstanding requests per 
thread are limited to limitreq_max 

Figure 20 shows a diagram of the configurable slave model. 
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Figure 20 Slave Model 
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6.3.1 Header File 
The header file for the simple configurable slave calls the header files for the channel it 
is connected to and for the objects it uses. It then defines the template class that is the 
slave. The following are a few explanations regarding some of the highlights of the code. 
The full header file is provided below. 

First, the slave includes the OCP TL1 channel header files: 

// OCP-IP Channel header files 
#include "globals.h" 
#include "ocp_tl1_slave_port.h" 
#include "ocp_tl_param_cl.h" 
 

The file globals.h contains the definitions of the types used in the channel. This file 
also includes the header ocp_tl1_data_cl.h that defines the data class used by the 
OCP TL1 channel. The header ocp_tl1_data_cl.h in turn includes ocp_globals.h, 
which is used to define the structures used to pass requests and responses to the 
channel. If this core did not have an include file like globals.h, it would need to 
directly include ocp_tl1_data_cl.h and ocp_globals.h. 

The header ocp_tl1_slave_port.h is the slave port to the OCP TL1 channel. In addition to 
providing the slave interface to the channel, the port also provides event finders for all 
of the slave events and sideband events of the channel. 

The ocp_tl_param_cl.h header file contains the definition of the parameter class. The 
configurable slave uses this class to read the channel’s configuration and then uses 
that information to set up its own configuration to match the channel it is connected to. 
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The header file then defines objects that are used by the slave. The file 
slave_response_queue.h defines a simple response queue that the slave uses to queue 
responses as they are waiting to go out on the channel. The file MemoryCl.h implements 
a simple memory. 

Following the include statements, the slave header file defines the slave class. The slave 
is a template class and the parameter of the template is the data class that the slave 
will support over the OCP connection. A data class with 32-bit data width and a 32-bit 
address is specified as follows: 

OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> 
 

Where OCPCHANNELBit32 is defined in the file globals.h as 

typedef unsigned int OCPCHANNELBit32; 
 

The simple configurable slave has a single port which connects to the OCP channel. The 
following code declares the slave port for the OCP channel: 

// channel port 
OCP_TL1_SlavePort<TdataCl> tpP; 
 

Next the slave class declares functions that define SystemC thread or method 
processes used in your model. For example, in this slave core model, the following 
functions are defined: 

// has SystemC processes 
SC_HAS_PROCESS(Slave); 
void requestThreadProcess(); 
void responseThreadProcess(); 
void exerciseSidebandThreadProcess(); 
 

The SC_HAS_PROCESS(Slave) macro tells SystemC that the slave core is a SystemC 
module with its own processes. In this case, the thread processes that follow. Each of 
these processes are explained in detail in below. 

Lastly, the Slave class define a SystemC end_of_elaboration function to be called 
automatically after all models are built and connected but just before the simulation is 
to start: 

void end_of_elaboration();    // SystemC method 
 

Following the declaration of the end_of_elaboartion method, the Slave class define a 
pointer that points to the OCP parameters of the OCP channel that is connected to the 
model’s tpP port: 

ParamCl<TdataCl>* m_OCPParamP; 
 

Also, there is the following function for compatibility with the base generic channel 
class: 

bool MputDirect(int, bool, Td*, Ta, int); 
 

The rest of the data members of the Slave class hold the parameter and configuration 
values of the master. 

The following is the complete header file for the slave.  

#ifndef _SIMPLE_SLAVE_H 
#define _SIMPLE_SLAVE_H 
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#include <iostream> 
#include <map> 
#include "globals.h" 
 
// OCP-IP Channel header files 
#include "ocp_tl1_slave_port.h" 
#include "ocp_tl_param_cl.h" 
 
#include "slave_response_queue.h" 
 
#include "MemoryCl.h" 
 
 
// define the Slave class 
template <typename TdataCl> 
class Slave : public sc_module 
{ 
  public: 
    // -------------------------- 
    // public members and methods 
    // -------------------------- 
 
    // type definitions 
    typedef typename TdataCl::DataType Td; 
    typedef typename TdataCl::AddrType Ta; 
    typedef map< Ta, Td > MemMapType; 
 
    // member definitions 
 
    // channel port 
    OCP_TL1_SlavePort<TdataCl> tpP; 
 
    // Systemc macros 
 
    // has SystemC processes 
    SC_HAS_PROCESS(Slave); 
 
    // constructor and destructor 
    Slave(sc_module_name, double, sc_time_unit,  
          int, Ta, ostream* debug_os_ptr = NULL); 
    ~Slave(); 
 
    // methods 
    void setConfiguration( MapStringType& passedMap ); 
 
    void requestThreadProcess(); 
    void responseThreadProcess(); 
    void exerciseSidebandThreadProcess(); 
 
  private: 
    // --------------------------- 
    // private members and methods 
    // --------------------------- 
 
    // SystemC methods 
    void end_of_elaboration(); 
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    // methods 
    bool MputDirect(int, bool, Td*, Ta, int); 
 
    // member definitions 
 
    // slave identification 
    int  m_ID; 
 
    // ocp clock information 
    double       m_ocpClkPeriod; 
    sc_time_unit m_ocpClkTimeUnit; 
 
    // number of memory bytes and the memory array 
    Ta   m_MemoryByteSize; 
 
    // model a per thread response queue 
    ResponseQueue<TdataCl> m_ResponseQueue; 
 
    MemoryCl<TdataCl> *m_Memory; 
 
    ostream* m_debug_os_ptr; 
 
    // current value of SThreadBusy as set by this Slave. 
    int m_curSThreadBusy; 
 
    // ------------------------------------------------------------ 
    //  Parameters of the connected OCP channel 
    // ------------------------------------------------------------ 
     
    ParamCl<TdataCl>* m_OCPParamP; 
 
    // Number of threads in the OCP channel 
    int m_threads; 
 
    // Does the channel use data handshaking? 
    bool m_datahandshake; 
 
    // Are writes with responses part of the OCP channel? 
    bool m_writeresp_enable; 
 
    // is SThreadBusy part of the OCP channel? 
    bool m_sthreadbusy; 
 
    // do we follow the rules of sthread_busy exact? 
    bool m_sthreadbusy_exact; 
 
    // is MThreadBusy part of the OCP channel? 
    bool m_mthreadbusy; 
 
    // is SCmdAccept part of the OCP channel? 
    bool m_cmdaccept; 
 
    // ------------------------------------------------------------ 
    //  Parameters of the Slave Model  
    // ------------------------------------------------------------ 
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    // should there be a limit to the number of outstanding requests 
per  
    // thread? 
    // default = false; 
    bool m_limitreq_enable; 
 
    // maximum number of outstanding requests per thread 
    // default = 4; 
    int m_limitreq_max; 
 
    // Response Latency 
    int m_Latency; 
 
    MapStringType m_ParamMap; 
 
}; 
 
#endif // _SIMPLE_SLAVE_H 
 

6.3.2 Constructor 
In the slave model’s constructor, the following items are implemented: 

• The base sc_module class is initialized using the name parameter passed to the 
Slave class. 

• The OCP slave interface port (tpP) is also initialized and named “tpPort”. 

• The slave’s configuration and parameters are given their initial default values. They 
will receive their parameter values at the end of elaboration. 

• Functions for receiving requests, sending responses and for checking sideband 
signals on the channel are registered using the SystemC SC_THREAD macro. 

The following is the code for the constructor. 

// -----------------------------------------------------------------
-- 
// constructor 
// -----------------------------------------------------------------
-- 
template<typename TdataCl> 
Slave<TdataCl>::Slave( 
    sc_module_name n, 
    double         ocp_clock_period, 
    sc_time_unit   ocp_clock_time_unit, 
    int            id, 
    Ta             memory_byte_size, 
    ostream*       debug_os_ptr 
) : sc_module(n), 
    tpP("tpPort"), 
    m_ID(id), 
    m_ocpClkPeriod(ocp_clock_period), 
    m_ocpClkTimeUnit(ocp_clock_time_unit), 
    m_MemoryByteSize(memory_byte_size), 
    m_Memory(NULL), 
    m_debug_os_ptr(debug_os_ptr), 
    m_curSThreadBusy(0), 
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    m_OCPParamP(NULL), 
    m_threads(1), 
    m_datahandshake(false), 
    m_writeresp_enable(false), 
    m_sthreadbusy(false), 
    m_sthreadbusy_exact(false), 
    m_mthreadbusy(false), 
    m_cmdaccept(true), 
    m_limitreq_enable(1), 
    m_limitreq_max(4), 
    m_Latency(0) 
{ 
    // Note: member variables that depend on values of  
    // configuration parameters are constructed when those  
    // values are known - at the end of elaboration. 
 
