

A SystemC™
OCP Transaction Level
Communication Channel

V2.1.3 – September 10, 2006

Document version 2.2

Copyright © 2003, 2004, 2005, 2006 OCP-IP

This document contains material that is confidential to OCP-IP and its members and licensors. The user should assume that all materials
contained and/or referenced in this document are confidential and proprietary unless otherwise indicated or apparent from the nature of such
materials (for example, references to publicly available forms or documents). Disclosure or use of this document or any material contained
herein, other than as expressly permitted, is prohibited without the prior written consent of OCP-IP or such other party that may grant
permission to use its proprietary material.

The trademarks, logos, and service marks displayed in this document are the registered and unregistered trademarks of OCP-IP, its
members and its licensors.

The copyright and trademarks owned by OCP-IP, whether registered or unregistered, may not be used in connection with any product or
service that is not owned, approved or distributed by OCP-IP, and may not be used in any manner that is likely to cause customer confusion
or that disparages OCP-IP. Nothing contained in this document should be construed as granting by implication, estoppel, or otherwise, any
license or right to use any copyright without the express written consent of OCP-IP, its licensors or a third party owner of any such
trademark.

DISCLAIMER
This OCP-IP document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, noninfringement, fitness
for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample. OCP-IP disclaims all liability for
infringement of proprietary rights, relating to use of information in this document. No license, express or implied, by estoppel or otherwise, to
any intellectual property rights is granted herein.

OCP International Partnership (OCP-IP) disclaims all warranties and liability for the use of this document and the information contained
herein and assumes no responsibility for any errors that may appear in this document, nor does OCP-IP make a commitment to update the
information contained herein.

Contact the OCP-IP office to obtain the latest revision of this document.

Questions regarding this document or membership in OCP-IP may be forwarded to:

 OCP-IP
 www.ocpip.org
 E-mail: admin@ocpip.org
 Phone: +1 503-291-2560
 Fax: +1 503-297-1090
 OCP-IP Technical Support
 techsupport@ocpip.org

mailto:techsupport@ocpip.org

Revision History
Versio
n

Date Comment

1.0 1/15/03 Initial Generic Transaction Channel

1.0.1 3/31/03 First revision for OCP 1.0 channel

1.1 7/18/03 OCP 1.0 Sideband and layer adapters
included

2.0 11/26/0
3

Updated generic channel, and OCP
data class. Added new OCP 2.0
specific API on the generic channel.

2.0.1 2/15/04 Patched TL1 ports

2.0.2 5/17/04 Updated with pre-emptive accept
methods, clocked blocking methods,
made OCP monitor and protocol
checker optional, modified
constructors. TL2 Reset methods,
added the reset case for ‘return false’
conditions.

2.03 10/14/0
4

New performance OCP TL2 channel
model with timing points.

2.04 10/20/0
4

New chapter on differences between
TL1 and TL2 as well as the differences
between the two channel models.

2.1.0 2/9/05 Added OCP 2.1 support. New chapter
referring to OCP Performance
Monitor.

2.1.1 7/14/05 Removed Generic channel references.
Removed old TL2 channel. Cleaned
API descriptions. Added data type
section. Removed references to self-
timing. Added documentation of TL1
timing distribution. Added
documentation of TL1 Thread busy
event access

2.1.2 1/30/06 Removed OCP thread restriction from
TL2 blocking request. Modified
constructors. Added TL3 chapter.

2.1.3 9/10/06 Added monitor interfaces and
configuration from cores interfaces.

v

Table of Contents

1 Introduction 1
1.1 Overview of Transaction Channels...2
1.2 Directory structure and Class Hierachy...2
1.3 Datatypes..5

2 OCP TL1 Channel Model 6
2.1 OCP TL1 Channel Constructors ..6

2.1.1 OCP TL1 Channel Clock Wrapper ...7
2.1.2 OCP TL1 Channel Untimed Wrapper...7

2.2 Configuration of OCP TL1 Channel..8
2.2.1 Configuration from Cores..8
2.2.2 Configuration from Environment ..9
2.2.3 Parameter Map Format ...9
2.2.4 Building the Parameter Map from a File..9

2.3 OCP TL1 Enum Types and Template Classes...10
2.3.1 OCPMCmdType Enum ..10
2.3.2 OCPRespType Enum...10
2.3.3 OCPMBurstSeqType Enum ...11
2.3.4 OCPRequestGrp Template Class ...11
2.3.5 OCPResponseGrp Template Class ...12
2.3.6 OCPDataHSGrp Template Class..14
2.3.7 OCP_TL1_Master_TimingCl Class..15
2.3.8 OCP_TL1_Slave_TimingCl Class ..15

2.4 TL1 Master Interface Methods (ocp_tl1_master.if.h)16
2.4.1 Reset ..16
2.4.2 Request Phase ..17
2.4.3 Response Phase ..18
2.4.4 Data Handshake...20
2.4.5 Timing Distribution Methods ..22
2.4.6 OCP Configuration Management Methods.......................................22

2.5 OCP TL1 Slave Interface Methods (ocp_tl1_slave_if.h)23
2.5.1 Reset ..24
2.5.2 Request Phase ..24
2.5.3 Response Phase ..26
2.5.4 Data Handshake...28
2.5.5 Timing Distribution Methods ..29
2.5.6 OCP Configuration Management Methods.......................................30

2.6 OCP TL1 Timing Interface Classes...31

2.7 OCP TL1 Configuration Management Classes ..31
2.8 OCP TL1 Monitor Interface ..32

3 Overview of the OCP TL2 34
3.1 OCP TL1 vs OCP TL2...34

3.1.1 Event Driven Models...34
3.1.2 No Separate Data Handshake ...34
3.1.3 Simpler Phase Timing ...35
3.1.4 Burst at Once ...35
3.1.5 Passing Pointers ...35

3.2 Using the OCP TL2 Channel..36
3.2.1 Timing ..36
3.2.2 Events ..36
3.2.3 OCP Burst Signals ..37
3.2.4 DataLength...37
3.2.5 LastOfBurst ..37
3.2.6 MBurstSeq..38
3.2.7 MBurstPrecise & MBurstLength..38
3.2.8 MBurstSingleReq ..38
3.2.9 MAtomicLength...38
3.2.10 MReqLast..39
3.2.11 SRespLast...39

3.3 Benchmarking the Channels ...39
3.3.1 Overview of the Benchmark Tests ...39
3.3.2 Single Data Word Writes and Reads..39
3.3.3 Burst Writes and Reads ..40

4 OCP TL2 Channel Model 42
4.1 Data Structures for the OCP TL2 Channel...42

4.1.1 OCPTL2RequestGrp Template Class ...42
4.1.2 OCPTL2ResponseGrp Template Class ...44
4.1.3 Timing Values...45

4.2 Building the OCP TL2 Channel..47
4.2.1 Constructor ..47
4.2.2 Configuring the Channel Clock Period ..47
4.2.3 Setting the Parameters ...47

4.3 OCP TL2 Master Interface Methods (ocp_tl2_master_if.h).........................47
4.4 OCP TL2 Slave Interface Methods (ocp_tl2_slave_h)49
4.5 OCP TL2 Channel Events ..51
4.6 Reset...52
4.7 Timing Model for the OCP TL2 Channel...53

4.7.1 Time in the OCP TL2 Channel...53

vii

4.7.2 Timing for Different Burst Types ...53
4.7.3 A Guide to the Timing Figures ..54
4.7.4 Write Requests ...56
4.7.5 OCP Posted Write Burst Timing ..58
4.7.6 Read Requests ..61
4.7.7 OCP Read Burst Timing..63
4.7.8 Non-Posted Writes ..65
4.7.9 Non-Posted Write Timing ..68
4.7.10 OCP TL2 Timing Variables ..68
4.7.11 OCP TL2 Timing Functions ...69

4.8 OCP TL2 Channel Monitor Interface ..69

5 OCP TL3 Channel Model 73
5.1 OCP TL3 Communication API..73
5.2 Mapping TL3 onto OSCI TLM ..74
5.3 TL3 Timing..77
5.3.1 Scalable Accuracy ..80
5.4 TL3 Channel Monitor Interface ..81

6 Example Using OCP TL1 Channel and API 84
6.1 Configuring the OCP TL1 Simulation...84

6.1.1 Configurable Master and Slave ...84
6.1.2 Building a Custom Configurable Core ...85

6.2 A Configurable Master Model...85
6.2.1 Header File ...86
6.2.2 Constructor ..90
6.2.3 The end_of_elaboration() Method...91
6.2.4 SystemC Request Thread Process ...94
6.2.5 SystemC Response Thread Process ...98
6.2.6 SystemC Sideband Process ...100
6.2.7 Template Instantiation..101

6.3 A Configurable Slave Model ...101
6.3.1 Header File ...102
6.3.2 Constructor ..106
6.3.3 Destructor ..107
6.3.4 The end_of_elaboration() Method...107

6.4 SystemC Request Thread Process..111
6.4.1 SystemC Response Thread Process ...113
6.4.2 The Sideband Thread Process ...116
6.4.3 Template Instantiation..117

6.5 The Main Program...118

7 Examples Using OCP TL2 Channel and API 122
7.1 Example # 1 ..122

7.1.1 Master Sequence ..122
7.1.2 Slave sequence ...123

7.2 Example #2 ...123
7.2.1 Slave Description..123
7.2.2 Master Description ...123

8 Debugging Your Model Using SOCCREATOR® Tools 125

9 Debugging Your Model Using OCP Performance Monitor 126

10 Sideband Signals (OCP TL1) 127
10.1 MError Signal..127
10.2 MFlag Signal ...127
10.3 SError Signal ..128
10.4 SFlag Signal ..128
10.5 SInterrupt Signal...129
10.6 Control Signal ...130
10.7 ControlWr Signal...130
10.8 ControlBusy Signal ...131
10.9 Status Signal...131
10.10 StatusRd Signal ..132
10.11 StatusBusy Signal...132

11 Sideband signals (OCP TL2) 134

12 OCP TL1 Timing 136
12.1 OCP TL1 Synchronisation ...136
12.2 Timing Information Distribution (OCP TL1) ...138

12.2.1 Timing-sensitive Modules..138
12.2.2 Non-default-timing Modules..139
12.2.3 Start Times...139
12.2.4 OCP TL1 Timing Example ...140

1

1 Introduction
This document describes the SystemC channel model for Open Core Protocol (OCP) .
This model is meant for system simulation of cores that use the OCP to connect to one
another. A System on a Chip (SOC) with processors, memory, an interconnect, and I/O
devices could use OCP channels to handle the connections from core to core as well as
between the cores and the interconnect(s).

The OCP channel models were designed with the goals of OCP correctness and ease of
use. These models are useful for cores that require a model of the OCP that is close to
cycle accurate. As a group, the OCP API commands are powerful and mask some of the
complexity of the channel. The earlier versions (upto 2.1.0) of these models were based
on a generic channel model. As Open SystemC Initiative (OSCI) has released a generic
TLM package, which can be used for creating models of arbitrary interface protocols, we
do not see a need for an OCP-provided generic channel, and generic transaction API.

This document covers Transaction Level One (TL1), Transaction Level Two (TL2) and
Transaction Level Tree (TL3). The communication abstraction levels are categorized
according to those introduced in the white paper “SystemC™ based SoC
Communication Modeling for the OCP™ Protocol.” (You can obtain a copy of this paper
at www.ocpip.org.) The abstraction levels of the models described in this document are
as follows:

Transaction Level

Layer-3: Generic Transactions

Model approximately-timed functionality

Bus-protocol-agnostic SoC architecture

Layer-2: OCP Transactions

Model approximately-timed functionality

SoC architecture with details of OCP configurations

Layer-1: OCP Transfers

Cycle true but faster than RTL

Layer-0: Signals and signal groups

Register Transfer Level

“TLx” and Layer-x are used for Transaction Level, Layer-x interchangeably. For example,
the acronym “TL1” stands for Transaction Level One.

OCP TL2 Channel 2

SystemC is a C++ modeling environment designed for both cycle based and higher level
modeling of systems. This document assumes a basic understanding of the SystemC
language. For more information on SystemC, go to www.systemc.org.

The OCP is a non-proprietary, openly licensed, core-centric protocol for on-chip
communications. To use the OCP channel model correctly, the user would be well
served to have a solid understanding of the OCP protocol. The protocol is described in
the Open Protocol Specification manual, which is available at: www.ocpip.org. The
chapters on “Overview,” “Theory of Operation,” “Signals and Encoding,” and “Protocol
Semantics” are essential for understanding the OCP protocol and for using the OCP
channel model.

1.1 Overview of Transaction Channels

The OCP channel models are built specifically to implement the OCP. The channels are
OCP correct and follow the definitions in the OCP standard. In addition, the OCP
models were tailored to be easy for the core writer to use while still maintaining full
OCP functionality.

Each different channel interface is meant to be a stand-alone set of commands for
implementing that particular channel model. Commands should not be mixed from
multiple APIs. For example, a core that uses the OCP-specific TL1 API should only use
commands from that API.

1.2 Directory structure and Class Hierachy
The OCP TL1 channel is a SystemC module (sc_module) that uses “request/update”
methods for delta cycle delayed updates of the channel state. Figure 1 shows the
principal features of the internal class hierarchy for the channel. The TL_Channel
contains a pointer to the type of data that moves through the channel. In this case, the
data is in the Open Core Protocol (OCP) Transaction Layer One (TL1) format.

3

Figure 1 OCP TL1 Channel Class Hierarchy

TL_Channel
<OCP_TL1_DataCl>

sc_module

Virtual
sc_interface

UpdateCl

sc_prim_channel

ParamCl CommClOCP_TL1_DataCl
<DataType, AddrType>

"ReqEnd"
Method
Process

"ResEnd"
Method
Process

"Update" Method
Process

OCP_TL1_Channel

OCP_TL1_SlaveIF OCP_TL1_MasterIF

The OCP TL1 channel is derived from the TL_Channel class. The OCP_TL1_Channel
class implements the OCP API commands that process requests, responses, and data
handshakes. In addition, the OCP TL1 channel is built to ensure that the timing and
the behavior of the channel is OCP-correct. Other commands in the OCP_TL1_Channel
provide direct access to the events in the channel (CommCl) as well as the commands of
the OCP TL1 Data Class.

The interfaces OCP_TL1_SlaveIF and OCP_TL1_MasterIF provide port access to all of
the OCP API commands. There are also OCP ports for the master and slave to provide
OCP specific event finders so that methods in the user’s SystemC core model may be
statically sensitive events in the channel.

OCP TL2 Channel 4

Figure 2 OCP TL2 Channel Class Hierarchy

OCP_TL2_Channel

sc_module

Virtual
sc_interface

ParamCl

"Release
Request"
Method
Process

"Release
Response"

Method
Process

OCP_TL2_SlaveIF OCP_TL2_MasterIF

The performance oriented OCP TL2 channel is not layered upon the TL_Channel class.
For more information on the TL2 channel, please see the OCP TL2 chapter.

The OCP TL3 channel is built on OSCI TLM package, which is delivered with OCP code.

Figure 3 illustrates the installed directory structure for the OCP SystemC channel
models.