    // setup a SystemC thread process, which uses dynamic sensitive 
    SC_THREAD(requestThreadProcess); 
 
    // setup a SystemC thread process, which uses dynamic sensitive 
    SC_THREAD(responseThreadProcess); 
 
    // setup a SystemC thread process to check and  
    // set sideband signals 
    SC_THREAD(exerciseSidebandThreadProcess); 
} 
 

6.3.3 Destructor 
The destructor cleans up the memory created in the end_of_elaboration() function. 

The following is the code for the destructor. 

template<typename TdataCl> 
Slave<TdataCl>::~Slave() 
{ 
    delete m_Memory; 
} 

6.3.4 The end_of_elaboration() Method 
This function is automatically called after the model has been built and connected but 
before the simulation begins. At the end of elaboration point, the OCP channel must 
have already been connected to the core. The slave takes advantage of this to read the 
OCP parameters of the channel and then to use those parameters to configure itself to 
work with the channel it was connected to. 

The following are some points regarding the code for the end_of_elaboration() 
method: 

• The GetParamCl() method returns a pointer that points to the OCP channel’s 
parameters. For example,  
m_OCPParamP = tpP->GetParamCl(); 
 
The slave then uses this pointer to extract the channel’s parameters and to use 
them to configure itself. Because the names of the channel parameters match the 
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names in the OCP Specification document, the parameter look-up is one to one. 
The channel parameters are then stored locally in the core for convenience. 

• Sometime before the end of elaboration, the setConfiguration() function was 
called and the slave’s parameters were passed to it using a string to string 
parameter map. The read this map, the slave uses functions in the ParamCl class 
that extract integers and Booleans from string formatted parameter maps. The 
complex looking function call 
ParamCl<TdataCl>::getBoolOCPConfigValue(myPrefix, paramName,  
 m_limitreq_enable, m_ParamMap) 
 
returns true if the passed parameter map (m_ParamMap) contains a Boolean 
parameter named by the string “paramName”. If the parameter map does contain 
the parameter, the value of m_limitreq_enable is set to the value of that 
parameter. The parameter “myPrefix” is generally not used and can be set to “”. 

• Finally, the slave uses the values of its own parameters and the configuration of the 
channel to which it is connected to build the memory model that it will use during 
the simulation. 

The following is the complete code for the slave’s end_of_elaboration() method. 

// ------------------------------------------------------------------- 
//  SystemC Method Slave::end_of_elaboration() 
// ------------------------------------------------------------------- 
//  
//  At this point, everything has been built and connected. 
//  We are now free to get our OCP parameters and to set up our 
//  own variables that depend on them. 
// 
template<typename TdataCl> 
void Slave<TdataCl>::end_of_elaboration() 
{ 
    sc_module::end_of_elaboration(); 
 
    ///////////// 
    // 
    // Process OCP Parameters from the port 
    // 
    ///////////// 
 
    m_OCPParamP = tpP->GetParamCl(); 
 
    // Set the number of threads 
    m_threads = m_OCPParamP->threads; 
 
    if (m_threads > 1) { 
        cout << "Warning: Singled threaded reference Slave "  
            << name() << " attached to multi-threaded OCP." << endl; 
        cout << "Only commands sent on thread 0 will be processed."  
            << endl; 
    } 
         
    // Does the channel use data handshaking? 
    m_datahandshake = m_OCPParamP->datahandshake; 
    // Is so, quit as this Slave does not handle data handshake. 
    assert(!m_OCPParamP->datahandshake); 
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    // Do writes get reponses? 
    m_writeresp_enable = m_OCPParamP->writeresp_enable; 
 
    // is SThreadBusy part of the channel? 
    m_sthreadbusy = m_OCPParamP->sthreadbusy; 
 
    // is this slave expected to follow the threadbusy exact protocol? 
    m_sthreadbusy_exact = m_OCPParamP->sthreadbusy_exact; 
 
    // is MThreadBusy part of the channel? 
    m_mthreadbusy = m_OCPParamP->mthreadbusy; 
     
    // is SCmdAccept part of the channel? 
    m_cmdaccept = m_OCPParamP->cmdaccept; 
 
    ///////////// 
    // 
    // Process Slave Parameters 
    // 
    ///////////// 
 
    // For Debugging 
    if (m_debug_os_ptr) { 
        (*m_debug_os_ptr) << "DB (" << name() << "): " 
            << "Configuring Slave." << endl; 
        (*m_debug_os_ptr) << "DB ("  
            << name()  
               << "): was passed the following configuration map:" << 
endl; 
        MapStringType::iterator map_it; 
        for (map_it = m_ParamMap.begin();  
                map_it != m_ParamMap.end(); ++map_it) { 
            (*m_debug_os_ptr) << "map[" << map_it->first << "] = "  
                    << map_it->second << endl; 
        } 
        cout << endl; 
    } 
     
    // Here the prefix is not needed. 
    // the future. 
    string myPrefix = ""; 
    string paramName = "undefined"; 
 
    // latency(0), latency(1), ... , latency(n) 
    paramName = "latency(0)"; 
    if (!(ParamCl<TdataCl>::getIntOCPConfigValue(myPrefix,  
                                                 paramName,  
                                                 m_Latency,  
                                                 m_ParamMap)) ) { 
        // Could not find the parameter so we must set it to a default 
#ifdef DEBUG  
        cout << "Warning: paramter \"" << paramName  
          << "\" for Slave \"" << name()  
          << "\" was not found in the parameter map." << endl; 
        cout << "         setting missing parameter to 3." << endl; 
#endif 
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        m_Latency = 3; 
    } 
 
    // limitreq_enable 
    paramName = "limitreq_enable"; 
    if (!(ParamCl<TdataCl>::getBoolOCPConfigValue(myPrefix,  
                                                  paramName,  
                                                  m_limitreq_enable,  
                                                  m_ParamMap)) ) { 
        // Could not find the parameter so we must set it to a default 
#ifdef DEBUG  
        cout << "Warning: paramter \"" << paramName 
              << "\" for Slave \"" << name()  
               << "\" was not found in the parameter map." << endl; 
        cout << "         setting missing parameter to false." << endl; 
#endif 
        m_limitreq_enable = false; 
    } 
    // limitreq_max 
    paramName = "limitreq_max"; 
    if (!(ParamCl<TdataCl>::getIntOCPConfigValue(myPrefix,  
                                                 paramName,  
                                                 m_limitreq_max,  
                                                 m_ParamMap)) ) { 
        // Could not find the parameter so we must set it to a default 
#ifdef DEBUG  
        cout << "Warning: paramter \"" << paramName  
               << "\" for Slave \"" << name()  
                 << "\" was not found in the parameter map." << endl; 
        cout << "         setting missing parameter to 4." << endl; 
#endif 
        m_limitreq_max = 4; 
    } 
 
    ///////////// 
    // 
    // Initialize the Slave with New Parameters 
    // 
    ///////////// 
 
    // Clear the response queue 
    m_ResponseQueue.reset(); 
 
    // Create the memory: 
    if (m_Memory) { 
        // Just in case we are called multiple times. 
        delete m_Memory; 
    } 
    char id_buff[10]; 
    sprintf(id_buff,"%d",m_ID); 
    string my_id(id_buff); 
    m_Memory =  
       new MemoryCl<TdataCl>(my_id,m_OCPParamP->addr_wdth,sizeof(Td)); 
 
} 
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6.4 SystemC Request Thread Process 
The request thread processes each new request as it arrives from the channel. This 
section explains some highlights of the code for the request thread process. The 
complete code for the request process is presented below. 

The basis loop of the request thread process does the following: gets a new request, 
processes it, generates a response (if needed), then queues that response for the 
response thread to process. The request thread uses a blocking command to get the 
next request: 

tpP->getOCPRequestBlocking(req, false); 
 

This command gets the current request from the channel if there is one. If there is no 
request, the command blocks until a new request arrives. When a request is found, it is 
copied into the variable req. The second parameter to the command (false) indicates 
that the command should not automatically accept the request it receives. The thread 
then processes the command. Either it updates the memory (for a write command) or it 
extracts a value from the memory for a read command. 