Figure 3 OCP Channel Directory Tree

tl_channel.h
tl_comm_cl.h
ocp_globals.h
ocp_tl_param_cl.h
ocp_tlx_channel_cl.h
ocp_tlx_data_cl.h
ocp_tlx_master.h
ocp_tl1_ocpmongen_cl.h
ocp_tlx_slave_if.h

tl_sc/

examples/ ocp_tl1/

ocp_tl2/

supplementary/

include/

ocp_tl3/

5

1.3 Datatypes
The OCP transaction channels use C++ templates to set datatypes for OCP address and
data fields. The templating allows different bus widths to be supported in an efficient
way but it does introduce a risk of incompatibility between models. The same template
parameters must be used for the OCP master port and OCP slave port if they are to be
bound to the same OCP channel.

The following choices of template parameters are recommended. C++ and SystemC
implementations in some cases offer alternative ‘type names’ for these and there is no
problem using a data type which is compatible with one listed in this table, where
‘compatible’ means that the compiler considers them the same:

OCP addr_wdth or data_wdth C++/SystemC types
recommended for templates

0 < wdth ≤ 32 unsigned int
uint32_t
other compatible types

32 < wdth ≤ 64 unsigned long long
uint64
uint64_t
other compatible types

64 < wdth ≤ 128 sc_biguint<128>
no other options

128 < wdth ≤ 256 sc_biguint<256>
no other options

2N-1 < wdth ≤ 2N sc_biguint< 2N >
no other options

Use of other non-compatible datatypes is strongly discouraged, including SystemC
datatypes with non-power-of-2 widths, for example sc_biguint<192> or similar. Use of
types more precise than specified in the above table, for example uint64 for a 32-bit
address bus, may sometimes be difficult to avoid, but users are warned that this may
lead to compatibility problems.

OCP TL2 Channel 6

2 OCP TL1 Channel Model
The OCP TL1 channel implements OCP TL1 API commands for sending and accepting
OCP requests, data, and responses.

2.1 OCP TL1 Channel Constructors
There are four constructors available. The main difference is whether the instantiated
channel is using an external clock or not. If the master and slave use only non-
blocking methods, no timing is required in the channel, and the default constructor can
be used. This is the fastest configuration of the channel. The master and slave use a
clock and channel events to simulate progression of time, but the channel itself does
not know of the time.

The other timing mode, clocked channel, can be used with blocking methods. (The
older releases of the OCP channel had also self-timed mode, which is not compatible
with clocked mode.)

The constructors in this release are greatly simplified from earlier versions, and not
always compatible with old models. This is unavoidable as the self-timed mode is not
included anymore. Masters and slaves that use blocking methods should still work, but
there are small differences in cycle to cycle behavior, so self-timed systems should be
converted to clocked with great care. This is anyway a smaller price to pay than
supporting two incompatible timing modes. The timing of any TL1 models is
interoperable by construction when all models are clocked.

The version 2.1.1 clocked constructor with monitor file name has been deprecated,
because the monitors are now implemented completely outside the channel.

Default Constructor
The default constructor can configure non-timed channels. Normally, this constructor
would need only name as a parameter, the other parameters can be left as defaults.

OCP_TL1_Channel(std::string name,
 bool use_event = true,
 bool use_default_event = true
)

name
specifies the name of the module (channel) instance.

use_event
specifies whether the channel’s events for the synchronization of Mput*() and
Sget*() methods as well as Sput*() and Mget*() methods are triggered
(use_event = true) or not (use_event = false). Always set use_event to true.
This parameter may be used in future for simulation speed optimization.

use_default_event
specifies whether the channel should trigger the default event. The channel may be
faster if no default event is triggered. use_default_event can be false if none of
the attached modules are sensitive to port events. This speeds up the simulation a
little.

7

Simple Clocked Constructor
OCP_TL1_Channel(std::string name,
 <clock_object> * clk)

name
specifies the name of the module (channel) instance.

<clock_object> ::= “sc_in_clk” | “sc_clock” | “sc_signal<bool>”
A pointer to the object giving clock events.

The OCP TL1 channel provides a number of constructors with different parameter
combinations. The use models of these options are not clear and most of the
constructors are anyway deprecated. To clarify the intended use-case of the officially
supported constructors, two wrapper classes for the TL1 channel have been added.

A corresponding trace monitor is provided for each wrapper class. These trace monitors
generate CoreCreator-compliant trace files for the OCP traffic.

2.1.1 OCP TL1 Channel Clock Wrapper
The OCP TL1 channel gets the clock through a constructor pointer-argument. This
makes is easier to instantiate the same channel class for clocked and non-clocked
applications, since no sc_port-members are needed in the channel. Unfortunately, it
also makes the use of the TL1 channel more difficult with EDA tools, which depend on
sc_port in binding. To alleviate this situation, a wrapper class with a clock port is
provided for the TL1 channel. This class is called OCP_TL1_Channel_Clocked, and it
inherits the OCP_TL1_Channel.

The version 2.1.1 constructor with monitor file name has been deprecated, because the
monitors are now implemented completely outside the channel.

The clock wrapper has one constructor:

OCP_TL1_Channel_Clocked(sc_module_name name)

name
specifies the name of the module (channel) instance. (Notice that the type of this
parameter is sc_module_name, as appropriate.)

The clock port is defined as:

sc_in<bool> p_clk;

In addition, the clock wrapper channel overloads the setConfiguration-method (see
section 2.2) with a new method that reads the OCP configuration from a file:

void setConfiguration(std::string configFileName)

2.1.2 OCP TL1 Channel Untimed Wrapper
The purpose of the untimed channel is to represent a simple interface for channels
which are not attached to a clock. This class is called OCP_TL1_Channel_Untimed, and
inherits the OCP_TL1_Channel. Modules attached to an untimed channel are not
allowed to call the ocpWait() method.

OCP TL2 Channel 8

The version 2.1.1 constructor with monitor file name has been deprecated because the
monitors are now implemented completely outside the channel.

The untimed wrapper has one constructor:

OCP_TL1_Channel_Untimed(std::string name)

name
specifies the name of the module (channel) instance.

In addition, the untimed wrapper channel overloads the setConfiguration method (see
section 2.2) with a new method that reads the OCP configuration from a file:

Void setConfiguration(std::string configFileName)

2.2 Configuration of OCP TL1 Channel
The OCP TL1 can be configured using the standard OCP configuration parameters.
These describe aspects of the OCP interface such as bus widths, flow control options
and transactions supported. For the complete list of parameters and their meanings,
refer to the Open Core Protocol Specification document. The parameters of the OCP
channel have the exact same names and function as the parameters in that document.
Some of these parameters affect the behaviour of the OCP channel, such as the
parameters respaccept and sthreadbusyexact. Others do not, although they might
affect the behaviour of an attached monitor. All parameters are stored in the channel
and can be accessed from the master, the slave, and any other C++ object which has a
reference to the OCP channel.

If the channel is configured, this must happen during the elaboration phase of the
SystemC simulation or at end-of-elaboration. If the channel is not configured then a
default configuration is adopted, which is basically the set of defaults for the OCP
parameters as specified in the Open Core Protocol Specification. The default
configuration is not normally useful.

Internally the OCP TL1 channel stores the parameters in an object of the class ParamCl
which is derived from the class OCPParameters. The OCP parameters are public data
members of the OCPParameters class and hence of the ParamCl class.

2.2.1 Configuration from Cores
The channel can be configured by the master and slave modules bound to it. This
happens at end-of-elaboration. If both the master and slve configure the channel, the
channel analyses the two configurations and determines:

• If they are compatible, according to the compatibility rules from Open Core Protocol
Specification.

• The single OCP configuration resulting from their combination
Note that this functionality may not be complete in release 2.1.3. The constraints on
master/slave compatibility may be tighter than absolutely necessary.

If only one of the master and slave configures the channel, then the other may register
itself in the channel as a configuration listener. The channel will then inform it when
any changes to the configuration are made.

If the master or the slave tries simply to read the configuration from the channel at end-
of-elaboration, there is a risk that the configuration will subsequently change.
Therefore the method getParamCl() should not be used until after the simulation has

9

started, unless the user is certain that the channel configuration is done from the
environment before end-of-elaboration.

2.2.2 Configuration from Environment
The channel may be configured directly from the environment. Such a configuration is
ignored if the channel is configured also by either the OCP master or the OCP slave.

If the channel is configured from the environment, both the masters and the slave may
register as configuration listeners.

2.2.3 Parameter Map Format
The channel may be configured using a MAP object that contains all of the parameter
settings, for example:

setOCPMasterConfiguration(map<string,string>& parameterMap);

The MAP object is a C++ Standard Template Library (STL) object that is an associative
array. In this case, the MAP is string-to-string with the key string being the name of the
parameter and the value string being the parameter value. This parameter MAP may be
automatically generated by a configuration tool. It may be hand coded in the source
code for the master or slave, or in the main.cc program, or it may be built by reading in
parameter data from a file.

Each entry in the parameter map is a pair of strings. The left side (the key side) of the
pair is the parameter name. The right side (the value side) is the parameter value. The
parameter name is a string, and it must exactly match the OCP standard parameter
name. For example, “cmdaccept” is the OCP parameter to indicate that the
SCmdAccept signal is part of the OCP channel. You must be careful in the use of case
or nonstandard spellings (such as “CMDAccept” or “SCommandAccept”), which will not
give you the desired result.

The value side of the parameter map has the following format:

 type_char:value

Where type_char is a single character is one of the following:

“i” specifies an integer or Boolean

“f” specifies a floating point value

“s” specifies a string.

Note that a colon (:) is required, and the value is the value of the parameter. Also, the
value should not contain any spaces. For example:

“i:1” An integer value 1 or the Boolean value TRUE.

“f:3.14159” The floating point value for PI.

“s:little” The string value “little.”

For a usage example see section 6.1.

2.2.4 Building the Parameter Map from a File
The channel may also be configured by using a text file. Additionally this can be useful
because the file name may be passed to the main program that builds the simulation.

OCP TL2 Channel 10

Also, the file name may be changed on the command line so the parameters are
changed without having to recompile the model.

In the example below, the parameters are in a file as lines of pairs of space separated
strings:

cmdaccept i:1
addr_wdth i:40
endian s:both

The user’s code then reads the strings from the file and stores them into an STL map.
The map is then passed to the channel’s setConfiguration function.

2.3 OCP TL1 Enum Types and Template Classes
The OCP TL1 API commands pass requests, responses and data handshakes through
as single structures. This section describes those structures (actually template classes)
as well as the Enum types used by elements of those structures.

2.3.1 OCPMCmdType Enum
The OCPMCmdType enumerator defines the master command names. The enumerator
values are listed in Table 1. This Enum type is defined as Enum OCPMCmdType

Table 1 OCPMCmdType Enum Labels and Values

Label Value Description
OCP_MCMD_IDLE 0 Idle command

OCP_MCMD_WR 1 Write command

OCP_MCMD_RD 2 Read command

OCP_MCMD_RDEX 3 Exclusive read command

OCP_MCMD_RDL 4 Read linked command

OCP_MCMD_WRNP 5 Non-posted write command

OCP_MCMD_WRC 6 Write conditional command

OCP_MCMD_BCST 7 Broadcast command

2.3.2 OCPRespType Enum
The OCPSRESPType enumerator defines the slave response names. The enumerator
values are listed in Table 2. This Enum type is defined as Enum OCPSRESPType.

Table 2 OCPRespType Enum Labels and Values

Label Value Description
OCP_SRESP_NULL 0 Null response

OCP_SRESP_DVA 1 Data valid/accept response

OCP_SRESP_FAIL 2 Request failed

OCP_SRESP_ERR 3 Error response

11

2.3.3 OCPMBurstSeqType Enum
The OCPMBurstSeqType enumerator defines the OCP master burst sequence types. The
enumerator values are listed in Table 3. This Enum type is defined as Enum
OCPMBurstSeqType

Table 3 OCPMBurstSeqType Enum Labels and Values

Label Value Description
OCP_MBURSTSEQ_INCR 0 Incrementing

OCP_MBURSTSEQ_DFLT1 1 Custom (packed)

OCP_MBURSTSEQ_WRAP 2 Wrapping

OCP_MBURSTSEQ_DFLT2 3 Custom (not packed)

OCP_MBURSTSEQ_XOR 4 Exclusive OR

OCP_MBURSTSEQ_STRM 5 Streaming

OCP_MBURSTSEQ_UNKN 6 Unknown

OCP_MBURSTSEQ_RESERVED 7 Reserved

2.3.4 OCPRequestGrp Template Class
The OCPRequestGrp class is used for sending and receiving requests. All the signals
that make up the request group are to be found here. This template class is defined as

Template<class Td, class Ta>
class OCPRequestGrp

2.3.4.1 Data Type and Address Type
The class template parameters Td and Ta indicate the data type and address type of the
MData and MAddr signals, respectively. By making this a template, any sized data or
address width may be supported.

2.3.4.2 Members
Some configurations of the OCP will not use all the members in the class. In that case,
the unused members are invalid and should not be referenced or used. Table 4 lists the
member names and their data types for OCPRequestGrp.

Table 4 OCPRequestGrp Member Types

Name Data Type Description
MCmd OCPMCmdType Master command

MAddr AddrType Master address

MAddrSpace unsigned int Master address space

MData DataType Master data, when no data
handshake

MDataInfo Unsigned int Extra information sent with the write
data

MByteEn unsigned int Master byte enable

MThreadID unsigned int Master thread identifier

OCP TL2 Channel 12

Name Data Type Description
MConnId unsigned int Master connection identifier

MTagID unsigned int Master tag identifier (See OCP 2.1
specification)

MTagInOrder bool Force tag-in-order (See OCP 2.1
specification)

MReqInfo unsigned int Extra information sent with the
response.

MAtomicLength unsigned int Length of atomic burst

MBurstLength unsigned int Burst length

MBurstPrecise bool Given burst length is precise

MBurstSeq OCPMBurstSeqType Address sequence of burst

MBurstSingleReq bool Burst uses single request/multiple data
protocol

MRefLast bool Last response in burst

2.3.4.3 Constructor
OCPRequestGroup(bool has_mdata = true)

OCPRequestGroup(const OCPRequestGrp& src)

The first form constructs a default OCPRequestGrp object and uses the has_mdata
parameter to indicate whether or not there is a data handshake. The value for
has_mdata should be true for channels without data handshaking where all data is
transmitted with the request. It should be false for write requests when data
handshaking is enabled because the data will come through the data handshake, not
the request.

The second form is the copy constructor, which copies the src into a new
OCPRequestGroup object.

2.3.4.4 Assignment Operator (=)
OCPRequestGroup& operator=(const OCPRequestGroup& rhs)

The assignment operator assigns one OCPRequestGroup object to another.

2.3.4.5 copy
void copy(const OCPRequestGrp& src)

Copies one OCPRequestGrp object to another.

2.3.5 OCPResponseGrp Template Class
The OCPResponseGrp class is used to send and receive responses with the OCP TL1
channel. All of the signals that make up the response group are to be found in this
class. This template class is defined as

13

 Template<class Td>
 OCPResponseGrp

2.3.5.1 Data Type
The class template parameter Td indicates the data type of the SData signal. This allows
the response to contain any width of data. Note that the type of the response data must
match the type of request and data handshake data.

2.3.5.2 Members
Some configurations of the OCP will not use all of the members in the class. This
corresponds to the fact that some OCP implementations do not use all of the OCP
signals. In that case, the unused members are invalid and should not be referenced or
used. Table 5 lists the names and their data types of OCPResponseGrp.

Table 5 OCPResponseGrp Member Types

Name Type Description
SResp OCPSRespType Slave response

SData DataType Data returned by slave

SThreadID unsigned int Slave thread identifier

STagID unsigned int Slave tag identifier (See OCP 2.1
specification)

STagInOrder bool Force tag-in-order (See OCP 2.1
specification)

SdataInfo unsigned int Extra information sent with the
response data.

SrespInfo unsigned int Extra information sent out with the
response.

SrespLast bool Last response in burst

2.3.5.3 Constructor
OCPResponseGrp(void)

OCPResponseGrp(const OCPResponseGrp& src)

The first form constructs a default OCPResponseGrp object. The second form is the
copy constructor which copies the src into a new OCPResponseGrp object.

2.3.5.4 Assignment Operator (=)
OCPResponseGrp& operator=(const OCPResponseGrp& rhs)

The assignment operator assigns one OCPResponseGrp object to another.

2.3.5.5 copy
void copy(const OCPResponseGrp& src)

OCP TL2 Channel 14

Copies one OCPResponseGrp object to another.

2.3.6 OCPDataHSGrp Template Class
The OCPDataHsGrp class is a structure used to send and receive data handshake data.
All of the OCP signals that make up the data group are to be found in this class. This
template class is defined as

 Template<class Td>
 Class OCPDataHSGrp

2.3.6.1 Data Type
The class template parameter Td indicates the data type of the Mdata signal. For
instance, it can be int or uint64 to represent a data width of up to 32 bits and 64 bits,
respectively. Note that the data type used for the DataHSGrp should match the data
type used for the request and response group.

2.3.6.2 Members
Some configurations of the OCP will not use all of the members in the class. This is due
to the fact that not every OCP configuration uses all of the OCP signals. In that case,
the unused fields are invalid and should not be referenced or used. Table 6 lists the
member names and their data types of OCPDataHSgrp.

Table 6 OCPDataHSGrp Member Types

Name Type Description
Mdata DataType The master data being sent to the slave

MdataThreadID unsigned int The thread identifier for the write data

MDataTagID unsigned int Data tag identifier (See OCP 2.1
specification)

MDataByteEn unsigned int The data byte enable field

MDataInfo unsigned int The data info field.

MDataLast bool Is this the last data transfer in a burst?

MDataValid bool Synchronization bit. True when the master
places the data onto the channel. False
after the slave has accepted the data.

2.3.6.3 Constructor
OCPDataHSGrp(void)

OCPDataHSGrp(const OCPDataHSGrp& src)

The first form constructs a default (empty) data handshake structure. The second form
copies the passed datahandshake data into the new object.

2.3.6.4 Assignment Operator (=)
OCPDataHSGrp& operator=(const OCPDataHSGrp& rhs)

15

The assignment operator assigns one OCPDataHSGrp object to another.

2.3.6.5 copy
 void copy(const OCPDataHsGrp& src)

Copies one OCPDataHSGrp object to another.

2.3.7 OCP_TL1_Master_TimingCl Class
This class contains a set of sc_time members, which store information about the timing
characteristics of an OCP TL1 master.

2.3.7.1 Members

Table 7 OCP_TL1_Master_TimingCl Member Types

Name Type Description
RequestGrpStartTime sc_time Time after cycle start when

startOCPRequest() is called

DataHSGrpStartTime sc_time Time after cycle start when
startOCPDataHS() is called

MThreadBusyStartTime sc_time Time after cycle start when
putMThreadBusy() is called

MRespAcceptStartTime sc_time Time after cycle start when
putMRespAccept(bool x) is called

2.3.7.2 Equality Operator ==
The operator “==” is available for 2 objects of the class OCP_TL1_Master_TimingCl.

2.3.8 OCP_TL1_Slave_TimingCl Class
This class contains a set of sc_time members, which store information about the timing
characteristics of an OCP TL1 slave.

2.3.8.1 Members

Table 8 OCP_TL1_Slave_TimingCl Member Types

Name Type Description
ResponseGrpStartTime sc_time Time after cycle start when

startOCPResponse() is called

SThreadBusyStartTime sc_time Time after cycle start when
putSThreadBusy() is called

SDataThreadBusyStartTime sc_time Time after cycle start when
putSDataThreadBusy() is called

SCmdAcceptStartTime sc_time Time after cycle start when
putSCmdAccept(bool x) is called

SDataAcceptStartTime sc_time Time after cycle start when

OCP TL2 Channel 16

putSDataAccept(bool x) is called

2.3.8.2 Equality Operator ==
The operator “==” is available for 2 objects of the class OCP_TL1_Slave_TimingCl.

2.4 TL1 Master Interface Methods (ocp_tl1_master.if.h)
The methods described in this section handle the OCP TL1 master’s transaction request
phase, response phase, and data handshake. There are also methods for OCP
configuration management and cycle-accurate timing information distribution.

All methods return immediately if the channel is in reset state. The non-void methods
return false if called during reset. It is advisable to make sure that the threads trusting
blocking methods for sequencing call a wait if a blocking method returns false, to avoid
infinite loops.

2.4.1 Reset
This section describes the methods for the master’s reset phase.

bool getReset()

Purpose: Check if channel is in reset state.

Return: Returns true if the channel is in reset, false otherwise.

Events: No event.

void MResetAssert()

Purpose: Puts channel in reset state. Resets all channel state variables, and calls
data class reset. All in-band methods will return immediately with false
return value while reset is active. All blocking methods are released, and
return with false.

Events: All start and end events fire (to release all waits in the system).

void MResetDeassert()

Purpose: Removes reset state from the channel.

Events: ResetEndEvent.

sc_event& ResetStartEvent()

Purpose: This event is triggered when channel reset starts.

Return: Reset start event.

sc_event& ResetEndEvent()

Purpose: This event is triggered when channel reset ends.

17

Return: Reset end event.

2.4.2 Request Phase
This section describes the methods for the master’s TL1 request phase.

bool getSBusy()const

Purpose: Used to check whether a new request can be placed on the channel.

Return: Returns true if the channel is not free for a new request. This function
does not check the threadbusy signal (if any). See also
getSThreadBusy().

Events: No event.

bool startOCPRequest(
 const OCPRequestGrp<Td,Ta>& newRequest)

Purpose: Places the passed request onto the channel.

Return: Returns false if there is already a request on the channel which has not
yet been accepted by the slave, or if the OCP is a configured as
sthreadbusy-exact and the OCP thread is busy, or if the channel is in
reset.

Events: RequestStartEvent. RequestEndEvent, if the putSCmdAccept(1) has been
called before, or if the SCmdAccept is not part of the channel. No event if
return value is false.

Notice: Behavior changed from release 2.1.

bool startOCPRequestBlocking(
 const OCPRequestGrp<Td,Ta>& newRequest)

Purpose: Repeat - try request - Wait for a rising clock edge - until successful.

startOCPRequestBlocking() returns once the request has started but
before the slave has accepted the request.

Notice: Not to be used for modeling OCP interfaces with multiple threads.
Use non-blocking instead. Not to be called from multiple SC_TREADs.

Return: Returns an immediate false if the channel is not clocked. Returns false
after a clock if the channel is in reset state. Reset is synchronous.

Events: RequestStartEvent. RequestEndEvent, if the putSCmdAccept(1) has been
called before, or if the SCmdAccept is not part of the channel. No event if
return value is false.

bool getSCmdAccept() const

Purpose: Get state of SCmdAccept.

Note
Despite the name, this behaves like an RTL version of SCmdAccept signal only after
a request is put into the channel, and only at rising clock edge, that is only when
SCmdAccept is not don’t-care according to OCP standard.

OCP TL2 Channel 18

Return: Returns always true if parameter cmdaccept is 0, and !getSBusy()
otherwise.

Event: None.

unsigned int getSThreadBusy() const

Purpose: Returns the current value of the SThreadBusy signal in the channel.

Return: The unsigned int returned contains the SThreadBusy signals for each
of the threads in the channel. If a bit position is “1” then that thread is
busy.

Event: GetDataCl()->m_SThreadBusy.event

sc_event& SThreadBusyEvent() const

Purpose: This event is triggered when the slave changes the value of the
SThreadBusy signal.

Return: The event associated with a change in SThreadBusy’s value

sc_event& RequestStartEvent()

Purpose: This event is triggered when a new request has been placed on the
channel. A slave could wait this event so that it would restart when a
new request was available.

Return: RequestStartEvent.

sc_event& RequestEndEvent()

Purpose: This event is triggered when the request is accepted.

Return: RequestEndEvent.

void waitSCmdAccept(void)

Purpose: If there is a current request on the channel, waitSCmdAccept() waits
until the request has been accepted by the slave. This method returns
immediately if there is no request on the channel or if that request has
already been accepted. Note that if SCmdAccept is not part of the
channel, this command will wait until request is automatically accepted
by the channel (one delta cycle after the request is submitted.)

Return: None.

Event: None.

2.4.3 Response Phase
This section describes the methods for the master’s TL1 response phase.

bool getOCPResponse(OCPResponseGrp<Td>& myResponse,
 bool acceptResponse = false)

19

Purpose: If there is an unread response available on the channel, the response is
read and returned as myResponse. If acceptResponse is true,
putMRespAccept() is called. Note that if MRespAccept is not part of the
OCP channel, the response is always automatically accepted, and the
value of the acceptResponse parameter is ignored.

Return: Returns false if there is no response available or if the response has
already been read by a getResponse command or if there is a
getResponseBlocking command in progress.

Event: ResponseEndEvent, if the response has not been pre-accepted, and is
accepted with this call.

bool getOCPResponseBlocking(OCPResponseGrp<Td>& myResponse,
 bool acceptResponse = false)

Purpose: Waits for a new, unread response to become available on the channel.
The response is then read and returned as myResponse. If
acceptResponse is true, putMRespAccept() is called. Note that if
MRespAccept is not part of the OCP channel, the response is always
automatically accepted, and the value of the parameter acceptResponse
is ignored.

Notice: Not to be used for modeling OCP interfaces with multiple threads.
Use non-blocking instead. Not to be called from multiple SC_TREADs.

Return: Returns false if channel is in reset.

 Notice that if a false can be expected (reset is used), this must be treated
as a special case in the responding thread so no infinite loop is created.
(The SC_THREAD must yield by using a wait statement.)

Event: ResponseEndEvent, if the response has not been pre-accepted, and is
accepted with this call.

bool putMRespAccept()

Purpose: Sets the MRespAccept signal in the OCP channel and releases the
response.

Return: Returns false if there is no response to accept or if the current response
has already been accepted. Otherwise, putMRespAccept() returns true
and the response will be accepted on the next delta cycle. Note that after
the response has been accepted, the OCP channel signal SResp is then
automatically reset to “OCP_SRESP_NULL”.

Event: ResponseEndEvent, if there is an active response on the channel

void putMRespAccept(bool accept = false)

Purpose: Sets or unsets the MRespAccept signal in the OCP channel. Set can be
called at any time during clock cycle, unset only at clock edge.
Persistent once called.

Event: ResponseEndEvent, if there is an active response on the channel.

OCP TL2 Channel 20

void putMThreadBusy(unsigned int nextMThreadBusy)

Purpose: At the next delta cycle, the OCP signal MThreadBusy will be set to the
passed value

Return: None.

Event: None

// Deprecated

void putNextMThreadBusy()

sc_event& ResponseStartEvent()

Purpose: This event is triggered when a new response has been placed on the
channel.

Return: ResponseStartEvent.

sc_event& ResponseEndEvent()

Purpose: This event is triggered when the response is accepted.

Return: ResponseEndEvent.

2.4.4 Data Handshake
This section describes the methods for the master’s TL1 data handshake.

bool getSBusyDataHS() const

Purpose: Used to check whether a new data handshake can be started on the
channel.

Return: Returns true if the channel is not free for a new data handshake. This
function does not check the threadbusy signal (if any). See also
getSDataThreadBusy().

Events: No event.

bool startOCPDataHS(const OCPDataHSGrp<Td>& newData)

Purpose: Places the passed data onto the channel and automatically sets the OCP
signal MDataValid to true.

Return: Returns false if there is already a data-handshake on the channel which
has not yet been accepted by the slave, or if the OCP is a configured as
datathreadbusy-exact and the OCP thread is busy, or if the channel is in
reset.

Events: DataHSStartEvent. DataHsEndEvent, if the putSDataAccept(1) has been
called before, or if the SDataAccept is not part of the channel. No event if
return value is false.

21

Notice: Behavior changed from release 2.1.

bool startOCPDataHSBlocking(
 const OCPDataHSGrp<Td>& newData)

Purpose: Repeat - try request - wait for a rising clock edge - until successful.

startOCPDataHSBlocking() returns once the handshake has started
but before the slave has accepted the handshake.

Notice: Not to be used for modeling OCP interfaces with multiple threads.
Use non-blocking instead. Not to be called from multiple SC_TREADs.

Return: Returns an immediate false if the channel is not clocked. Returns a false
after a clock if the channel is in reset state. Reset is synchronous.

Notice that if a false can be expected (reset is used), this must be treated
as a special case in the requesting thread so no infinite loop is created.

Events: DataHSStartEvent. DataHsEndEvent, if the putSDataAccept(1) has been
called before, or if the SDataAccept is not part of the channel. No event if
return value is false.

bool getSDataAccept() const

Purpose: Get state of SDataAccept.

Note
Despite the name, this behaves like an RTL version of SDataAccept signal only after
a data request is put into the channel, and only at rising clock edge, that is only
when SDataAccept is not don’t-care according to OCP standard.

Return: Returns true, if dataaccept parameter is 0, and !getSBusyDataHS()
otherwise.

Event: No event.

unsigned int getSDataThreadBusy() const

Purpose: Returns the current value of the SDataThreadBusy signal in the channel.

Return: The unsigned int returned has one bit for each thread on the channel.
If a bit is “1”, that thread is busy and no more data transfers should be
sent to that thread.

Event: GetDataCl()->s_SDataThreadBusy.event

sc_event& SDataThreadBusyEvent() const

Purpose: This event is triggered when the slave changes the value of the
SDataThreadBusy signal.

Return: The event associated with a change in SDataThreadBusy’s value

sc_event& DataHSStartEvent()

Purpose: This event is triggered whenever a new data handshake transfer is
started on the channel.

OCP TL2 Channel 22

Return: DataHSStartEvent.

sc_event& DataHSEndEvent()

Purpose: This event is triggered when the current data handshake transfer has
been accepted by the slave.

Return: DataHSEndEvent.

void waitSDataAccept(void)

Purpose: If there a current data handshake on the channel, waitSDataAccept()
waits until the data has been accepted by the slave. This method returns
immediately if there is no data handshake on the channel or if that data
has already been accepted. Note that if SDataAccept is not part of the
channel, this command will wait until the data handshake is
automatically accepted by the channel (one delta cycle after the data is
submitted).

Return: None.

Event: None.

2.4.5 Timing Distribution Methods
This section describes methods implemented in the OCP TL1 channel to support timing
distribution at end-of-elaboration.

void setOCPTL1MasterTiming(OCP_TL1_Master_TimingCl master_timing)

Purpose: OCP master must use this method to inform the channel of its timing
parameters at end-of-elaboration, unless it conforms to default TL1
timing.

Return: None.

void registerTimingSensitiveOCPTL1Master(OCP_TL1_Slave_TimingIF *master)

Purpose: Timing-sensitive OCP masters may use this method to register
themselves with the channel at end-of-elaboration. Once this has been
done, all timing information provided by the slave to the channel will be
forwarded to the master by the channel.

The pure virtual class OCP_TL1_Slave_TimingIF contains only the single
method setOCPTL1SlaveTiming() which is also part of the
OCP_TL1_Slave_IF (see below).