After receiving a request, the process then builds a response. In this slave model, all 
requests generate a response for the response queue. Some are actual responses such 
as the responses to a read request. These responses have SResp of type 
OCP_SRESP_DVA. Some of the responses are just placeholder responses. They are there 
to make sure that the timing for activities such as writes are accurate. Placeholder 
responses take up a spot in the response queue, but they have an SResp type of 
OCP_SRESP_NULL and are never sent on the OCP channel. Each item in the outgoing 
response queue consists of a response and a time stamp of the earliest time that the 
response may be sent (if it is an actual response) or cleared from the queue (if it is a 
place-holder response). 

Note in the code (see comment 2 in the code below) how each element of the response 
structure is set by the slave. For example, the following line sets the response type of 
the out going response: 

resp.SResp = OCP_SRESP_DVA; 
 

If the outgoing response queue is full, the slave can no longer accept any new requests. 
Based on the configuration of the channel, the slave uses either SThreadBusy or a delay 
on accepting the request to keep the master from sending any new requests that cannot 
be processed due to the full queue (see comment 4 in the code below) 

The following is the complete code for the slave’s request thread process. 

template<typename TdataCl> 
void Slave<TdataCl>::requestThreadProcess() 
{ 
    // The new request we have just received 
    OCPRequestGrp<Td,Ta> req; 
 
    // The response to the new request 
    OCPResponseGrp<Td>   resp; 
 
    // Time after which the response can be sent or this  
    // request can be cleared from incoming queue. 
    sc_time          send_time; 
 
    // We are in the initialization call.  
    // Wait for the first simulation cycle. 
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    tpP->ocpWait(); 
 
    // main loop 
    while (true) { 
        // ---------------------------------------------------------- 
        // (1) Get the next request 
        // ---------------------------------------------------------- 
        tpP->getOCPRequestBlocking(req,false); 
 
        // ---------------------------------------------------------- 
        // (2) process the new request and generate a response. 
        // ---------------------------------------------------------- 
 
        // compute the word address 
        if (req.MAddr >= m_MemoryByteSize) { 
            req.MAddr = req.MAddr - m_MemoryByteSize; 
        } 
 
        // send a response for writes if channel requires it. 
        if ( m_writeresp_enable && (req.MCmd == OCP_MCMD_WR) ) { 
            req.MCmd = OCP_MCMD_WRNP; 
        } 
             
        // write to or read from the memory 
        switch (req.MCmd) { 
            case OCP_MCMD_WR: 
                // posted write to memory 
                m_Memory->write(req.MAddr,req.MData,req.MByteEn); 
 
                // note that posted writes do not have responses. 
                // However, they do have a processing delay that can  
                // contribute to a max request limit back up. 
                // To solve this problem, requests that have no  
                // response to generate a dummy respose with  
                // SRESP=NULL which is defined as "No response". 
                // Dummy responses are never sent out on the channel. 
                resp.SResp = OCP_SRESP_NULL; 
                resp.SThreadID = req.MThreadID; 
                break; 
 
            case OCP_MCMD_RD: 
            case OCP_MCMD_RDEX: 
                // NOTE that for a single threaded slave,  
                // Read-EX works just like Read  
                // read from memory 
                m_Memory->read(req.MAddr,resp.SData,req.MByteEn); 
                // setup a read response 
                resp.SResp = OCP_SRESP_DVA; 
                resp.SThreadID = req.MThreadID; 
                break; 
 
            case OCP_MCMD_WRNP: 
                // Generate an acknowledgement response 
                resp.SResp = OCP_SRESP_DVA; 
                resp.SThreadID = req.MThreadID; 
                resp.SData = 0; 
                break; 
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            default: 
                cout << "MCmd #" << req.MCmd << " not supported yet."  
                         << endl; 
                sc_stop(); 
                break; 
        } 
 
        // ---------------------------------------------------------- 
        // (3) generate a completion time stamp and add the response 
        //     to the queue 
        // ---------------------------------------------------------- 
 
        // compute pipelined response delay 
        send_time = sc_time_stamp() + 
sc_time(m_Latency,m_ocpClkTimeUnit); 
 
        // purge the queue of any posted write place holder responses 
        // that have reached their send times 
        m_ResponseQueue.purgePlaceholders(); 
 
        m_ResponseQueue.enqueueBlocking(resp.SResp,resp.SData, 
send_time); 
 
        // ---------------------------------------------------------- 
        // (4) if our queue is full, generate back pressure halt 
        //     the flow of requests. Otherwise, accept the request 
        //     and move on. 
        // ---------------------------------------------------------- 
 
        // Do we need to set SThreadBusy?? 
        if (m_sthreadbusy && (m_ResponseQueue.length() >= 
m_limitreq_max)) { 
            m_curSThreadBusy = 1; 
            tpP->putSThreadBusy(m_curSThreadBusy); 
        } 
 
        // Should we accept this command? 
        if ( m_cmdaccept ) { 
            // if queue is full, delay accepting request 
            while (m_ResponseQueue.length() >= m_limitreq_max) { 
                // Our queue is full. Wait for this to change. 
                tpP->ocpWait(); 
            } 
            // now it is okay to accept the request 
            tpP->putSCmdAccept(); 
        } 
 
    } 
} 

6.4.1 SystemC Response Thread Process 
The response thread process cycles through the response queues, and then places each 
response into the channel at the appropriate time. This section explains some 
highlights of the code for the response thread process. The complete code for the 
request process is presented below. 
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The basis loop of the response thread process does the following:  

Clears and processes any writes that do not need a response, then it finds the next 
response to send out (if any) 

Builds the response, makes sure the channel is free, then places the new response on 
the channel.  

If no more responses are available to be sent, the process waits until responses arrive. 

The command following command changes the channel’s SThreadBusy signal at the 
next delta cycle: 

tpP->putSThreadBusy(m_curSThreadBusy); 
 

The following loop checks to see if the master’s MThreadbusy signal is true for our 
thread (thread zero). As long as the master keeps this signal high, the slave must wait 
before sending a new response on that thread. 

mthreadbusy = tpP->getMThreadBusy(); 
while (mthreadbusy & 1) { 
    tpP->ocpWait(); 
    mthreadbusy = tpP->getMThreadBusy(); 
} 
 

The following command will try to place the passed response unto the channel: 

tpP->startOCPResponseBlocking(resp); 
 

If the channel is busy (that is, there is already a response on the channel waiting to be 
accepted, the command will block until the response can be placed on the channel. 
Note that this command returns once the response has been placed on the channel, but 
before the response has been accepted by the master. 

The following is the complete code for the Response Thread Process. 

template<typename TdataCl> 
void Slave<TdataCl>::responseThreadProcess() 
{ 
    OCPResponseGrp<Td>   resp; 
    sc_time          send_time; 
    sc_time          CurTime; 
    unsigned int     mthreadbusy; 
 
    tpP->ocpWait(); 
 
    // main loop 
    while (true) { 
 
        // ------------------------------------------------- 
        // (1) Find a response to place on the channel 
        // ------------------------------------------------- 
 
        // We are single threaded - always choose thread zero: 
        int selectedThread = 0; 
 
        // Get to next response (wait for one, if necessary). 
         
        // First, clear any stale write latency waits 
        m_ResponseQueue.purgePlaceholders(); 
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        // Can we free SThreadBusy?? 
        if ( m_sthreadbusy && (m_curSThreadBusy==1) &&  
               (m_ResponseQueue.length() < m_limitreq_max) ) { 
            // Our queue has been shortened. Clear threadBusy. 
            m_curSThreadBusy = 0; 
            tpP->putSThreadBusy(m_curSThreadBusy); 
        } 
 
        // Get the next request off of the queue 
        
m_ResponseQueue.dequeueBlocking(resp.SResp,resp.SData,send_time); 
        resp.SThreadID = selectedThread; 
 
        // check if we still need to wait 
        CurTime = sc_time_stamp(); 
        if (send_time > CurTime) { 
            tpP->ocpWait((send_time.value() - CurTime.value())/1000); 
        } 
 
        if (m_debug_os_ptr) { 
            (*m_debug_os_ptr) << "DB (" << name() << "): " 
                << "slave wait time = " 
                    << send_time.value() << endl; 
        } 
 
        // The response could be a place holder response  
        // used to implement write latency. If this is the case, 
        // skip the rest of the steps. 
 
        if (resp.SResp == OCP_SRESP_NULL) { 
            if (m_debug_os_ptr) { 
                (*m_debug_os_ptr) << "DB (" << name() << "): " 
                    << "finished Write Latency waiting." << endl; 
            } 
        } else { 
 