Return: None.

2.4.6 OCP Configuration Management Methods
virtual void setOCPMasterConfiguration(MapStringType& passedMap)

23

Purpose: OCP master may use this method at end of elaboration to pass the
configuration of its OCP port to the channel.

Return: None.

virtual void addOCPConfigurationListener(OCP_TL_Config_Listener& listener)

Purpose: OCP master may use this method at end of elaboration to register itself
as a configuration listener. After registration any changes to the OCP
configuration of the channel, for example because the slave sets the
channel’s configuration, are passed on to the listener (see definition of
OCP_TL_Config_Listener class below).
Warning: if the channel has already been configured by the slave when
this is called, the listener will be informed (called-back) of the configuration
before this method returns.
Warning: this method can be called multiple times during end of
elaboration. The listener needs to ignore all but the last time it is called-
back.
This listener should not be called-back after end-of-elaboration, if the
channel is being correctly used.
This method is provided so that ‘generic’ OCP masters can be
implemented. A generic OCP master is an OCP master without a fixed
OCP configuration, whose behaviour will adapt to the OCP configuration
of the slave.

Return: None.

virtual const std::string peekChannelName()

Purpose: Allows the master to find out the name of the channel, which simplifies
the implementation of a ‘generic’ OCP master with more than one OCP
port.

Return: Channel name as std::string.

virtual ParamCl<TdataCl> *GetParamCl()

Purpose: Simple access to the OCP parameters of the channel. This method
should not be used until after end-of-elaboration, unless it is certain that
the channel has been configuredhand.

Return: Pointer to ParamCl object of the channel.

2.5 OCP TL1 Slave Interface Methods (ocp_tl1_slave_if.h)
The methods described in this section handle the slave’s transaction level 1 request
phase, response phase, and data handshake. There are also methods for OCP
configuration management and cycle-accurate timing information distribution.

All methods return immediately if the channel is in reset state. The non-void methods
return false if called during reset. It is advisable to make sure that the threads trusting
blocking methods for sequencing call a wait if a blocking methods returns false, to avoid
infinite loops.

OCP TL2 Channel 24

2.5.1 Reset
This section describes the methods for the slave’s reset phase.

bool getReset()

Purpose: Check if channel is in reset state.

Return: Returns true if the channel is in reset, false otherwise.

Events: No event.

void SResetAssert()

Purpose: Puts channel in reset state. Resets all channel state variables, and calls
data class reset. All in-band methods will return immediately with false
return value while reset is active. All blocking methods are released, and
return with false.

Events: All start and end events fire (to release all waits in the system).

void SResetDeassert()

Purpose: Removes reset state from the channel.

Events: ResetEndEvent.

sc_event& ResetStartEvent()

Purpose: This event is triggered when channel reset starts.

Return: Reset start event.

sc_event& ResetEndEvent()

Purpose: This event is triggered when channel reset ends.

Return: Reset end event.

2.5.2 Request Phase
This section describes the methods for the slave’s TL1 response phase.

bool getOCPRequest(OCPRequestGrp<Td,Ta>& myRequest,
 bool acceptRequest = false)

Purpose: If there is an unread request available on the channel, the request is
read and returned as “myRequest.” And if acceptRequest is true,
putSCmdAccept() is called. Note that if the SCmdAccept signal is not
part of the OCP channel, the request is always automatically accepted,
and the value of the acceptRequest parameter is ignored.

Return: Returns false if there is no request available or if the request has already
been read by a getOCPRequest command or if there is a
getOCPRequestBlocking command in progress.

25

Event: RequestEndEvent, if the response has not been pre-accepted, and is
accepted with this call.

bool getOCPRequestBlocking(
 OCPRequestGrp<Td,Ta>& myRequest,
 bool acceptRequest = false)

Purpose: Waits for a new, unread request to become available on the channel,
then reads the request and returns it as myRequest. If acceptRequest is
true then putSCmdAccept() is called to accept the request at the end of
the delta cycle. Note that this function waits only until it has the new
request. Also note that if the SCmdAccept signal is not part of the OCP
channel, the request is always automatically accepted, and the value of
the acceptRequest parameter is ignored.

Notice: Not to be used for modeling OCP interfaces with multiple threads.
Use non-blocking instead. Not to be called from multiple SC_TREADs.

Return: Returns false if the channel is in reset.

 Notice that if a false can be expected (reset is used), this must be treated
as a special case in the responding SC_THREAD so no infinite loop is
created.

Event: RequestEndEvent, if the response has not been pre-accepted, and is
accepted with this call.

bool putSCmdAccept()

Purpose: Sets the SCmdAccept signal in the OCP channel and “releases” the
request.

Return: Returns false if there is no request to accept or if the current request has
already been accepted. Otherwise, putSCmdAccept() returns true and
the request will be accepted on the next delta cycle. Note that after the
command has been accepted, the OCP channel signal MCmd is then
automatically reset to "OCP_MCMD_IDLE".

Event: RequestEndEvent, if there is an active request on the channel.

Void putSCmdAccept(bool accept = false)

Purpose: Sets or unsets the SCmdAccept signal in the OCP. Set can be called at
any time during clock cycle, unset only at clock edge. Persistent once
called.

Event: RequestEndEvent, if there is an active request on the channel.

void putSThreadBusy(unsigned int nextSThreadBusy)

Purpose: Sets the next value of the OCP signal SThreadBusy. This signal is
updated at the end of the current delta cycle.

Return: None.

Event: None.

OCP TL2 Channel 26

//Deprecated

void putNextSThreadBusy()

2.5.3 Response Phase
This section describes the methods for the slave’s TL1 response phase.

bool getMBusy() const

Purpose: Used to check whether a new response can be placed on the channel.

Return: Returns true if the channel is not free for a new response. This function
does not check the threadbusy signal (if any). See also
getMThreadBusy().

Events: No event.

bool startOCPResponse(
 const OCPResponseGrp<Td>& newResponse)

Purpose: Places the passed response onto the channel.

Return: Returns false if there is already a response on the channel which has not
yet been accepted by the master, or if the OCP is a configured as mthreadbusy-
exact and the OCP thread is busy, or if the channel is in reset.

Event: ResponseStartEvent. ResponseEndEvent, if the putMRespAccept(1) has
been called before, or if the SRespAccept is not part of the channel. No
event if return value is false.

Notice: Behavior changed from release 2.1.

bool startOCPResponseBlocking(
 const OCPResponseGrp<Td>& newResponse)

Purpose: Repeat - try response - Wait for a rising clock edge until successful.

startOCPResponseBlocking() returns once the response has started
but before the master has accepted the response.

Notice: Not to be used for modeling OCP interfaces with multiple threads.
Use non-blocking instead. Not to be called from multiple SC_TREADs.

Return: Returns an immediate false if the channel is not clocked. Returns a false
after a clock if the channel is in reset state. Reset is synchronous.

 Notice that if a false can be expected (reset is used), this must be treated
as a special case in the requesting thread so no infinite loop is created.

Event: ResponseStartEvent. ResponseEndEvent, if the putMRespAccept(1) has
been called before, or if the SRespAccept is not part of the channel. No
event if return value is false.

sc_event& RequestStartEvent()

27

Purpose: This event is triggered when a new request has been placed on the
channel.

Return: RequestStartEvent.

sc_event& RequestEndEvent()

Purpose: This event is triggered when the request is accepted.

Return: RequestEndEvent.

unsigned int getMThreadBusy()

Purpose: Returns the current value of the MThreadBusy signal. This allows the
slave to determine if a thread is busy before sending a response on that
thread.

Return: The unsigned int returned has one bit for each thread in the channel.
If a bit position is “1”, that thread is busy.

Event: GetDataCl()->m_MThreadBusy.event

sc_event& MThreadBusyEvent() const

Purpose: This event is triggered when the master changes the value of the
MThreadBusy signal.

Return: The event associated with a change in MThreadBusy’s value

bool getMRespAccept()

Purpose: Get state of MRespAccept signal.

Note
Despite the name, this behaves like an RTL version of MRespAccept signal only
after a request is put into the channel, and only at rising clock edge, that is only
when MRespAccept is not don’t-care according to OCP standard.

Return: Returns true, if respaccept parameter is 0, and !getMBusy() otherwise.

Event: No event.

sc_event& ResponseStartEvent()

Purpose: This event is triggered when a new response has been placed on the
channel.

Return: ResponseStartEvent.

sc_event& ResponseEndEvent()

Purpose: This event is triggered when the response is accepted.

Return: ResponseEndEvent.

OCP TL2 Channel 28

void waitMRespAccept(void)

Purpose: If there a current response on the channel, waitMRespAccept()waits
until the response has been accepted by the master. This method returns
immediately if there is no response on the channel or if that response
has already been accepted. Note that if MRespAccept is not part of the
channel, this command will wait until the response is automatically
accepted by the channel (one delta cycle after the response is submitted).

Return: None.

Event: None.

2.5.4 Data Handshake
This section describes the methods for the slave’s TL1 data handshake.

bool getOCPDataHS(OCPDataHSGrp<Td>& myData,
 bool acceptData = false)

Purpose: If there is an unread data handshake available on the channel, the data
group is read and returned as myData. If acceptData is true then
putSDataAccept() is called. Note that if SDataAccept is not part of the
OCP channel, data is always automatically accepted during the next
delta cycle, and the value of the acceptData parameter is ignored.

Return: Returns false if there is no data available or if the data has already been
read by a getData command or if there is a getDataBlocking command
in progress.

Event: None.

bool getOPCDataHSBlocking(OCPResponseGrp<Td>& myData,
 bool acceptData = false)

Purpose: Waits for new, unread data to become available on the channel. The data
is then read and returned as “myData.” And if acceptData is true then
putSDataAccept() is called. getOPCDataHSBlocking() returns once
the data has been placed on the channel. Note that if the SDataAccept
signal is not part of the OCP channel, data is always automatically
accepted, and the value of the acceptData parameter is ignored.

Notice: Not to be used for modeling OCP interfaces with multiple threads.
Use non-blocking instead. Not to be called from multiple SC_TREADs.

Return: Returns false if channel is in reset.

 Notice that if a false can be expected (reset is used), this must be treated
as a special case in the data thread so no infinite loop is created. (The
thread must yield by using a wait statement.)

Event: None.

bool putSDataAccept()

Purpose: Sets the SDataAccept signal in the OCP channel and “releases” the data
handshake.

29

Return: Returns false if there is no data to accept or if the current data has
already been accepted. Otherwise, putSDataAccept() returns true and
the data handshake will be accepted on the next delta cycle. Note that
after the data has been accepted, the OCP channel signal MDataValid is
automatically reset to false.

Event: DataHSEndEvent, if there is an active request on the channel.

bool putSDataAccept(bool accept = false)

Purpose: Sets or unsets the SDataAccept signal in the OCP channel. Set can be
called at any time during clock cycle, unset only at clock edge.
Persistent once called.

Return: Returns false if there is no data to accept or if the current data has
already been accepted. Otherwise, putSDataAccept() returns true and
the data handshake will be accepted on the next delta cycle. Note that
after the data has been accepted, the OCP channel signal MDataValid is
automatically reset to false.

Event: DataHSEndEvent, if there is an active request on the channel.

sc_event& DataHSStartEvent()

Purpose: This event is notified whenever any new data handshake data is placed
on the channel.

Return: DataHSStartEvent.

sc_event& DataHSEndEvent()

Purpose: This event is notified when the current data handshake data is accepted
by the slave.

Return: DataHSEndEvent.

void putSDataThreadBusy(unsigned int nextSDataThreadBusy)

Purpose: Sets the next value of the SDataThreadBusy signal on the channel. Each
bit in the nextSDataThreadbusy parameter represents one thread in the
channel. If a bit is “1” that means that the corresponding thread is now
busy.

Return: No return value.

Event: None.

// Deprecated

void putNextSDataThreadBusy()

2.5.5 Timing Distribution Methods
This section describes methods implemented in the OCP TL1 channel to support timing
distribution at end-of-elaboration.

OCP TL2 Channel 30

void setOCPTL1SlaveTiming(OCP_TL1_Slave_TimingCl slave_timing)

Purpose: OCP slave must use this method to inform the channel of its timing
parameters at end-of-elaboration, unless it conforms to default TL1
timing.

Return: None.

void registerTimingSensitiveOCPTL1Slave(OCP_TL1_Master_TimingIF *slave)

Purpose: Timing-sensitive OCP slaves may use this method to register themselves
with the channel at end-of-elaboration. Once this has been done, all
timing information provided by the master to the channel will be
forwarded to the slave by the channel.

The pure virtual class OCP_TL1_Master_TimingIF contains only the
single method setOCPTL1MasterTiming() which is also part of the
OCP_TL1_Master_IF (see above).

Return: None.

2.5.6 OCP Configuration Management Methods
virtual void setOCPSlaveConfiguration(MapStringType& passedMap)

Purpose: OCP slave may use this method at end of elaboration to pass the
configuration of its OCP port to the channel.

Return: None.

virtual void addOCPConfigurationListener(OCP_TL_Config_Listener& listener)

Purpose: OCP slave may use this method at end of elaboration to register itself as
a configuration listener. After registration any changes to the OCP
configuration of the channel, for example because the master sets the
channel’s configuration, are passed on to the listener (see definition of
OCP_TL_Config_Listener class below).
Warning: if the channel has already been configured by the master when
this is called, the listener will be informed of the configuration (called-back)
before this method returns.
Warning: this method can be called multiple times during end of
elaboration. The listener needs to ignore all but the last time it is called-
back.
This listener should not be called-back after end-of-elaboration, if the
channel is being correctly used.
This method is provided so that ‘generic’ OCP slaves can be implemented.
A generic OCP slave is an OCP slave without a fixed OCP configuration,
whose behaviour will adapt to the OCP configuration of the master.

Return: None.

virtual const std::string peekChannelName()

Purpose: Allows the master to find out the name of the channel, which simplifies
the implementation of a ‘generic’ OCP slave with more than one OCP
port.

31

Return: Channel name as std::string.

virtual ParamCl<TdataCl> *GetParamCl()

Purpose: Simple access to the OCP parameters of the channel. This method
should not be used until after end-of-elaboration, unless it is certain that
the channel has been configuredhand.

Return: Pointer to ParamCl object of the channel.

2.6 OCP TL1 Timing Interface Classes
The pure virtual classes OCP_TL1_Slave_TimingIF and OCP_TL1_Master_TimingIF exist.
These classes are defined in the header files ocp_tl1_slave_timing_if.h and
ocp_tl1_master_timing_if.h respectively.

Each contains a single method.

OCP_TL1_Slave_TimingIF contains the method setOCPTL1SlaveTiming(), which is also
part of the OCP_TL1_SlaveIF and documented in section 2.5.5 above.

OCP_TL1_Master_TimingIF contains the method setOCPTL1MasterTiming(), which is
also part of the OCP_TL1_MasterIF and documented in section 2.4.5 above.

2.7 OCP TL1 Configuration Management Classes
In normal operation, an OCP master is connected to an OCP slave, both of which know
their configuration of their OCP ports. Both of them inform the channel of their
configuration and the channel verifies that they are compatible (see section 2.2). In
some cases however it is convenient to connect a ‘generic’ master or slave; one that
adapts its configuration and behaviour to the configuration of whatever it is connected
to. For example a SystemC model of an OCP master might be able to generate WRAP
bursts, but when connected to an OCP slave that does not support WRAP bursts it
would instead use single accesses.

In such a case the generic core registers itself in the channel as a configuration-listener.
The channel si then able to call it back to inform it of changes to the OCP configuration.
A pure virtual class is provided for this purpose. A generic core should derive from this
class and implement the method set_configuration, which is called by the channel
whenever the configuration is revised by another core or the environment.

Example code for extracting parameter values from the passedMap can be found in the
distribution.

class OCP_TL_Config_Listener {

public:

 virtual void set_configuration(MapStringType& passedMap,
 std::string channelName)=0;

};

OCP TL2 Channel 32

2.8 OCP TL1 Monitor Interface
The OCP TL1 channel implements the OCP TL1 monitor interface. This allows monitors
to be connected to the channel, for performance analysis, trace dumping, protocol
checking and so on.

The methods of the monitor interface are listed below. Multiple monitors may be used
in parallel on a single OCP TL1 channel. The basic principle is that the monitors poll
the channel to find out what is happening. This implies that the monitors are
synchronized with the OCP clock cycles. As there are some options (see section 12)
around OCP clock cycle synchronization, a single monitor design may not be compatible
with all uses of the OCP TL1 channel. In particular different monitors may be needed
for the untimed and timed channels.

The methods of the interface are merely listed here. More detailed documentation of
their meaning is required but not yet available.

template <typename TdataCl>
class OCP_TL1_MonitorIF : virtual public sc_interface
{
public:

 typedef typename TdataCl::DataType Td;
 typedef typename TdataCl::AddrType Ta;
 typedef OCPRequestGrp<Td,Ta> request_type;
 typedef OCPDataHSGrp<Td> datahs_type;
 typedef OCPResponseGrp<Td> response_type;
 typedef ParamCl<TdataCl> paramcl_type;

 // Monitor access
 virtual const OCPMCmdType getMCmdTrace () const = 0;
 virtual const bool getMDataValidTrace () const = 0;
 virtual const OCPSRespType getSRespTrace () const = 0;

 // port names
 virtual const std::string peekChannelName() const = 0;
 virtual const std::string peekMasterPortName() const = 0;
 virtual const std::string peekSlavePortName() const = 0;

 // transactions
 virtual const request_type& peekOCPRequest() const = 0;
 virtual const datahs_type& peekDataHS() const = 0;
 virtual const response_type& peekOCPResponse() const = 0;

 virtual const bool peekRequestEnd() const = 0;
 virtual const bool peekRequestStart() const = 0;
 virtual const bool peekRequestEarlyEnd() const = 0;

 virtual const bool peekResponseEnd() const = 0;
 virtual const bool peekResponseStart() const = 0;
 virtual const bool peekResponseEarlyEnd() const = 0;

 virtual const bool peekDataRequestEnd() const = 0;
 virtual const bool peekDataRequestStart() const = 0;
 virtual const bool peekDataRequestEarlyEnd() const = 0;

 // thread busy

33

 virtual const unsigned int peekSThreadBusy() const = 0;
 virtual const unsigned int peekSDataThreadBusy() const = 0;
 virtual const unsigned int peekMThreadBusy() const = 0;

 // reset
 virtual const bool peekMReset_n() const = 0;
 virtual const bool peekSReset_n() const = 0;

 // sideband signals
 virtual const bool peekMError() const = 0;
 virtual const unsigned int peekMFlag() const = 0;
 virtual const bool peekSError() const = 0;
 virtual const unsigned int peekSFlag() const = 0;
 virtual const bool peekSInterrupt() const = 0;
 virtual const unsigned int peekControl() const = 0;
 virtual const bool peekControlWr() const = 0;
 virtual const bool peekControlBusy() const = 0;
 virtual const unsigned int peekStatus() const = 0;
 virtual const bool peekStatusRd() const = 0;
 virtual const bool peekStatusBusy() const = 0;
 virtual const bool peekExitAfterOCPMon() const = 0;

 // OCP paramertes
 virtual paramcl_type* GetParamCl() = 0;
};

OCP TL2 Channel 34

3 Overview of the OCP TL2
The OCP Transaction Level Two channel model is designed for architectural evaluation
and modeling. The OCP TL2 channel works at a higher abstraction level than the TL1
channel. Instead of clocked cycle accurate support for all of the OCP signals, the OCP
TL2 channel provides estimated timing as well as some signal abstraction to improve
channel throughput and ease-of-use.

This chapter is an overview of OCP TL2 channel and of the two SystemC channel
models that have been built to implement it. The sections below cover the differences
between OCP TL1 and OCP TL2, and when to use the TL2 channel.

3.1 OCP TL1 vs OCP TL2
The OCP TL2 channel is meant to run faster and to be easier to use than the OCP TL1
channel. To achieve this goal, the OCP TL2 channel lacks the exact cycle accuracy of
TL1, lacks timing enforcement, and simplifies the phase ordering of the channel. In
addition, the OCP TL2 channel allows for burst-at-once which can greatly increase
performance. Each of these topics is each covered below.

3.1.1 Event Driven Models
Unlike the OCP TL1 channel, the OCP TL2 channel is not explicitly clocked. A new TL2
request may be placed on the channel as soon as the previous request has been
accepted. Thus, if the slave accepts each request immediately, the master is free to send
a new request immediately. Other than the request/accept flow, the channel model does
not enforce any timing. Instead, it is up to the core models attached to the OCP TL2
channel to provide the correct timing by sending their commands at the appropriate
time.

For example, the slave should wait an appropriate amount of time before accepting a
request to allow for the request and data to cross the channel. The OCP TL2 channel
provides some helper functions to make this calculation easier for the cores.

One advantage of no channel clocking is that it allows a TL2 core to be completely event
driven. A slave can be written “passively” with a SystemC SC_METHOD that is sensitive
to the channel’s RequestStartEvent. Thus, the slave would only be activated when there
is a new request on the channel to be processed. Such event driven models are more
efficient and run much faster in SystemC than clocked models or models based on
SC_THREADS.

3.1.2 No Separate Data Handshake
The OCP TL2 channel simplifies the interface by combining the request path with the
data handshake path. In the OCP TL1 channel, these two paths are separate. As a
result, a TL1 slave core must have three processes: one to handle incoming requests,
one for incoming data, and a third to send back responses. In addition, the TL1 slave
must buffer the incoming requests and then match the incoming data to the
corresponding request.

This is simplified with the OCP TL2 channel. Requests and data are always sent
together. This means that a TL2 slave need only have two processes: one to receive
requests and another to send responses. Additionally, there is no longer any overhead
in trying to match data back to a request.

35

The downside of sending data and responses together is that some OCP timing
information may be lost. Specifically, the actual hardware master may send data one or
more cycles after a request. This behavior may be modeled directly in OCP TL1 by
having the TL1 master model send a request in one cycle and data in the next. However,
this cannot be modeled directly with the OCP TL2 channel since data and request are
always sent together. The OCP TL2 channel partially solves this problem by providing a
timing point “RqDL” set by the master that specifies the latency “L” between when the
request “Rq” starts on the channel and when the data “D” starts on the channel.

3.1.3 Simpler Phase Timing
The OCP TL1 channel employs a set of checks to ensure that the data flow through the
channel exactly follows the ordering rules of the OCP specification. In addition, the OCP
TL1 channel uses delta cycles and delayed request/update schemes to give each phase
its own delta cycle. This careful phase tracking is not needed for most OCP
communications, especially when there is no separate data handshake phase. Thus, it
is not used for OCP TL2.

In the OCP TL2 channel, the next request may be sent as soon as the previous request
has finished. The channel does not check and does not enforce that the next request
should wait until the next OCP cycle. This makes the OCP TL2 channel faster, but it
does put some of the timing burden on the TL2 core writer.

3.1.4 Burst at Once
The greatest performance advantage of the OCP TL2 channel over the TL1 channel is
the ability to send bursts with a single command. In order to send a write burst of
length eight over the OCP TL1 channel, the master must send eight individual write
requests (and possibly eight individual write data handshakes) in order to get the full
burst across the channel. With the OCP TL2 channel, a single command sends the
whole burst request at once. This eliminates much of the overhead and greatly improves
the throughput of the channel.

3.1.5 Passing Pointers
The OCP TL2 channel achieves its “burst at once” commands through the use of
pointers. While write data and read data responses are sent one at a time in OCP TL1,
they are sent as an array in the OCP TL2. Thus, instead of a data word, the OCP TL2
channel passes a pointer to the first data word in an array of data words. Of course, the
OCP TL2 channel can also be used to send writes and reads of single data words. In
this case, the data pointer is still used but it only points to a single data word (or an
array of one).

Any time pointers are used, it is important to establish who owns the memory pointed
to by the pointer. For the OCP TL2 channel, the memory is owned by the core sending
the request or the response. The values pointed to by the pointer are to remain valid
until the request (or response) is accepted by the other side.

For example, the master wants to send an eight-word burst write command over the
OCP TL2 channel. The master creates an array of data at least eight words long. The
Master then copies the data to be written into the new array. The master then makes a
request group and sets the “MDataPtr” value to the data array. The Master then calls
“sendOCPRequest” to place the request on the channel. At this point, the master is
committed to keeping the data array valid and constant until the request is over and
the master receives the RequestEndEvent from the channel.

OCP TL2 Channel 36

One “gotcha” to look out for: avoid using data arrays that are automatic variables as
they will get automatically deleted at the end of the function call they were defined in.
Rather, it is safer to use an array just for sending data that is a class data member.
That way the array will not be deleted and can be reused for each request.

3.2 Using the OCP TL2 Channel
When used as intended, the OCP TL2 channel can give increased performance with
close to cycle accurate timing. The following guidelines will help to get the best results
from the channel.

3.2.1 Timing
The OCP TL2 channel does not have cycle accurate timing as the OCP TL1 channel does
nor does it have the timing and ordering checks that are built into TL1. However, it is
possible to get quite accurate timing when using the TL2 channel, as long as the
underlying OCP connection is understood and followed.

The timing of the channel is set by the two cores that are connected to it. Anytime that
there is no request on the channel, the channel allows the master to send a new
request. The channel will then not allow another request until the current request has
been accepted by the slave. Thus, it is “accept” functions that drive the timing of the
channel.

It is up to the slave to calculate how long it would take the request to cross the channel
and how long it would then take the slave to process the request. The slave should then
accept the request after that length of time has elapsed. Similarly, it is up to the master
to calculate how long it would take a response to cross the OCP connection and
additionally how long it would take for the master to process it and be ready for a new
response. The master should then accept the response after that length of time.

The OCP TL2 channel provides delayed accept functions to make this easier. In
addition, there are timing variables and helper functions that can automatically
calculate the OCP timing of a request or response.

3.2.2 Events
In order to get the best performance from the OCP TL2 channel, it is advisable to make
the cores connected to it event-driven. In general, an OCP TL2 core should have an
SC_METHOD for sending and another for receiving. Each method should be sensitive to
an OCP TL2 event.

For example, a master would have a method for sending new requests that is sensitive
to the channel’s RequestEndEvent. When the previous request has been accepted by
the slave, the channel triggers the RequestEndEvent. A method in master that is
sensitive to this event will then be activated and it can send a new request to the
channel.

The OCP TL2 channel also supports blocking calls that must be used with an
SC_THREAD process. However, an SC_THREAD process is slower than an SC_METHOD
and developers interested in greater model performance should aim for an event driven
simulation.

37

3.2.3 OCP Burst Signals
The OCP specification includes a collection of signals that specify the details of each
individual transfer of an OCP burst transaction. While these signals are certainly useful
at the hardware level and at the cycle accurate TL1 level, their use is less clear for an
OCP TL2 connection which allows an entire burst to be sent as a single command. This
section covers the OCP burst signals as a group and then gives guidelines for specific
burst signals as well.

As a group, the OCP Burst signals are meant to help through the individual transfers of
a burst. Many of them change with each of individual request or response of the burst.
For example, for imprecise bursts, the MBurstLength may count down as there are
fewer and fewer requests left to send in the burst. Since the OCP TL2 channel allows an
entire burst in a single command, how does one set a burst signals that changes
throughout the burst?

One simple solution is to ignore the burst signals altogether when using the OCP TL2
channel. The OCP TL2 API provides the basic signaling needed for burst-at-once
transactions. The request group has a pointer to the entire burst of data, there is a field
for how many requests are in this burst command (DataLength) as well as a flag to
indicate whether or not this command is the last OCP TL2 command in the burst
(LastOfBurst). These fields are enough to send bursts over the TL2 channel either as a
single command or as a set of commands.

But the OCP burst signals do have there place in the OCP TL2 channel, especially when
the OCP TL2 channel is used to send bursts one request/response at a time. Here are
the guidelines for each of the OCP burst signals.

3.2.4 DataLength
This is the number of write data words in the OCP TL2 write request, the number of
data words to read in an OCP TL2 read request, and the number of data words in an
OCP TL2 response. The DataLength field gives the number of data words in the array
pointed to by MDataPtr or SDataPtr.

Note that DataLength applies to the command and not necessarily to the whole burst.
For example, say that master wanted to send at 16 burst read request to the slave. If
the master sent it as a single command, then DataLength=16. If the master sends the
burst request in two parts, the first OCP TL2 burst request might have a DataLength=8,
and the second might have DataLength=8 as well. If the master wanted to send the
burst as sixteen separate requests, then each of the requests would have
DataLength=1.

The DataLength field is required, even when its value is one. This is because the
DataLength field is needed to dereference the pointers that passed with the OCP TL2
request or response.

3.2.5 LastOfBurst
The LastOfBurst field indicates that this command is the last command of the burst. It
is part of both the request group and the response group. If the entire burst is being
sent as a single command, then LastOfBurst=true as this is the first and last command
of the burst. If the burst is sent in two commands, then LastOfBurst=false for the first
part and LastOfBurst=true for the second part.

OCP TL2 Channel 38

3.2.6 MBurstSeq
This field sets how the addressing is to be done for each data word in the burst. It is
has the same meaning in the OCP TL2 channel as it does in the hardware.

3.2.7 MBurstPrecise & MBurstLength
This field is indicates whether the total length of the burst is known. If
MBurstPrecise=true, then the MBurstLength field contains the total length of the burst
and if MBurstPrecise=false then MBurstLength indicates how many data words might
be remaining in the burst.

If entire bursts are being sent as single commands, then these fields are not useful for
the TL2 core writer as the total burst length is know when the command is received.
However, these fields may be useful when a burst is sent as a set of several commands.
In the case of MBurstPrecise=true, the field MBurstLength contains the total number of
data words in the whole burst, while DataLength contains the number of data words in
a particular individual request or response.

For example, the master wants to send a precise 16 word write request to the slave
through the OCP TL2 channel. Instead of sending the whole request at once, the master
instead sends it as three separate request commands: the first with 6 data words, the
second with 6 data words and the last with 4 data words. Here are the values for
MBurstPrecise, MBurstLength, DataLength, and LastOfBurst fields for these three TL2
request commands that together make up the 16-word write burst:

Request #1: MBurstPrecise=true, MBurstLength=16, DataLength=6, LastOfBurst=false.

Request #2: MBurstPrecise=true, MBurstLength=16, DataLength=6, LastOfBurst=false.

Request #3: MBurstPrecise=true, MBurstLength=16, DataLength=4, LastOfBurst=true.

3.2.8 MBurstSingleReq
This OCP field specifies that the transfer is to be sent with a single request phase for a
burst of length N (SRMD semantics). An SRMD (Single Request, Multiple Data) read
crosses in only one transfer while an MRMD (Multiple Requests, Multiple Data) read will
have one transfer per data word.