            // ---------------------------------- 
            // (2) is MThreadBusy? 
            // ---------------------------------- 
 
            if (m_mthreadbusy) { 
                mthreadbusy = tpP->getMThreadBusy(); 
                while (mthreadbusy & 1) { 
                    tpP->ocpWait(); 
                    mthreadbusy = tpP->getMThreadBusy(); 
                } 
            } 
 
            // ---------------------------------- 
            // (3) return a response 
            // ---------------------------------- 
 
            if (m_debug_os_ptr) { 
                (*m_debug_os_ptr) << "DB (" << name() << "): " 
                    << "send response." << endl; 
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                (*m_debug_os_ptr) << "DB (" << name() << "): " 
                    << "    t = " << sc_simulation_time() << endl; 
                (*m_debug_os_ptr) << "DB (" << name() << "): " 
                    << "    SResp: " << resp.SResp << endl; 
                (*m_debug_os_ptr) << "DB (" << name() << "): " 
                    << "    SData: " << resp.SData << endl; 
            } 
 
            // Send out the response 
            tpP->startOCPResponseBlocking(resp); 
        } 
 
        // We must be able to clear ThreadBusy now as we just sent a  
        // request (or cleared a write latency) 
        if ( m_sthreadbusy && (m_curSThreadBusy==1) &&  
                (m_ResponseQueue.length() < m_limitreq_max) ) { 
            // Our queue has been shortened. Clear threadBusy. 
            m_curSThreadBusy = 0; 
            tpP->putSThreadBusy(m_curSThreadBusy); 
        } else { 
            assert("Slave should have been able to clear SThreadBusy"); 
        } 
 
        // wait until next cycle to send out the next response (if any) 
        tpP->ocpWait(); 
    } 
} 

6.4.2 The Sideband Thread Process 
This slave process demonstrates how the sideband signals on the channel may be 
exercised. The code below reads the MError signal and then uses that to set the SError 
signal. This process also periodically changes the SInterrupt and SFlag signals as well. 

The following is the complete code for the Sideband Thread Process. 

// Exercises the sideband signals by setting them with a recurring 
pattern 
// Also loops back error signal from the Master if both Master and 
Slave  
// versions (MError and SError) are configured into the channel  
template<typename TdataCl> 
void Slave<TdataCl>::exerciseSidebandThreadProcess() 
{ 
    // Systematically send out sideband signals on any signals that are 
attached to us. 
    tpP->ocpWait(10); 
    int tweakCounter =0; 
    bool hasMError = m_OCPParamP->merror; 
    bool hasSError = m_OCPParamP->serror; 
    bool nextSError = false; 
    bool hasSInterrupt = m_OCPParamP->interrupt; 
    bool nextSInterrupt = false; 
    bool hasSFlag = m_OCPParamP->sflag; 
    int numSFlag = m_OCPParamP->sflag_wdth; 
    unsigned int nextSFlag = 0; 
    unsigned int maxSFlag = (1 << numSFlag) -1;  
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    // main loop 
    while (true) { 
        // wait 10 cycles 
        tpP->ocpWait(10); 
 
        // Now count through my sideband changes 
        tweakCounter++; 
 
        // Drive SError every time we are called 
        if (hasSError) { 
            if (hasMError) { 
                // loop MError back through SError 
                nextSError=tpP->SgetMError(); 
                tpP->SputSError(nextSError); 
            } else { 
                // Toggle SError 
                nextSError = !nextSError; 
                tpP->SputSError(nextSError); 
            } 
        } 
 
        // Drive SInterrupt 
        if (hasSInterrupt) { 
            // Drive every other time we are called 
            if (tweakCounter%2 == 0) { 
                // Toggle SInterrupt 
                nextSInterrupt = !nextSInterrupt; 
                tpP->SputSInterrupt(nextSInterrupt); 
            } 
        } 
 
        // Drive SFlag 
        if (hasSFlag) { 
            // Drive every fourth time we are called 
            if (tweakCounter%4 == 0) { 
                nextSFlag += 1; 
                if (nextSFlag > maxSFlag) { 
                    nextSFlag = 0; 
                } 
                tpP->SputSFlag(nextSFlag); 
            } 
        } 
    } // end while 
} 

6.4.3 Template Instantiation 
The final line of the slave.cc file makes sure that the compiler creates an instance of 
the Slave template for the OCP_TL1_SIGNAL_CL type defined in the globals.h header 
file. The final line is as follows: 

// --------------------------------------------------- 
// explicit instantiation of the Slave template class 
// --------------------------------------------------- 
template class Slave< OCP_TL1_SIGNAL_CL >; 
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6.5 The Main Program 
The main.cc program processes its command line options with the 
process_command_line() function, then reads in the configuration parameters for the 
channel, master, and slave. The configuration files are converted into the STL maps in 
the readMapFromFile() function. The main.cc program then creates a channel and 
uses the new channel configuration map to configure it. The program then does the 
same for the master and slave. Finally, it connects the master to the channel and the 
slave to the channel. 

Once the model has been build, the main.cc program calls the SystemC function: 

sc_start(simulation_end_time,SC_NS); 
 

that runs the simulation for simulation_end_time nano-seconds. After the simulation 
has completed, some minimal reporting is done. 

The following is the complete code of the main.cc program. 

/////////////////////////// 
// 
// Simple Main to read in Map data from files 
// and then use that to configure and connect 
// a master and slave. 
// 
/////////////////////////// 
 
 
 
#include <map> 
#include <set> 
#include <string> 
#include <algorithm> 
#include <stdio.h> 
#include <stdlib.h> 
#include <iostream> 
 
#include "systemc.h" 
 
#include "master.h" 
#include "slave.h" 
#include "ocp_tl1_data_cl.h" 
#include "ocp_tl_param_cl.h" 
#include "ocp_tl1_channel.h" 
 
#define OCP_CLOCK_PERIOD        1 
#define OCP_CLOCK_TIME_UNIT     SC_NS 
 
#define MASTER_CLOCK_PERIOD     1 
#define MASTER_CLOCK_TIME_UNIT  SC_NS 
 
#define SLAVE_CLOCK_PERIOD      1 
#define SLAVE_CLOCK_TIME_UNIT   SC_NS 
 
 
void process_command_line(int   argc, 
                          char* argv[], 
                          string& ocp_params_file_name, 
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                          string& master_params_file_name, 
                          string& slave_params_file_name, 
                          double& simulation_end_time, 
                          bool& debug_dump, 
                          string& debug_file_name) 
{ 
    // get the ocp parameters file name 
    ocp_params_file_name = ""; 
    if (argc > 1) { 
        string file_name(argv[1]); 
        ocp_params_file_name = file_name; 
    } 
 
    // get the master parameters file name 
    master_params_file_name = ""; 
    if (argc > 2) { 
        string file_name(argv[2]); 
        master_params_file_name = file_name; 
    } 
    // get the slave parameters file name 
    slave_params_file_name = ""; 
    if (argc > 3) { 
        string file_name(argv[3]); 
        slave_params_file_name = file_name; 
    } 
 
    // get the simulation end time 
    simulation_end_time = 1000; 
    if (argc > 4) { 
        simulation_end_time = (double) atoll(argv[4]); 
    } 
 
    // do we dump out a log file? 
    debug_dump= false; 
    debug_file_name = ""; 
    if (argc > 5) { 
        string file_name(argv[5]); 
        debug_file_name = file_name; 
        debug_dump = true; 
    } 
} 
 
void readMapFromFile(const string &myFileName, MapStringType 
&myParamMap)  
{ 
    // read pairs of data from the passed file 
    string leftside; 
    string rightside; 
     
    // (1) open the file 
    ifstream inputfile(myFileName.c_str()); 
    assert( inputfile ); 
 
    // set the formatting 
    inputfile.setf(std::ios::skipws); 
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    // Now read through all the pairs of values and add them to the 
passed map 
    while ( inputfile ) { 
        inputfile >> leftside; 
        inputfile >> rightside; 
        myParamMap.insert(std::make_pair(leftside,rightside)); 
    } 
 
    // All done, close up 
    inputfile.close(); 
} 
 
int 
sc_main(int argc, char* argv[]) 
{ 
    OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> 
>* pOCP; 
    Master< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> >* 
pMaster; 
    Slave< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> >*  pSlave; 
    MapStringType  ocpParamMap; 
    MapStringType  masterParamMap; 
    MapStringType  slaveParamMap; 
 
    double         simulation_end_time; 
    bool           debug_dump; 
    string         ocpParamFileName; 
    string         masterParamFileName; 
    string         slaveParamFileName; 
    string         dump_file_name; 
    ofstream       debugFile; 
 
    // -------------------------------- 
    // (1) process command line options 
    //     and read my parameters 
    // -------------------------------- 
    
process_command_line(argc,argv,ocpParamFileName,masterParamFileName, 
           
slaveParamFileName,simulation_end_time,debug_dump,dump_file_name); 
 
    if ( ! ocpParamFileName.empty() ) { 
        readMapFromFile(ocpParamFileName, ocpParamMap); 
    } 
 
    if ( ! masterParamFileName.empty() ) { 
        readMapFromFile(masterParamFileName, masterParamMap); 
    } 
 
    if ( ! slaveParamFileName.empty() ) { 
        readMapFromFile(slaveParamFileName, slaveParamMap); 
    } 
 
    // open a trace file 
    if (debug_dump) { 
        cout << "Debug dumpfilename: " << dump_file_name << endl; 
        debugFile.open(dump_file_name.c_str()); 
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    } 
 
    // ---------------------------------------------------------- 
    // (2) Create the clocked OCP Channel 
    // ---------------------------------------------------------- 
    sc_clock clk("clk", OCP_CLOCK_PERIOD,OCP_CLOCK_TIME_UNIT) ; 

pOCP = new OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBit32, 
OCPCHANNELBit32> > 

((std::string)"ocp0",(sc_clock *)&clk); 
     
    pOCP->setConfiguration(ocpParamMap); 
 
 
    // ---------------------------------------------------------- 
    // (3) Create the Master and Slave 
    // ---------------------------------------------------------- 
 
    pMaster = new Master< OCP_TL1_DataCl<OCPCHANNELBit32, 
OCPCHANNELBit32> >("master", MASTER_CLOCK_PERIOD, 
MASTER_CLOCK_TIME_UNIT, 0, &debugFile ); 
 
    pSlave = new Slave< OCP_TL1_DataCl<OCPCHANNELBit32, 
OCPCHANNELBit32> >("slave", SLAVE_CLOCK_PERIOD, SLAVE_CLOCK_TIME_UNIT, 
0, 0x3FF, &debugFile ); 
 
    // ---------------------------------------------------------- 
    // (4) connect channel, master, and slave, & clock 
    // ---------------------------------------------------------- 
    pMaster->ipP(*pOCP); 
    pSlave->tpP(*pOCP); 
 
    // ------------------------ 
    // (5) start the simulation 
    // ------------------------ 
    sc_start(simulation_end_time,SC_NS); 
 
    // ------------------- 
    // (6) post processing 
    // ------------------- 
 
    cout << "main program finished at "  
         << sc_time_stamp().to_double() << endl; 
 
    sc_simcontext* sc_curr_simcontext = sc_get_curr_simcontext(); 
    cout << "delta_count: " << dec << sc_curr_simcontext->delta_count()  
             << endl; 
    cout << "next_proc_id: " << dec << sc_curr_simcontext-
>next_proc_id() 
         << endl; 
 
    return (0); 
} 
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7 Examples Using OCP TL2 Channel and API 
The examples described in this section demonstrate the use of the OCP TL2 channel. 
The first example illustrates a single-threaded OCP communication between an OCP 
master and an OCP slave. Both are using the TL2 API to model the protocol.  

The second example shows a more complex example in which a multi-threaded master 
communicates with a multi-threaded slave via the original OCP TL2 channel. 

All the concerned files for these examples are located in ‘tl_sc/examples/ocp_tl2_1’. 
A README file details how to compile and run the code. 

7.1 Example # 1 
In this example, a simple TL2 master communicates with a simple TL2 slave. The OCP 
parameters describing the channel are stored in the 'ocpParams' file. The master uses 
an OCP TL2 master port to connect the channel, and the slave uses an OCP TL2 slave 
port. These ports allow modules to perform access to all the TL2 API functions and 
events available. 

The master and the slave use an 'OCPRequestGrp' structure to pass/get all the 
request signals to the channel, and an 'OCPResponseGrp' structure to store/send the 
response signals. 

Both master and slave are non-pipelined modules, which use one single thread to 
handle requests and responses. 

The communication between the master and the slave is composed of the following 
sequences: 

7.1.1 Master Sequence 
Master sends a 10-length WRITE burst to the slave using sendOCPRequestBlocking(). 
Only one chunk is used (i.e. transaction is atomic). 

Master sends a 10-length READ burst to the slave using sendOCPRequestBlocking(). 
Only one chunk is used (i.e. transaction is atomic). 

Master waits and get the corresponding response using two successive 
getOCPResponseBlocking() calls catching 5-length chunks. 

Master performs a complete 20-length WRITE transaction using the serialized method 
'OCPWriteTransfer()'. This call includes the following phases: 

• request send 

• request acknowledge 
Master performs a complete 20-length READ transaction using the serialized method 
'OCPReadTransfer()'. This call includes the following phases: 

• request send 

• request acknowledge 

• response reception 

• response acknowledge 
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7.1.2 Slave sequence 
Slave receives a 10-length WRITE burst from the master, and stores the received data 
in an internal array. 

Slave  receives a 10-length READ burst from the master, and sends the response using 
two consecutive response chunks (5-length each) with a different 'SRespInfo' signal 
value. 

Slave receives a 20-length WRITE burst from the master, and stores the received data 
in an internal array. 

Slave receives a 20-length READ burst from the master, and sends the response using 
one response call. 

7.2 Example #2 
In this example, a multi-threaded TL2 master communicates with a multi-threaded TL2 
slave. The OCP parameters describing the channel are stored in the 
‘ocpParams_complex’ file.  

7.2.1 Slave Description 
The TL2 slave emulates a '3 threads' OCP slave. It uses two SystemC threads, one for 
requests and one for responses. The request SC_THREAD catches every request, 
computes the response and stores it in one of the three response queues, depending on 
the ThreadID of the request. Then, the response SC_THREAD issues responses to the 
master. The slave acts as a memory: a write request updates an internal memory array, 
and a read request reads a cell of this array. 

The slave accepts some parameters, described in the ‘slaveParams’ files: 

• latencyX 

• limitreq_enable 

• limitreq_max  
These parameters are described in section 6.1.3 of the OCP API documentation. Note 
that for TL2, delays are not expressed in terms of clock cycles but as absolute timings 
(unit is SC_NS in the slave). 

7.2.2 Master Description 
The TL2 master emulates a '3 threads' master. It sends requests labelled with a 
MThread ID varying from 0 to 2. Depending on the current thread, each request targets 
a different location in the target memory space (no overlap between thread operations). 
The master uses two SystemC threads, one for the requests and one for the responses.  

The master accepts some parameters, described in the ‘masterParams’ file: 

• mrespaccept_delay 

• mrespaccept_fixeddelay 

• command_cycles 
The first two parameters are described in section 6.1.3. Note that for TL2, delays are not 
expressed in terms of clock cycles but as absolute timings (unit is SC_NS in the 
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master). 'Command_cycles' specifies the number of times the predefined TL2 requests 
sequence is sent. 
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8 Debugging Your Model Using 
SOCCREATOR® Tools 

The OCP TL1, TL2 and TL3 channels all implement monitor interfaces.  The user is able 
to create monitors which can be bound to the channels and used to obtain debug and 
analysis data from SystemC simulations.  Some monitors have been implemented by 
OCP-IP. 

For the OCP TL1 and TL2 channels, there is a trace monitor available.  The TL1 trace 
monitor prints out the state of the OCP interface at the end of every OCP clock cycle. 

The resulting OCP Monitor file can be processed with “ocpdis,” a tool that is available 
separately from the channel, which reformats the data for easy reading. The tool 
“ocpcheck,” also available separately, processes the OCP Monitor data and checks that 
the OCP channel followed the OCP protocol. 
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9 Debugging Your Model Using OCP 
Performance Monitor 

The OCP TL1, TL2 and TL3 channels all implement monitor interfaces.  The user is able 
to create monitors which can be bound to the channels and used to obtain debug and 
analysis data from SystemC simulations.  Some monitors have been implemented by 
OCP-IP. 

For all three channels there is a performance monitor available.  These performance 
monitors enable intuitive performance analysis by means of fast transaction level 
recording. The analysis instrumentation is based on the SystemC Verification (SCV) 
standard. The monitor is available to the OCP-IP members in a separate release 
package together with the old OCPMon monitor class. For use, see the documentation 
included in the release package, which is available at www.ocpip.org. 
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10 Sideband Signals (OCP TL1) 
The access methods for sending and receiving sideband signals are shared by both the 
base generic class API and the OCP TL1 API. The commands described in this section 
may be used with either API. 