Note that when MBurstSingleReq=1 (SRMD semantics), sending a burst in chunks
smaller than MBurstLength can still make sense for a write as it would specify different
timing to issue data, but for a read the burst must be sent as a single request with
DataLength matching MBurstLength. Responses to an SRMD read request can still be
issued by the slave in multiple chunks amounting to the request's MBurstLength. This
is not applicable for write requests with response, as OCP specifies that a single
response is expected for an SRMD write burst. Thus the response to any write request
with MBurstSingleReq=1 must have DataLength=1.

The timing helper functions in the OCP TL2 channel take the SRMD or MRMD nature of
the burst into account.

3.2.9 MAtomicLength
This OCP field is not used in the OCP TL2 channel.

39

3.2.10 MReqLast
This field indicates that this is the last write word request or the last read word request
of the burst. This signal is not very helpful when whole bursts and chunks of bursts
may be sent at once. In the OCP TL2 channel, the field LastOfBurst is used instead.

3.2.11 SRespLast
This field indicates that this is the last response word of the burst. This signal is not
very helpful when whole bursts and chunks of bursts may be sent at once. In the OCP
TL2 channel, the field LastOfBurst is used instead.

3.3 Benchmarking the Channels
The benchmark tests below show that the OCP TL2 channel gets its greatest
performance boost over the TL1 channel when bursts are sent as single commands.

3.3.1 Overview of the Benchmark Tests
In each of these tests, a simple master is connected to a simple core through the OCP
channel model. The channel and the cores use Td (data type) & Ta (address type) =
unsigned int. The OCP Channel has data handshake with command, data, and
response accept. For writes, the command goes first and then the data goes in the next
cycle.

The TL1 master uses one thread method (to send requests), the rest of the TL1 master
and all of the TL1 slave model is event driven. The TL2 master and slave models are all
event driven.

These tests were run on a dual processor Pentium III 1.26GHz machine. All simulations
ran on a single processor. The tests were compiled under Linux with gcc 2.96 using the
"-O" flag and the standard OSCI SystemC library.

3.3.2 Single Data Word Writes and Reads
The first test is a single data word write command followed by a single data word read.
This sequence is looped through 10,000,000 times.

Table 9 Single word reads and writes

Model Run 1 (s) Run 2 (s) Run 3 (s) Avg Time (s) Data Words / sec
TL1 86.37 86.26 85.80 86.14 232,171

TL2 original 41.11 41.14 41.14 41.13 486,263

TL2 performance 23.19 23.13 23.08 23.13 864,553

OCP TL2 Channel 40

Figure 4 Throughput (Data Words/sec) for single writes and reads

TL1 TL2 Org TL2 Perf
0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

3.3.3 Burst Writes and Reads
The second test is a burst write of 16 data words followed by a burst read of 16 data
words. The sequence is looped through 1,000,000 times for TL1 and 10,000,000 times
for the TL2 channels.

Table 10 Burst writes and reads

Model Run 1 Run 2 Run 3 Avg Time Data Words
/ sec

Notes

TL1 115.54 116.07 115.36 115.66 276,681 1,000,000 loops

TL2 original 41.58 41.57 41.72 41.62 7,687,996 10,000,000 loops

TL2 performance 23.96 23.90 23.88 23.91 13,381,656 10,000,000 loops

41

Figure 5 Throughput (Data Words/sec) for burst 16 writes and reads

TL1 TL2 Org TL2 Perf
0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

OCP TL2 Channel 42

4 OCP TL2 Channel Model

4.1 Data Structures for the OCP TL2 Channel
The following data classes are used to pass requests and responses through the OCP
TL2 channel. These classes also contain conversion functions and constructors for
compatibility with the original TL2 channel.

4.1.1 OCPTL2RequestGrp Template Class
The OCPTL2RequestGrp class is used for sending and receiving OCP TL2 burst
requests. This template class is defined as

Template<class Td, class Ta>
class OCPTL2RequestGrp

Where Td is the data type and Ta is the address type.

4.1.1.1 Data Type and Address Type
The class template parameters Td and Ta indicate the data type and address type of the
MDataPtr and MAddr signals, respectively. By making this a template, any sized data or
address width may be supported.

4.1.1.2 Members
Some configurations of the OCP will not use all of the members in the class. In that
case, the unused members are invalid and should not be referenced or used. The table
below lists the member names and their data types for OCPTL2RequestGrp.

Table 11 OCPTL2RequestGrp Members

Name Data Type Description
MCmd OCPMCmdType Master command

MAddr AddrType Address of first data word of the request.
According to the OCP specification MAddr is
supposed to be a byte address that must be
aligned with the OCP word size.

MAddrSpace unsigned int Master address space

MDataPtr DataType* Pointer to the first word of write data for the
request. A burst of write data should be an array. If
this is a read request, then MDataPtr = NULL.
According to section 3.1.5 the data memory is
owned by the master and only guaranteed to be
valid until the slave has accepted the request.

43

Name Data Type Description
DataLength unsigned int The number of data words in this request. If this is a

write request, then DataLength is the number of
data words in the array pointed to by MDataPtr. If
this is a read request then DataLength is the
number of data words to be read.

MByteEn unsigned int Master byte enable field. Use this value if the
(optional) MByteEnPtr is set to NULL.

MByteEnPtr unsigned int* Pointer to an array of byte enable fields. The length
of the array pointed to should be DataLength long.
Each ByteEn field is to be used for the
corresponding data word in the MDataPtr array. If
the byte enable remains constant throughout the
burst, set MByteEnPtr=NULL and use MByteEn
instead.

MDataInfo unsigned long long
int

Extra information sent with the write data

MDataInfoPtr unsigned long long
int*

Pointer to an array of data info fields. The length of
the array pointed to should be DataLength long.
Each MDataInfo field in the array is to be used for
the corresponding data word in the MDataPtr
array. If the DataInfo remains constant throughout
the burst, set MDataInfoPtr=NULL and use
MDataInfo instead.

MThreadID unsigned int Master thread identifier

MConnID unsigned int Master connection identifier

MTagID unsigned int Master tag identifier (see OCP 2.1 standard)

MTagInOrder bool If true, force tag-in-order (see OCP 2.1 standard)

MReqInfo unsigned long long
int

Extra information sent with the response.

MBurstLength unsigned int If MBurstPrecise=true, this is the total length of the
OCP burst. Note that is the OCP burst is sent as
several requests then MBurstLength will be equal to
the sum of the DataLength’s of each of the
requests.

MBurstPrecise bool Given burst length is precise

MBurstSeq OCPMBurstSeqType Address sequence of burst

LastOfBurst bool Is this burst request the last request of the OCP
burst?

Some notes on the usage of these fields:

DataLength
This is always the length of this chunk of the request burst. DataLength gives the
length of the arrays pointed to by each of the pointer variables in the request
structure.

For read requests, the DataLength field indicates how many data words are to be
read as part of this TL2 request.

MByteEn & MbyteEnPtr
The MByteEnPtr is an array of byte enable fields, one byte enable for each OCP
data word. The MByteEnPtr allows accurate simulation of a channel where the byte

OCP TL2 Channel 44

enable value is changed with each data word of the burst. If MByteEn changes with
each data word, then the MByteEnPtr should be set and the MByteEn field should
be ignored. If, however, the MByteEn stays constant then the MByteEnPtr should
be set to NULL (the default) and the MByteEn field should be used.

MDataInfo & MdataInfoPtr
The MDataInfoPtr is an array of data info fields, one data info value for each OCP
data word. Just as with the MByteEnPtr, the MDataInfoPtr allows accurate
simulation of a channel where the data info value is changed with each data word
of the burst. If data info changes with each data word, then the MDataInfoPtr
should be set and the MDataInfo field should be ignored. If, however, the
MDataInfo stays constant then the MDataInfoPtr should be set to NULL (the
default) and the MDataInfo field should be used.

MBurstPrecise & MBurstLength
These fields allow for the specification of precise bursts in TL2. When
MBurstPrecise is true, the MBurstLength field should contain the total length of the
OCP burst request.

For example, if a precise OCP burst write request of 16 data words were sent as
three TL2 requests, each request could have the following fields:

Request #1: MBurstPrecise = true; MBurstLength = 16; DataLength = 8;
LastOfBurst=false;

Request #2: MBurstPrecise = true; MBurstLength = 16; DataLength = 4;
LastOfBurst=false;

Request #3: MBurstPrecise = true; MBurstLength = 16; DataLength = 4;
LastOfBurst=true;

If the same OCP burst write of 16 data words were sent as one TL2 request, then
the TL2 request would be:

Request: MBurstPrecise = true; MBurstLength = 16; DataLength = 16;
LastOfBurst=true;

Note the difference between MBurstLength and DataLength: DataLength is required
and specifies that number of data words in this TL2 request, MBurstLength is used
for precise bursts and always holds the total number of data words in all of the TL2
requests that make up the burst.

4.1.2 OCPTL2ResponseGrp Template Class
The OCPTL2ResponseGrp class is used to send and receive OCP TL2 burst responses
with the OCP TL2 channel. This template class is defined as

 Template<class Td>
 OCPTL2ResponseGrp

4.1.2.1 Data Type
The class template parameter Td indicates the data type of the SDataPtr signal. This
allows the response to contain any size of data. Note that the type of the response data
must match the type of request data.

45

4.1.2.2 Members
Some configurations of the OCP will not use all of the members in the class. This
corresponds to the fact that some OCP implementations do not use all of the OCP
signals. In that case, the unused members are invalid and should not be referenced or
used. The table below lists the names and their data types of OCPTL2ResponseGrp.

Table 12 OCPTL2ResponseGrp Member Types

Name Type Description
SResp OCPSRespType Slave response code

SDataPtr DataType* Pointer to the data words returned by slave. This
should be an array of data words that is
DataLength long. Note that for responses without
data, such as write acknowledgement responses,
SDataPtr=NULL. According to section 3.1.5 the data
memory is owned by the slave and only
guaranteed to be valid until the master has
accepted the response.

DataLength unsigned int The number of data words in this response. If this
response does not contain any data words, then
DataLength=0.

SThreadID unsigned int Slave thread identifier

STagID unsigned int Slave tag identifier (see OCP 2.1 standard)

STagInOrder bool Force tag-in-order (see OCP 2.1 standard)

SDataInfo unsigned long long int Extra information about the response data.

SRespInfo unsigned long long int Extra information sent out with the response.

LastOfBurst bool Is this the last response of the OCP burst? The OCP
burst may be sent as one or as several separate
responses.

DataLength is always the length of this chunk of the response burst. DataLength gives
the length of the array pointed to the SDataPtr.

4.1.3 Timing Values
For ease of use, the timing values are organized into two groups: the master timing
group and the slave timing group. As the name implies, the values in the master timing
group are set by the master and the values in the slave timing group are set by the
slave.

4.1.3.1 Master Timing Variables
These timing values are set by the master side of the OCP connection.

Table 13 OCP TL2 Master Timing Variables Structure

MTimingGrp:
int RqDL Request Data Latency

int RqSndI Request Send Interval

int DSndI Data Send Interval

OCP TL2 Channel 46

int RpAL Response Accept Latency

The Master Timing Variables are defined as follows. The Request Data Latency (RqDL) is
the number of cycles between the start of a write request and the start of the
corresponding data that is a associated with that write request. This variable only
applies to write requests on channels with data handshake.

The Request Send Interval (RqSndI) is the number of cycles between read requests in a
read burst when the master is connected to a very fast slave. This is the fastest that the
master can send read requests. If RqSndI is set to 1, this means that the master is
capable of sending out a read request every cycle. A RqSndI of 3 means that the master
is much slower and only able to issue a read request every three cycles.

The Data Send Interval (DSndI) is the number of cycles between the data words in a
burst write request. In the case of data handshake, this is the distance between the
data words on the data path through the channel. In the case of no data handshake,
this is the number of cycles between the write requests (that contain the data words). A
DSndI of 1 means the master can send a new write data word every single cycle. A
DSndI of 2 means that the master can send a new write request only ever other cycle.

The Response Accept Latency (RpAL) indicates how long the master will wait to accept a
response from the slave after the response arrives on the channel. An RpAL of 1 means
the master can accept a response every single cycle. An RpAL of 10 means that the
master is much slower and only able to process a new response every 10 cycles.

4.1.3.2 Slave Timing Variables

Table 14 OCP TL2 Slave Timing Variables Structure

STimingGrp
int RqAL Request Accept Latency

int DAL Data Accept Latency

int RpSndI Response Send Interval

The Slave Timing Variables are similar to the Master’s timing variables and are defined
as follows. The Request Accept Latency (RqAL) is the minimum number of cycles
between read requests required by the slave. A very fast slave would have an RqAL of 1
which would meant that the slave could process and accept a read request every cycle.
A slower slave might have an RqAL of 4 which means that the slave can only handle a
new read request every 4 cycles.

The Data Accept Latency (DAL) variable defines the minimum interval between the data
words of a write request burst. It specifies how many cycles the slave requires to accept
each data word of a write request burst. A DAL of 1 means the slave is capable of
processing a new write request every 1 cycles (every cycle).

Finally, the Response Send Interval (RpSndI) gives the number of cycles between
responses if the slave were connected to a very fast master. That is, if the slave were
able to run at full speed, how many cycles would there be between responses? A RpSndI
of 4 indicates that the slave could send a new response every 4 cycles, while a RpSndI
of 1 means that the slave is capable of sending a new response every cycle.

47

4.2 Building the OCP TL2 Channel

4.2.1 Constructor
The OCP TL2 channel has the following constructor:

OCP_TL2_Channel(sc_module_name name,
 ostream *traceStreamPtr=NULL)

Name
Name of the module (channel) instance.

TraceStreamPtr
Pointer to an output stream to use to print debugging information.

4.2.2 Configuring the Channel Clock Period
The OCP TL2 channel operates in integer cycles. To set the length of the clock period of
an OCP channel cycle, use the following command:

void setPeriod(const sc_time& clkPer)

Sets the time taken by one OCP cycle period. Only called from the “outside.” Not called
by master or slave.

4.2.3 Setting the Parameters
The Tl2 channel is configured in the same way as the TL1 channel. The same options
are available, namely configuration from the environment or configuration from the
master and slave cores, with the same callback mechanism to allow the implementation
of generic cores. In fact the classes and methods used are exactly the same as for TL1,
with one exception. For full details see sections 2.2 and 2.7. The exception is that in
TL2, the channel method getParamCl returns a pointer to OCPParameters rather than a
pointer to ParamCl as it does in TL1.

Briefly, the parameters of the channel are set using a string to string map.

void setConfiguration(MapStringType& passedMap)

void setOCPMasterConfiguration(MapStringType& passedMap)

void setOCPSlaveConfiguration(MapStringType& passedMap)

Where passedMap is a map< string, string> where the left side string is the parameter
name (as defined in the OCP specification) and the right side is in the form of
“type:value” where type is “i” for integer or “s” for string.

4.3 OCP TL2 Master Interface Methods (ocp_tl2_master_if.h)
The methods described in this section handle the OCP TL2 channel interface for a
master core model.

API Function Description
Request Commands

OCP TL2 Channel 48

bool
sendOCPRequest(
 OCPTL2RequestGrp Rq)

Puts an OCP TL2 request on the channel. Returns true if
the request was successfully placed on the channel.
False otherwise.

bool
sendOCPRequestBlocking(
 OCPTL2RequestGrp Rq);

Puts an OCP TL2 request on the channel, waiting until
the channel is free if necessary. Waits until the slave
accepts the request and then returns.
Blocking calls may only be called from SC_THREAD
processes.

bool requestInProgress() True is there is currently an active request on the
channel.