10.1 MError Signal 
This section describes the methods for the MError signal. 

void MputMError(bool nextValue)  

Caller: Master 

Purpose: Changes the next value of the MError signal. If the OCP channel is 
asynchronous, the change is immediate. If the channel is synchronous, 
the change occurs at the next update. 

 

bool SgetMError( ) const  

Caller: Slave 

Purpose: Returns the current value of the MError signal in the channel. 

 

const sc_event& SidebandMErrorEvent() const 

Caller: Slave 

Purpose: Returns the event associated with the MError signal. This event is 
triggered whenever the MError signal changes to a new value. Note that a 
call to setMError() or resetMError() will not always result in the event 
SidebandMErrorEvent occurring. For example, if the current value of 
MError is true and the function setMError() is called, the event 
SidebandMErrorEvent will not be triggered because the current value 
(true) and the next value (true) are the same. This method is called by the 
slave. 

10.2 MFlag Signal 
This section describes the methods for the MFlag signal. 

void MputMFlag(int nextValue)   

Caller: Master 

Purpose: Changes the next value of the MFlag signal. If the OCP channel is 
asynchronous, the change is immediate. If the channel is synchronous, 
the change occurs at the next update. 

 

void MputMFlag(int nextValue, unsigned int mask) 

Caller: Master 
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Purpose: Changes the next value of the MFlag signal.  Only nextValue & mask bits 
are written.  If the OCP channel is asynchronous, the change is 
immediate. If the channel is synchronous, the change occurs at the next 
update. 

 

int SgetMFlag( ) const   

Caller: Slave 

Purpose: Returns the current value of the MFlag signal in the channel. 

 

const sc_event& SidebandMFlagEvent() const 

Caller: Slave 

Purpose: Returns the event associated with the MFlag signal. This event is 
triggered whenever the MFlag signal changes to a new value. 

10.3 SError Signal 
This section describes the methods for the SError signal. 

void SputSError( bool nextValue )  

Caller: Slave 

Purpose: Changes the next value of the SError signal. If the OCP channel is 
asynchronous, change is immediate. If the channel is synchronous, the 
change occurs at the next update. 

 

bool MgetSError( ) const  

Caller: Master 

Purpose: Returns the current value of the SError signal in the channel.  

 

const sc_event& SidebandSErrorEvent() const 

Caller: Master 

Purpose: Returns the event associated with the SError signal. This event is 
triggered whenever the SError signal changes to a new value. Note that a 
call to setSError() or resetSError() will not always result in the 
event SidebandSErrorEvent occurring. For example, if the current value 
of SError is true and the function setSError() is called, the event 
SidebandSErrorEvent will not be triggered because the current value 
(true) and the next value (true) are the same. 

10.4 SFlag Signal 
This section describes the methods for the SFlag signal. 

void SputSFlag( int nextValue )  

Caller: Slave 
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Purpose: Changes the next value of the SFlag signal. If the OCP channel is 
asynchronous, the change is immediate. If the channel is synchronous, 
the change occurs at the next update. 

 

void SputSFlag( int nextValue, unsigned int mask) 

Caller: Slave 

Purpose: Changes the next value of the SFlag signal.  Only nextValue&mask bits 
are written.  If the OCP channel is asynchronous, the change is 
immediate. If the channel is synchronous, the change occurs at the next 
update. 

 

int MgetSFlag( ) const  

Caller: Master 

Purpose: Returns the current value of the SFlag signal in the channel. 

 

const sc_event& SidebandSFlagEvent() const 

Caller: Master 

Purpose: Returns the event associated with the SFlag signal. This event is 
triggered whenever the SFlag signal changes to a new value. 

10.5 SInterrupt Signal 
This section describes the methods for the SInterrupt signal. 

void SputSInterrupt( bool nextValue )  

Caller: Slave 

Purpose: Changes the next value of the SInterrupt signal. If the OCP channel is 
asynchronous, the change is immediate. If the channel is synchronous, 
the change occurs at the next update. 

 

bool MgetSInterrupt() const  

Caller: Master 

Purpose: Returns the current value of the SInterrupt signal in the channel. 

 

const sc_event& SidebandSInterruptEvent() const 

Caller: Master 

Purpose: Returns the event associated with the SInterrupt signal. This event is 
triggered whenever the SInterrupt signal changes to a new value. Note 
that a call to setSInterrupt() or resetSInterrupt() will not always 
result in the event SidebandSInterruptEvent occurring. For example, if 
the current value of SInterrupt is true and the function 
setSInterrupt() is called, the event SidebandSInterruptEvent will 
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not be triggered since the current value (true) and the next value (true) 
are the same. 

10.6 Control Signal 
This section describes the methods for the Control signal. 

bool SysputControl(int nextValue)  

Caller: System side 

Purpose: If ControlBusy is false, this function changes the next value of the 
Control sideband signal. If the ControlBusy signal is part of the OCP 
channel configuration, and the current value of ControlBusy is true, the 
next value of the Control sideband signal will not be changed and the 
setControl() method will return false. Otherwise, the method will 
return true and will set the next value of the Control signal. If the OCP 
channel is asynchronous, the change to the Control signal is immediate. 
If the channel is synchronous, the change occurs at the next update. 

 

int CgetControl() const    

Caller: Core side 

Purpose: Returns the current value of the Control signal in the channel. 

 

const sc_event& SidebandControlEvent() const 

Caller: Core side 

Purpose: Returns the event associated with the Control signal. This event is 
triggered whenever the Control signal changes to a new value. 

10.7 ControlWr Signal 
This section describes the methods for the ControlWr signal. 

void SysputControlWr( bool nextValue ) 

Caller: System side 

Purpose: Changes the next value of the ControlWr signal. If the OCP channel is 
asynchronous, the change is immediate. If the channel is synchronous, 
the change occurs at the next update. 

 

bool CgetControlWr( ) const  

Caller: Core side 

Purpose: Returns the current value of the ControlWr signal in the channel. 

 

const sc_event& SidebandControlWrEvent() const 

Caller: Core side 
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Purpose: Returns the event associated with the ControlWr signal. This event is 
triggered whenever the ControlWr signal changes to a new value. 

10.8 ControlBusy Signal 
This section describes the methods for the ControlBusy signal. 

void CputControlBusy( bool nextValue ) 

Caller: Core side 

Purpose: Changes the next value of the ControlBusy signal. If the OCP channel is 
asynchronous, the change is immediate. If the channel is synchronous, 
the change occurs at the next update. 

 

bool SysgetControlBusy( ) const      

Caller: Core side 

Purpose: Returns the current value of the ControlBusy signal in the channel. 

 

const sc_event& SidebandControlBusyEvent() const  

Caller: System side 

Purpose: Returns the event associated with the ControlBusy signal. This event is 
triggered whenever the ControlBusy signal changes to a new value. Note 
that a call to setControlBusy() or resetControlBusy() will not 
always result in the event SidebandControlBusyEvent occurring. For 
example, if the current value of ControlBusy is true and the function 
setControlBusy() is called, the event SidebandControlBusyEvent will 
not be triggered because the current value (true) and the next value 
(true) are the same. 

10.9 Status Signal 
This section describes the methods for the Status Signal. 

void CputStatus( int nextValue )  

Caller: Core side 

Purpose: This function changes the next value of the Status sideband signal. If the 
OCP channel is asynchronous, the change to the Status signal is 
immediate. If the channel is synchronous, the change occurs at the next 
update. 

 

int SysgetStatus( ) const  

Caller: System side 

Purpose: Returns the current value of the Status signal in the channel. 

 

bool readStatus( int& currentValue ) const 
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Caller: System side 

Purpose: If the channel signal StatusBusy is false, then this function sets the 
passed parameter currentValue to the current value of the Status 
signal in the channel. Then the event SidebandStatusRdEvent is 
triggered and the function returns true. If the channel signal StatusBusy 
is true, the read is not performed, the event SidebandStatusRdEvent is 
not triggered, and the function returns false. 

 

const sc_event& SidebandStatusEvent() const 

Caller: System side 

Purpose: Returns the event associated with the Status signal. This event is 
triggered whenever the Control signal changes to a new value. 

10.10 StatusRd Signal 
This section describes the methods for the StatusRd Signal. 

void SysputStatusRd(bool nextValue)  

Caller: System side 

Purpose: Changes the next value of the StatusRd signal. If the OCP channel is 
asynchronous, the change is immediate. If the channel is synchronous, 
the change occurs at the next update. 

 

bool CgetStatusRd( ) const   

Caller: Core side 

Purpose: Returns the current value of the StatusRd signal in the channel. 

 

const sc_event& SidebandStatusRdEvent() const 

Caller: Core side 

Purpose: Returns the event associated with the StatusRd signal. This event is 
triggered whenever the ControlWr signal changes to a new value.  

10.11 StatusBusy Signal 
This section describes the methods for the StatusBusy signal. 

void CputStatusBusy( bool nextValue )  

Caller: Core side 

Purpose: Changes the next value of the StatusBusy signal. If the OCP channel is 
asynchronous, the change is immediate. If the channel is synchronous, 
the change occurs at the next update. 

 

bool SysgetStatusBusy( ) const  
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Caller: System side 

Purpose: Returns the current value of the StatusBusy signal in the channel. 

 

const sc_event& SidebandStatusBusyEvent() const  

Caller: System side 

Purpose: Returns the event associated with the StatusBusy signal. This event is 
triggered whenever the StatusBusy signal changes to a new value. Note 
that a call to setStatusBusy() or resetStatusBusy() will not always 
result in the event SidebandStausBusyEvent occurring. For example, if 
the current value of StatusBusy is true and the function 
setStatusBusy() is called, the event SidebandStatusBusyEvent will 
not be triggered because the current value (true) and the next value 
(true) are the same. 
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11 Sideband signals (OCP TL2) 
The OCP TL2 channel has full sideband signal support.  

Sideband API Function Description 
Called by Master  

bool 
MgetSError(void) 

Returns the value of SError. 

unsigned long long int 
MgetSFlag(void) 

Returns the value of SFlag. 

bool 
MgetSInterrupt(void) 

Returns the value of SInterrupt. 

void 
MputMError(bool nextValue) 

Set the value of MError.  
Triggers SidebandMasterEvent. 

void 
SputMFlag( 
    unsigned long long int nextValue) 

Set the value of MFlag.  
Triggers SidebandMasterEvent. 

Called by Slave  

bool 
SgetMError(void) 

Returns the value of MError. 

unsigned long long int 
SgetMFlag(void) 

Returns the value of MFlag. 

void 
SputSError(bool nextValue) 

Set the value of SError.  
Triggers SidebandSlaveEvent. 

void 
SputSFlag( 
    unsigned long long int nextValue) 

Set the value of SFlag.  
Triggers SidebandSlaveEvent. 

void 
SputSInterrupt(bool nextValue) 

Set the value of SInterrupt.  
Triggers SidebandSlaveEvent. 

Called by “System” side  

void 
SysputControl(unsigned int 
nextValue) 

Set the value of Control. 
Triggers the SidebandSystemEvent. 

bool 
SysgetControlBusy(void) 

Gets the value of ControlBusy. 

void 
SysputControlWr(bool nextValue) 

Set the value of ControlWr. 
Triggers the SidebandSystemEvent. 

unsigned int 
SysgetStatus(void) 

Gets the value of Status. 

bool 
SysgetStatusBusy(void) 

Gets the value of StatusBusy. 

void 
SysputStatusRd(bool nextValue) 

Set the value of StatusRd. 
Triggers the SidebandSystemEvent. 

Called by “Core” side  

unsigned int 
CgetControl(void) 

Gets the value of Control. 

void 
CputControlBusy(bool nextValue) 

Set the value of ControlBusy. 
Triggers the SidebandCoreEvent. 
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unsigned int 
CgetControlWr(void) 

Gets the value of ControlWr. 

void 
CputStatus(unsigned int nextValue) 

Set the value of Status. 
Triggers the SidebandCoreEvent. 

void 
CputStatusBusy( 
          unsigned int nextValue) 

Set the value of StatusBusy. 
Triggers the SidebandCoreEvent. 

bool 
CgetStatusRd(void) 

Gets the value of StatusRd. 
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12 OCP TL1 Timing 
Level-1 of the OCP TLM model is designed to allow cycle-accurate modelling of bus 
interfaces.  Any OCP traffic pattern that is possible in hardware should also be possible 
to model at TL1, without modifications to the design hierarchy or topology, and in a 
fully modular manner.  This means that the TL1 infrastructure needs to support, 
among other things: 

• Modules with internal combinatorial paths from one OCP signal to another 
within a single OCP interface 

• Modules with internal combinatorial paths from an OCP signal on one interface 
to OCP signals on another interface 

• Cascading of modules with OCP interfaces to an arbitrary degree 

• Modules that change the values of OCP signals at some time in the middle of a 
clock cycle rather than at the clock edges, for example scaled-synchronous clock 
bridges 

As OCP is a synchronous clocked protocol, to model it at a cycle-accurate level means 
that at very least the OCP master must understand the location of the clock cycles in 
time.  In fact it is usual that the OCP slave also needs an understanding of the OCP 
clock cycles, and when both master and slave have this information, it must be the 
same for both of them, otherwise the channel will not work correctly.  Furthermore, the 
channel may be clocked and there may be one or more monitors attached to the 
channel, and these also need to be correctly synchronized with the OCP master. 

The section below attempts to explain what is meant by synchronization in this context.  
This is followed by a section describing how the OCP-TL1 timing information 
distribution system can be used to support non-default cases. 

12.1 OCP TL1 Synchronisation 
In the OCP protocol time is divided into clock cycles.  Clock cycles are generally of a 
constant duration, the clock period, but this is not obligatory.  In hardware, each clock 
cycle begins with a rising edge of a single-wire clock signal.  The clock signal returns to 
zero some time during the cycle and the cycle ends when the following cycle begins, 
with the next rising edge. 

In SystemC it is usual to define clock cycles in the same way, using an sc_channel of 
type sc_signal<bool> or the convenient library module sc_clock.  SystemC allows many 
other ways of defining clock cycles and most ways are tolerated by the 
OCP_TL1_Channel.  However users are warned that exotic or unusual definitions of 
clock cycles will greatly reduce the chances of compatibility between modules. 

The OCP_TL1_Channel understands only one way to define OCP clock cycles, and that 
is by using an sc_clock or sc_signal<bool>.  If clock cycles are defined in any other way 
then the untimed version of the channel must be used instead of the timed version.  The 
untimed version of the channel has reduced functionality; for example it does not 
support the blocking calls or the ocpWait() call. 

There is a trace monitor available for the untimed channel.  This monitor needs to 
understand the definition of the OCP clock cycles.  It assumes that they have constant 
duration and start at the first delta cycle at time 0.  This is one delta cycle different 
from the normal implementation and use of sc_clock, where the clock cycles start at the 
second delta cycle at time 0, because one delta cycle is consumed in the sc_clock’s 
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internal process.  If the untimed trace monitor is used, then the OCP master and in 
most cases the OCP slave need to understand the clock cycles in the same way that it 
does.  That means they should not use sc_clock or sc_signal<bool> channels as an OCP 
clock.  Rather they should be implemented with SC_THREAD() proceses containing 
wait(OCP_CLOCK_PERIOD)-type statements or SC_METHOD() processes contaning 
next_trigger(OCP_CLOCK_PERIOD)-type statements.  On the other hand, a clocked OCP 
master/slave pair can use the untimed channel without trace monitor support. 

For every OCP_TL1_Channel in a simulation, there are several other modules associated 
with it: 

• Exactly one module with an OCP master port, the master 

• Exactly one module with an OCP slave port, the slave  (which is allowed to be 
the same module as the master) 

• Optionally one or more monitors 

The master and slave may contain processes that access the channel.  If so, these 
processes must be synchronized with each other, so that they understand the same 
clock cycle boundaries, down to delta-cycle-accuracy. 

If the channel or any monitor is clocked, it must be clocked with the same clock used in 
the master and slave for OCP clock cycle synchronisation. 

There are several cases where the modules do not need to understand the clock cycles.  
For example: 

• The channel has an untimed option, as discussed above 

• An OCP slave can be fully event-driven.  It can be implemented as a process 
which waits for the RequestStartEvent, then calls startOCPResponse() within the 
same clock cycle.  This corresponds to a zero-latency (combinatorial) hardware 
module.  Note that such a module is sensitive to the timing of the master and 
does not have default timing itself and as such it needs to use the timing 
information distribution system described below. 
In this case the master alone needs to understand the OCP clock cycle 
definition. 