Response Commands

bool
getOCPResponse(
 OCPTL2ResponseGrp& Resp)

Gets a new response from the channel and returns
true. Returns false if no new response transaction
available.

bool
getOCPResponseBlocking(
 OCPTL2ResponseGrp& Resp)

Waits for a new, unread OCP TL2 response to come on
to the channel and then gets it.
Can only be called from an SC_THREAD process.
Notice: Not to be used for modeling OCP interfaces
with multiple threads. Use non-blocking instead. Not to
be called from multiple SC_TREADs.

bool acceptResponse() Accepts the response immediately and returns true.
Returns false if no response to accept.

bool
acceptResponse(
 const sc_time& accept_time)

Accepts the response in the future, accept_time
SystemC time units from now.
Returns false if no response to accept.

bool
acceptResponse(int cycles)

Accepts the response in the future, cycles OCP cycle
periods from now. If cycles=0 then the accept is
immediate. If cycles=-1 then the response is accepted
after the current values of the timing variables indicate
that it should have completed. That is, if cycles < 0 then
cycles = getTL2RespDuration();
Returns false if no response to accept.

bool
responseInProgress()

True if there is currently an active response on the
channel.

ThreadBusy Commands

putMThreadBusyBit(
 bool value,
 unsigned int ThreadID);

Sets MThreadBusy thread bit # ThreadID to value.

bool
getSThreadBusyBit(
 unsigned int ThreadID);

Returns the value of SThreadBusy bit # ThreadID.

Channel Timing Functions

const sc_time&
getPeriod(void) const

Get the time taken by one OCP cycle period in the
channel.

Timing Value Functions

putMasterTiming(
 MTimingGrp mTimes);

Set new values for all of the master timing variables.

getMasterTiming(
 MTimingGrp& mTimes);

Get the current values for all of the master timing
variables.

49

getSlaveTiming(
 STimingGrp& sTimes);

Get the current values for all of the slave timing
variables.

Timing Helper Functions

int
getWDI();

Gets the Write Data Interval, the number of cycles
between data words in a write request. Called by
master or slave. If the channel does not have a data
handshake path, this function returns the number of
cycles between write requests. (Note that this value is
calculated from Master Data Send Interval and Slave
Data Accept Interval).

int
getRqI();

Gets the Read Request Interval, the number of cycles
between the individual read requests in a read request
burst. Called by master or slave.

int
getTL2ReqDuration();

The estimated minimum number of cycles the current
request will be on the channel. This value is computed
from the timing values as well as from the channel
configuration. Called by master or slave.

int
getRDI();

Gets the Response Data Interval, the number of cycles
between data words in a read response. Called by
master or slave. Note that this value is computed from
timing values set by the master and slave as well as by
from the channel configuration.

int
getTL2RespDuration();

The estimated minimum number of cycles the current
response will be on the channel. This value is computed
from the timing values, the number of data words in the
response and the channel configuration. Called by
master or slave.

void setOCPMasterConfiguration(
MapStringType& passedMap)

Method for the master to inform the channel of the
configuration of its OCP port during end-of-elaboration

void addOCPConfigurationListener(
OCP_TL_Config_Listener& listener)

Method for the master to register itself to be called-
back when the channel configuration changes, for
example when set by the slave.

const std::string peekChannelName() Method to get the channel name, needed when a
multiple-port configuration listener is called back, to
distinguish the OCP port to which the callback refers.

4.4 OCP TL2 Slave Interface Methods (ocp_tl2_slave_h)
The methods described in this section handle the OCP TL2 channel interface for a slave
core model.

API Function Description
Request Commands

bool
getOCPRequest(
 OCPTL2RequestGrp& Rq)

Gets a new request from the channel and returns true,
otherwise returns false if no new request available.

bool
getOCPRequestBlocking(
 OCPTL2RequestGrp& Rq)

Gets a new request from the channel if available,
otherwise waits for a new request and then gets it.
Notice: Not to be used for modeling OCP interfaces
with multiple threads. Use non-blocking instead. Not to
be called from multiple SC_TREADs.

OCP TL2 Channel 50

bool
acceptRequest(void)

Accepts the request immediately and returns true.
Returns false if no request to accept.

bool
acceptRequest(
 const sc_time& accept_time)

Accepts the request in the future, accept_time
SystemC time units from now.
Returns false if no request to accept.

bool
acceptRequest(int cycles)

Accepts the request in the future, cycles OCP cycle
times from now. If cycles=0 then the accept is
immediate. If cycles=-1 then the request is accepted
after the timing points indicate that it should have
completed. That is, if cycles < 0 then cycles =
getTL2ReqDuration();
Returns false if no request to accept.

bool
requestInProgress()

True is there is currently an active request on the
channel.

Response Commands

bool
sendOCPResponse(
 OCPTL2ResponseGrp Resp)

Puts an OCP TL2 response on the channel. Called by
slave. Returns true if channel was open for a new
response. False otherwise.

bool
sendOCPResponseBlocking(
 OCPTL2ResponseGrp Resp)

Waits for the OCP TL2 response channel to become
free. Puts an OCP TL2 response on the channel.

bool
responseInProgress()

True if there is currently an active response on the
channel.

ThreadBusy Commands

bool getMThreadBusyBit(
 unsigned int ThreadID);

Returns the value of MThreadBusy bit # ThreadID.

putSThreadBusyBit(
 bool value,
 unsigned int ThreadID);

Sets SThreadBusy bit # ThreadID to value.

bool
getSThreadBusyBit(
 unsigned int ThreadID);

Returns the value of SThreadBusy bit # ThreadID.

Channel Timing Functions

const sc_time&
getPeriod(void) const

Get the time taken by one OCP cycle period in the
channel.

Timing Value Functions

getMasterTiming(
 MTimingGrp& mTimes);

Get the current values for all of the master timing
variables.

putSlaveTiming(
 STimingGrp sTimes);

Set new values for all of the slave timing variables.

getSlaveTiming(
 STimingGrp& sTimes);

Get the current values for all of the slave timing
variables.

Timing Helper Functions

51

int
getWDI();

Gets the Write Data Interval, the number of cycles
between data words in a write request. Called by
master or slave. If the channel does not have a data
handshake path, this function returns the number of
cycles between write requests. (Note that this value is
calculated from Master Data Send Interval and Slave
Data Accept Interval).

int
getRqI();

Gets the Read Request Interval, the number of cycles
between the individual read requests in a read request
burst. Called by master or slave.

int
getTL2ReqDuration();

The estimated minimum number of cycles the current
request will be on the channel. This value is computed
from the timing values as well as from the channel
configuration. Called by master or slave.

int
getRDI();

Gets the Response Data Interval, the number of cycles
between data words in a read response. Called by
master or slave. Note that this value is computed from
timing values set by the master and slave as well as by
from the channel configuration.

int
getTL2RespDuration();

The estimated minimum number of cycles the current
response will be on the channel. This value is computed
from the timing values, the number of data words in the
response and the channel configuration. Called by
master or slave.

void setOCPSlaveConfiguration(
MapStringType& passedMap)

Method for the slave to inform the channel of the
configuration of its OCP port during end-of-elaboration

void addOCPConfigurationListener(
OCP_TL_Config_Listener& listener)

Method for the slave to register itself to be called-back
when the channel configuration changes, for example
when set by the master.

const std::string
peekChannelName()

Method to get the channel name, needed when a
multiple-port configuration listener is called back, to
distinguish the OCP port to which the callback refers.

4.5 OCP TL2 Channel Events
The methods described in this section handle give access to the events generated by the
OCP TL2 channel. While most events are available to both the master and the slave,
some events are meant for only one side or the other and when this is the case it is
indicated in the table below.

API Event Function Description
DataFlow Events

sc_event&
RequestStartEvent()

Event finder for the channel event that is triggered when a
new request is placed on the channel.

sc_event&
RequestEndEvent()

Event finder for the channel event that is triggered when the
request is accepted by the slave and the channel is
released.

sc_event&
ResponseStartEvent()

Event finder for the channel event that is triggered when a
new response is placed on the channel.

OCP TL2 Channel 52

sc_event&
ResponseEndEvent()

Event finder for the channel event that is triggered when the
response is accepted by the master and the channel is
released.

ThreadBusy Events

sc_event&
MThreadBusyEvent()

Event finder for the channel event that is triggered
whenever MThreadBusy signal changes. This event finder is
available to the Slave only.

sc_event&
SThreadBusyEvent()

Event finder for the channel event that is triggered
whenever SThreadBusy signal changes. This event finder is
available to the Master only.

Channel Timing Events

sc_event&
MasterTimingEvent()

Event finder for the channel event that is triggered
whenever the master’s timing variables are changed. This
event finder is available to the slave only.

sc_event&
SlaveTimingEvent()

Event finder for the channel event that is triggered
whenever the slave changes its timing variables on the
channel. This event finder is available to the master only.

Sideband Signal Events

sc_event&
SidebandMasterEvent()

Event finder for the event that is triggered whenever the
master changes one of its sideband signals. This event finder
is available to the slave only.

sc_event&
SidebandSlaveEvent()

Event finder for the event that is triggered whenever the
slave changes one of its sideband signals. This event finder is
available to the master only.

sc_event&
SidebandCoreEvent()

Event finder for the event that is triggered whenever the
“Core” side of the OCP connection changes one of its
sideband signals. This event finder should be used by the
“System” side only.

sc_event&
SidebandSystemEvent()

Event finder for the event that is triggered whenever the
“System” side of the OCP connection changes one of its
sideband signals. This event finder should be used by the
“Core” side only.

4.6 Reset
The OCP TL2 channel has limited reset support. The reset commands set and unset the
reset flags in the channel. They do not change or reset the current state of the channel.
Nor do they interrupt blocking commands. If a reset signal is desired, then it is up to
the master and slave cores to take appropriate action by immediately accepting
outstanding requests and responses and refraining from sending any new requests or
responses until the reset is over.

Reset API Function Description
sc_event&
ResetStartEvent()

Event finder for the channel event that is triggered when a reset is
asserted on the channel.

sc_event&
ResetEndEvent()

Event finder for the channel event that is triggered when a reset is
ended on the channel.

bool
getReset()

Checks if channel is in reset state. Returns true if the channel is in
reset, false otherwise. Called by the master or slave.

53

void
MResetAssert()

Called by the master only. Sets the MReset_n flag to false. Triggers
the ResetStartEvent.

void
MResetDeassert()

Called by the master only. Sets the MReset_n flag to true. Triggers
the ResetEndEvent.

void
SResetAssert()

Called by the slave only. Sets the SReset_n flag to false. Triggers
the ResetStartEvent.

void
SResetDeassert()

Called by the slave only. Sets the SReset_n flag to true. Triggers the
ResetEndEvent.

4.7 Timing Model for the OCP TL2 Channel
The timing model for the OCP TL2 channel aims to reap the benefits of increased
channel speed due to OCP burst transaction granularity while mitigating the trade-off
by providing sub granularity timing information that can be used to more accurately
estimate the timing of the individual OCP transfers that underlie each OCP burst
transaction.

4.7.1 Time in the OCP TL2 Channel
For speed and efficiency, the OCP TL2 channel runs un-clocked with the timing taken
care of in the master and slave core modules that are connected to it. The timing of the
OCP channel is determined by the when the channel’s transaction functions (send and
accept) are called. This in turn is determined by the cores connected to the channel as
they are the ones that call the channel’s functions. The channel itself operates passively
without a notion of time. The channel is only active when one of its functions has been
called by an attached core. Once a function has been called, the channel will do its
processing and may also generate events.

The starting time and ending time of each OCP burst request and response are available
to the core modules in the course of the simulation. In addition to the start and end
timing information, the core modules may also need the timing of the underlying OCP
transfers that the burst transaction represents. In the following section, a method is
described for doing the above by utilizing the latency definitions listed in the OCP 2.0
Specification and additional timing variables added to the channel.

4.7.2 Timing for Different Burst Types
The timing model covers OCP write bursts, read bursts, and non-posted write bursts,
where the burst size can be 1 or any other number. The timing model works with a
combination of different MRMD (Multiple Requests, Multiple Data) and SRMD (Single
Request, Multiple Data) burst transaction types. For instance, an OCP connection (and
the channel model representing it) can be configured at elaboration time to deliver any
combination of the following burst types:

Imprecise MRMD burst

Precise MRMD burst

SRMD burst

OCP TL2 Channel 54

The most complicated case is an OCP connection that allows imprecise MRMD burst
delivery, precise MRMD burst delivery, and SRMD burst delivery at the same time1. Size
of 3 bursts are used as examples in Figure 3 to Figure 10 to demonstrate what kind of
TL2 timing information can be important to both the master and slave core modules.

4.7.3 A Guide to the Timing Figures
In these TL2 timing figures, activities for the OCP request phase (Req), the
datahandshake phase (DHS), and the response phase (Resp) within a burst are
represented horizontally -- simulation time goes from left to right. Each dashed, vertical
line indicates a timing point (can be an estimated one) that happens inside a burst
transaction and can be used by the TL2 master (on the top of the figure) and slave (on
the bottom of the figure) modules to improve timing accuracy. A timing point usually
represents either the beginning or the end of an OCP phase activity inside a burst. The
alphabetical order among letters shown inside the two dashed boxes attached to a
timing point line tells which one needs to happen before the other. The number shown
inside a dashed box, if any, indicates the OCP transfer count. Latency between two
interesting timing points is shown by a horizontal, double arrow line segment tagged
with a fixed latency or a latency estimation function.

Each triangle represents a TL2 channel (API) call that may need to be issued by the
master module or the slave module to the OCP TL2 channel model. Note that the times
when these calls are made to the OCP TL2 channel model are associated with actual
simulation times given by the operation of the simulation. The other timing points are
then estimated using both the actual timing points from the API calls and the timing
variables passed to the channel.

For each OCP burst, there can be many interesting timing points and latency numbers
associated with the underlying transfers. The following is a summary list of these
variables used (details are given later):

Triangle 1. This is the last chance for the master to set the OCP TL2 timing variables for
this transaction. This is the start time of the TL2 burst request. This is also the start
time of the first request of the burst.

Dashed box A is the starting point (the send time) of a write or read OCP request.

Dashed box B is the ending point (the accept time) of a write OCP data or a read OCP
request.

Triangle 2 is the end of the OCP TL2 burst request transaction. This is the time when
the TL2 slave accepts the OCP TL2 burst request. This is also the accept time of the last
OCP data word transfer of the burst. This is the last chance for the slave to set the OCP
TL2 timing variables for the next request.

Triangle 3 is the start time of the TL2 burst response. This is also the start time of the
first response of the burst. This is also the last time for the slave to set its timing
variables for this response.

Dashed box C is the starting point of an OCP response phase.

Triangle 4 is the end of the OCP TL2 burst response. This is the time that the TL2
master accepts the OCP TL2 response. This is also the last time for the master to set its
timing variables for the next response.

1 If SRMD burst is allowed on an OCP connection, the datahandshake is always turned

on.

55

Dashed box D is the ending point of an OCP response phase.

Fixed latency numbers are defined in the OCP Specification

RqAL Request accept latency

RqDL Request-data latency

DAL Data accept latency

RpAL Response accept latency

Expected rates:
RqSndR

Master’s send rate of the read requests in a burst. The request send interval,
RqSndI = 1/RqSndR.