• A simple combinatorial bridge, for example a bridge to cut INCR bursts’ lengths 
to some maximum value without introducing any latency, has both an OCP 
master port and an OCP slave port.  It can be implemented as a pair of 
processes sensitive to RequestStartEvent and ResponseStartEvent, which modify 
slightly the OCPRequestGrp and OCPResponseGrp and forward them from one 
port to the other in the same cycle.  Note that such a module is sensitive to the 
timing of the external OCP master and slave, and does not have default timing 
itself and as such it needs to use the timing information distribution system 
described below. 
In this case the external OCP master and possibly the external OCP slave need 
to understand the OCP clock cycle definition. 

All modules that do need to understand the clock cycle definition need to understand it 
identically.  Note that: 

• All accesses from master or slave to the channel that change the channel’s state 
do so with a delay of one delta cycle. 

• Hence, at the boundary between two clock cycles, there is a single instant where 
a master (or slave) can read the OCP signals from the past cycle and write the 
OCP signals for the future cycle. 
A process arrives at this instant, in the case of the clocked channel, by 
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executing a statement of the form wait(clock_port->posedge_event()) for an 
SC_THREAD or next_trigger(clock_port->posedge_event()) for an SC_METHOD.  
Obviously static sensitivity works as well. 

• This means that in many cases the master and slave modules can be 
implemented in a fully-synchronous style, having just a single process sensitive  
only to the clock’s rising edge. 

• Accesses to the channel at other times than at the instant between two clock 
cycles are fully within one clock cycle.  This is true even if the accesses are at 
the same time as the cycle boundary but a different delta.  At such times the 
master (or slave) can write the OCP signals only for the current cycle.  
Furthermore, it can reliably read the signals only from the current cycle.  It 
needs to find out from the channel the timing of the slave (or master) on the 
other side of the channel and ensure that it does not attempt to read until these 
signals are stable (meaning they will not be changed again in the clock cycle). 

12.2 Timing Information Distribution (OCP TL1) 
There are certain cases where TL1 models are unable to use only the clock period 
boundaries as their timing reference.  The underlying reason for this is that the TL1 
methodology recommended for OCP does not permit the retraction of either an OCP 
request or command accept, or the equivalents for data-handshake and response 
phases. 

These cases include: 

• thread-busy-exact OCP interfaces, where the OCP protocol obliges the master (for 
sthreadbusy_exact) to choose its request only after having seen the SThreadBusy 
signals from the slave. 

• a combinatorial request or response merger (arbiter), which needs to wait for a time 
long enough for all inputs to be stable before it chooses one of them.  In particular 
where combinatorial OCP modules are cascaded some inputs may arrive later than 
others. 

• the OCP TL1 channel after preemptive release has been set, which needs to wait 
sufficient time after a new request (or response/data-handshake) has been started, 
to allow the slave to de-assert the preemptive release. 

To allow simple management of such cases, a mechanism is provided in the OCP TL1 
channel which allows distribution of timing information at end-of-elaboration.  Only 
OCP modules that are either "timing-sensitive" or "non-default-timing" need to use this 
mechanism.  All other modules may ignore it completely. 

12.2.1 Timing-sensitive Modules 
A timing-sensitive module is a module which needs to know when inputs can safely be 
assumed to be stable, in order to work correctly.  A non-timing-sensitive module might 
sample all inputs at the end of the OCP clock cycle, as a counter-example. 

All OCP masters that are sthreadbusy-exact or sdatathreadbusy-exact are by definition 
timing-sensitive.  All OCP slaves that are mthreadbusy-exact are by definition timing-
sensitive. 

Timing-sensitive modules register themselves with the OCP TL1 channel during end-of-
elaboration.  They do this by calling one of the channel methods: 
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• registerTimingSensitiveOCPTL1Master(this); 

• registerTimingSensitiveOCPTL1Slave(this); 

depending on whether they are a master or a slave.  Here it is suggested that a pointer 
to the module itself be passed as parameter.  This would mean the module is derived 
from OCP_TL1_Slave_TimingIF (for an OCP master) or OCP_TL1_Master_TimingIF (for 
an OCP slave).  However this may be impractical in some cases, for example where a 
module has multiple OCP master ports.  The alternative is that the OCP module 
contains one or more member variables of classes derived from 
OCP_TL1_Master_TimingIF or OCP_TL1_Slave_TimingIF as appropriate.  Any class 
derived from OCP_TL1_Master_TimingIF is obliged to implement the method 
setOCPTL1MasterTiming() (and similar for the slave). 

Once the module is registered with the channel as timing-sensitive, the channel will 
inform it of the timing parameters of the module on the other side of the channel.  This 
may happen several times depending on the order of the end-of-elaboration calls in the 
SystemC simulation.  The implementation of the method setOCPTL1MasterTiming() or 
setOCPTL1SlaveTiming() must allow it to be called multiple times during end-of-
elaboration.  The first time it is called might be before the registerTimingSensitive..() 
method returns. 

If the other side of the OCP TL1 channel is a default-timing module, the channel will 
never call the callback. 

12.2.2 Non-default-timing Modules 
A non-default-timing module is a module whose outputs are not presented to the OCP 
TL1 channel immediately at the start of the OCP clock cycle.  If a clock signal is used to 
synchronise the OCP master and OCP slave, this means that default-timing modules 
call all channel methods in the delta cycle after the clock rising edge. 

Non-default timing modules must call the channel method setOCPTL1MasterTiming() or 
setOCPTL1SlaveTiming() (for masters and slaves respectively) during end-of-elaboration, 
providing their timing parameters. 

A non-default timing module may not know its timing parameters when its own end-of-
elaboration method is called.  This is the case for example for a combinatorial module 
passing OCP requests from a slave port to a master port (an address translation bridge 
for example).  A module like this is both timing-sensitive and non-default-timing.  It 
must register itself as timing-sensitive on its OCP slave port and send its timing 
information to its OCP master port.  It may occur that the module is provided several 
times with timing information from the OCP slave port, and every time that its 
setOCPTL1MasterTiming() method is called from the slave port channel, it should 
recalculate the timing parameters of its master port and call the 
setOCPTL1MasterTiming() method of the master port if they changed. 

To avoid infinite loops at end-of-elaboration it is important that a non-default-timing 
module only call setOCPTL1XyyTiming() when necessary.  It should not call this method 
if it has previously been called with the same parameters. 

12.2.3 Start Times 
Start times are sc_time variables.  They indicate when a signal/group is given to the 
OCP_TL1_Channel by the OCP master or slave.  The other side of the OCP interface can 
safely retrieve the signal/group from the OCP TL1 channel after waiting for the start-
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time and one delta cycle.  It is then sure that the signal will not change again this clock 
cycle. 

Start times give duration of simulated time after the start of an OCP clock cycle. 

It is assumed that the OCP master and OCP slave are exactly synchronised. 

• start_time = SC_ZERO_TIME 

This means that the signal/group is started immediately after the synchronisation 
event indicating the start of an OCP cycle.  The other side of the OCP interface can 
sample safely after one delta. 

• start_time > SC_ZERO_TIME 

This means that the signal/group is started after wait(start_time) after the 
synchronisation event indicating the start of an OCP cycle.  Or before.  It is not 
allowed that the signal/group be started some delta cycles after wait(start_time) (one 
delta = wait(SC_ZERO_TIME) ).  In this case the other side of the OCP interface must 
at least wait(start_time) AND wait(SC_ZERO_TIME)  before sampling. 

The most frequent example is a thread-busy-exact OCP.  In the simplest case the slave 
produces SThreadBusy directly after the start of cycle.  It has therefore default timing.  
The master must wait at least one delta before sampling SThreadBusy and starting an 
OCP request.  Therefore the OCP request start time is +1 delta.  This is impossible to 
represent as an sc_time, so the master must indicate a start-time strictly greater than 
0. 

It is recommended to use the function sc_get_time_resolution(), which returns an 
sc_time object, to create sample times as small as possible and as independent as 
possible from simulator configuration and clock frequency choices. 

12.2.4 OCP TL1 Timing Example 
In the distribution there is an example of how the TL1 timing distribution feature of the 
OCP TL1 channel can be used.  It is a simulation of a multi-threaded non-blocking 
shared bus with zero-cycle minimum round-trip latency.  In this design a 
request/response transfer can pass through up to 10 cascaded OCP_TL1_Channel() 
instances in the same clock cycle.  For more details look in the source code and the 
readme.txt file, in the directory examples/supplementary/ocp_tl1_timing. 
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