DSndR
Master’s send rate of the write OCP data words in a burst. The data send interval,
DSndI = 1/DSndR.

RpSndR
Slave’s send rate of the write responses in a burst. The response send interval,
RpSndI = 1/RpSndR.

Latency estimation functions:
avgWDI = max(DSndI,DAL)

Estimated average write data interval, given the master’s write data send rate
(DSndR) and the slave’s data accept latency (DAL)

avgRRqI = max(RqSndI,RqAL)
Estimated average read request interval, given the master’s read request send
interval (RqSndR) and the slave’s request accept latency (RqAL)

avgRDI = max(RpSndR,RpAL)
Estimated average read data interval, given the slave’s response send interval
(RpSndR) and the master’s response accept latency (RpAL)

avgWRpI = max(RpSndR,RpAL)
Estimated average write response interval, given the slave’s response send rate
(RpSndR) and the master’s response accept latency (RpAL) <note: same as avgRDI>

OCP TL2 Channel 56

4.7.4 Write Requests

Figure 6 Timing information for MRMD posted Write Burst with datahandshake

TL2 S
lave A

ccepts
R

equest

TL2 M
aster S

ends R
equest

p

W
rite

R
eq1

R
eq

D
H

S

R
esp

W
rite

R
eq2

W
rite

R
eq3

W
rite

D
ata1

W
rite

D
ata2

M
aster

Slave

OCP

A
A

1

B
1

B
2

B
3

A
2

A
3

Tim
e

1

R
qD

L
avgW

D
I(D

SndI,D
A

L)
avgW

D
I(D

S
ndI,D

A
L)

D
A

L
D

A
L

2

W
rite

D
ata3

D
A

L

57

Figure 7 Timing information for MRMD posted Write Burst w/o datahandshake

Slave accepts TL2
B

urst R
equest

M
aster starts TL2 B

urst
R

equest on the C
hannel

W
rite

R
eq/

D
ata1

R
eq

D
H

S

R
esp

W
rite

R
eq/

D
ata2

M
aster

Slave

OCP

AA
1

B
1

B
2

B
3

A
2

A3

Tim
e

1

avgW
D

I(D
S

ndI,D
A

L)
avgW

D
I(D

S
ndI,D

A
L)

D
A

L
D

AL

2

W
rite

R
eq/

D
ata3

D
A

L

OCP TL2 Channel 58

4.7.5 OCP Posted Write Burst Timing

Figure 8 Timing information for SRMD posted Write Burst

TL2 S
lave

Accepts R
equest

TL2 M
aster S

tarts TL2
B

urst R
equest on C

hannel

SR
M

D
 posted w

rite burst

W
rite

R
eq

R
eq

D
H

S

R
esp

W
rite

D
ata1

W
rite

D
ata2

M
aster

Slave

OCP

A
A

1

B
1

B
2

B
3

A
2

A3

Tim
e

1

R
qD

L
avgW

D
I(D

S
ndI,D

AL)
avgW

D
I(D

S
ndI,D

A
L)

D
AL

D
A

L

2

W
rite

D
ata3

D
A

L

59

The current OCP TL2 channel models only the OCP burst transaction-level timing but
no individual OCP transfer-level timing. For a posted write burst of size 3, it gives us
only two timing points:

The starting time of the burst given by the master module when the master issues a
posted write burst request unto the OCP TL2 channel – corresponding to the timing
point “Triangle 1” shown in Figure 6

The ending time of the burst given by the slave module when the slave accepts the
whole burst and releases the request path of the OCP TL2 channel – corresponding to
the timing point “Triangle 2” shown in Figure 6

In order to have a more accurate timing in the master and slave modules, the
approximate start times and ending times of each of the write data words become
valuable. For instance, the master module and the slave module can use these timing
estimations to mimic the releasing and allocating resources, respectively. Details on
how to compute these OCP transfer-level timing points are described below.

4.7.5.1 Start Time of the First Data Word
Timing point A1 can be determined by the master’s RqDL. This is the interval (in cycles)
between the time when the master places the request on the channel and the time that
master places the corresponding data word on to the channel. When the slave receives
the OCP TL2 write burst request from the master at time A1, the slave knows the start
time of the first OCP write request of the burst and can compute the start time of the
first data word as:

A1 = A + RqDL

When data handshake is turned off on the OCP connection, the value of RqDL is 0;
therefore, timing point A and A1 always happen in the same time (as shown in Figure 7.

4.7.5.2 Time between Two Data Write Words
Another important timing information between OCP transfers is the average time
between the i-th data word and the (i+1)-th data word of a burst; i.e., the average Write
Data Interval (avgWDI). The start time of the i-th data word, Bi, can be computed
approximately as:

Define: Ai := Ai-1 + avgWDI

The avgWDI is determined by two factors: how fast the master can send data down the
channel (Data Send Rate, DSndR), and how long the slave waits to accept the data
(DAL). Since the master cannot send a new data word until the slave accepts the
previous data word, both the master and slave have a hand in determining this value.
As shown in Figure 6, we represent the write data interval value by the following
function:

avgWDI = max(DSndI, DAL)

To make this tractable, the DSndR (Data Send Rate) is defined to be the data rate the
master can send data down the channel if the slave were to instantly accept all data.
And DSndI, the data send interval, is simply 1/DSndR. Thus DSndI is the interval
between the data words if the master were connected to a perfectly fast slave. If a
master could send data over the channel every single cycle, then the DSndI would be 1.
If the master could only send data every other cycle, then the DSndI would be 2.

OCP TL2 Channel 60

The DAL, data accept interval, is number of cycles the slave will take to accept each
data word. If the slave does not need to use backpressure to delay acceptance of data
words, the DAL would be set to 1 (meaning that the slave could accept a new data word
every cycle).

4.7.5.3 End Time of the OCP Write Burst
This is the time (B3 on Figure 6) when the last data word has accepted by the slave. The
slave needs to decide this timing point and after this time the channel is free to start a
new burst. A master can use the avgWDI formula as described in the previous sub-
section to determine, approximately, when an OCP data word within a burst is
consumed by the slave.

Note that the slave must accept the OCP TL2 Burst transaction even if the OCP
SCmdAccept (or SDataAccept) signal is not part of the OCP channel. In the OCP TL2
model, accepting a request indicates that the correct amount of time has passed for the
slave to have processed the data and also indicates that the slave is ready to receive
another TL2 burst request from the master. In the lower level OCP TL1 channel model,
the slave must toggle the SCmdAccept or SDataAccept for each individual request
transfer and data word if those signals are part of the OCP connection. At the TL2 level,
the slave accepts the whole OCP burst transaction at once and must do so regardless of
the OCP signals used to send that burst.

Note that because the OCP TL2 channel does not explicitly model the data handshake
path, some of the parallelism available in an OCP connection can be lost. For instance,
the first OCP request of a burst can be sent after the last request of a previous OCP
burst has been accepted -- even if the data word associated with this last request of the
previous burst has not yet been accepted. In the OCP TL2 model described in the
previous paragraph, the first request of a new burst cannot be sent until both the
previous OCP burst’s last request and data have been accepted by the slave. This
difference can contribute to timing inaccuracy especially when the master tightly
interlaces write requests (which send data) with reads (which do not) over an OCP
channel with data handshake turned. The problem can be overcome by careful
bookkeeping in the slave combined with early accepts of read requests that follow write
bursts.

4.7.5.4 SRMD Posted Write Burst
The difference between a SRMD (Single Request / Multiple Data) posted write burst (as
shown in Figure 8] and a MRMD (Multiple Requests / Multiple Data) one (as shown in
Figure 6) is to send only one request instead of N request phases.

4.7.5.5 Posted Write with Responses
Posted writes also have responses. We will skip this topic now and cover it when the
non-posted write burst is discussed later.

61

4.7.6 Read Requests

Figure 9 Timing Information for MRMD Read Burst

S
lave A

ccepts TL2
R

ead R
equest

M
aster S

tarts TL2 R
ead R

equest
B

urst on the C
hannel

R
ead R

eq1
R

eq

D
H

S

R
esp

R
ead R

eq2
R

ead R
eq3

M
aster

Slave

OCP

A
1

B
1

B
2

B
3

A
2

A
3

Tim
e

1

C
3

avgR
R

qI(R
qS

ndI,R
qA

L)
avgR

R
qI(R

qS
ndI,R

qA
L)

R
qA

L

R
ead R

esp/
D

ata1

C
1

S
lave S

tarts TL2
R

esponse

D
1

R
pA

L

avgR
D

I(R
pS

ndI,R
pA

L)

R
ead R

esp/
D

ata2

C
2

D
2

R
pA

L

2
3

R
ead R

esp/
D

ata3

R
pA

L

D
3

R
qA

L
R

qA
L

M
aster A

ccepts TL2 R
esponse

4

OCP TL2 Channel 62

Figure 10 Timing information for SRMD Read Burst

M
aster S

tarts TL2 B
urst R

ead
R

equest

SR
M

D
 read burst

R
ead R

eq
R

eq

D
H

S

R
esp

M
aster

Slave

OCP

A
1

B
1

Tim
e

1

C
3

R
qA

L

R
ead R

esp/
D

ata1

C
1

S
lave S

tarts TL2 B
urst

R
esponse

D
1

R
pA

L

avgR
D

I(R
pS

ndI,R
pA

L)

R
ead R

esp/
D

ata2

C
2

D
2

R
pA

L

3

R
ead R

esp/
D

ata3

R
pA

L

D
3 4

S
lave A

ccepts TL2
R

equest 2

M
aster A

ccepts
TL2 R

esponse

63

4.7.7 OCP Read Burst Timing
Unlike a posted write burst (a write without a response) described in the previous
section, a read burst is modeled using a read burst, request-side transaction and a read
burst, response-side transaction in parallel. Thus, a read burst’s response-side
transaction can be overlapped with another read burst’s request-side transaction, in
terms of simulation timing.

Similar timing points described for a posted write burst are also listed for a read burst
(as shown in Figure 9); except the following:

 There is no request-side data word delivery (i.e., no data handshake)

 There are new terms of RqSndR, RqAL, and avgRRqI

Details about new timing points/variables for the read burst are described below.

4.7.7.1 Time between Two Read Requests
For a MRMD read burst and on the request side, timing information about the
individual OCP requests that make up the burst request can be calculated and is
represented by the average time between the i-th read request and the (i+1)-th read
request of a burst; i.e., the average Read Request Interval (avgRRqI). The start time of
the i-th read request, Ai, can be computed approximately as:

Define: Ai := Ai-1 + avgRRqI

The avgRRqI is determined by two factors: how fast the master can send requests down
the channel (Request Send Rate, RqSndR or Request Send Interval, RqSndI =
1/RqSndR), and how long the slave waits to accept the request (RqAL). Thus, both the
master and slave have a hand in determining this value. We represent the read request
interval value by the following function:

avgRRqI = max(RqSndI, RqAL)

To make this tractable, RqSndI is defined to be the interval between requests if the
master were connected to a perfectly fast slave, which could instantly accept all
requests. If the master could send a request every cycle, then RqSndI would be one. If
the master could send requests every third cycle then RqSndI would be 3. If the slave
does not need to use backpressure to delay acceptance of requests, the RqAL would be
set to 1 (meaning that the slave could accept a new read request every cycle).

4.7.7.2 Different Chunk Sizes for the Request Burst and Data Response Burst
Read requests and read data responses are processed independently on different paths;
thus, it is possible that the master could send a size of read burst requesting 3 data
words and the slave could respond with two separate read response bursts of size 2 and
size 1, respectively.

4.7.7.3 Time of the First OCP Data Response
The timing point C1 is the time of the first read data response sent over the OCP
connection. This is also the same time as the start time of an OCP TL2 read burst data
response. Note that the interval between A and C1 is known as the “First Read Latency”.

OCP TL2 Channel 64

4.7.7.4 Time between Two Read Data Words
Timing information between two consecutive OCP read data responses can be important
and is represented by the average time between the i-th read data (and response) and
the (i+1)-th read data (and response) of a burst; i.e., the average Read Data Interval
(avgRDI). The start time of the i-th read data response, Ci, can be computed
approximately as:

Define: Ci := Ci-1 + avgRDI, where i >2

The avgRDI is determined by two factors: how fast the slave can send response data
words (RpSndI), and how long the master waits to accept the response data word
(RpAL). Thus, both the slave and master have a hand in determining the avgRDI. As
shown in Figure 9, we represent the read data (and response) interval value by the
following function:

avgRDI = max(RpSndI, RpAL)

To make this tractable, RpSndI (Response Send Interval) is defined to be the number of
cycles there would be between response data words if the master were to instantly
accept response. A fast slave that could send a new response data word every cycle
would have a RpSndI of 1. I slower slave that take 3 cycles to send each data word
response would have a RpSndI of 3. If the master does not need to use backpressure to
delay acceptance of data words and responses, the RpAL would be set to 1 (meaning
that the master could accept a new read data response every cycle).

4.7.7.5 SRMD Read Burst
The difference between a SRMD read burst (as shown in Figure 10) and a MRMD one
(as shown in Figure 9) is to only send one read request instead of N read request
phases.

65

4.7.8 Non-Posted Writes

Figure 11 MRMD Non-Posted Write Burst with data handshake

S
lave A

ccepts TL2
W

rite R
equest

M
aster Starts TL2 R

equest on
the C

hannel

W
rite

R
eq1

R
eq

D
H

S

R
esp

W
rite

R
eq2

W
rite

R
eq3

W
rite

D
ata1

W
rite

D
ata2

W
rite

D
ata3

M
aster

Slave

OCP

A
A

1

B
1

B
2

B3

A
2

A
3

Tim
e

1

R
qD

L
avgW

D
I(D

S
ndI,D

A
L)

avgW
D

I(D
S

ndI,D
A

L)

D
A

L
D

AL
D

A
L

W
rite

R
esp1

C
1

S
lave S

tarts TL2
N

on-P
osted W

rite
R

esponse

D
1

R
pA

L

avgW
R

pI(R
pS

ndI,R
pA

L)

W
rite

R
esp2

C
2

D
2

R
pAL

3

W
rite

R
esp3

R
pA

L

D
3

avgW
R

pI
(R

pS
ndI',

R
pA

L)

2

4

M
aster Accepts TL2

N
on-Posted W

rite R
esponse

C
3

OCP TL2 Channel 66

Figure 12 Timing information for MRMD non-posted Write Burst w/o datahandshake

S
lave A

ccepts TL2
burst w

rite request

M
aster S

tarts TL2
B

urst N
on-P

osted W
rite R

equest

W
rite

R
eq/

D
ata1

R
eq

D
H

S

R
esp

W
rite

R
eq/

D
ata2

W
rite

R
eq/

D
ata3

M
aster

Slave

OCP

A
1

B1
B

2
B

3

A
2

A
3

Tim
e

1

avgW
D

I(D
S

ndI,D
A

L)
avgW

D
I(D

S
ndI,D

A
L)

D
A

L
D

A
L

D
A

L

W
rite

R
esp1

C
1

S
lave S

ends TL2 B
urst

N
P

 W
rite R

esponse

D
1

R
pA

L

avgW
R

pI(R
pS

ndI,R
pA

L)

W
rite

R
esp2

C
2

D
2

R
pA

L

3

W
rite

R
esp3

R
pA

L

D
3

2

4

M
aster A

ccepts TL2
N

P
 W

rite R
esponse

C
3

67

Figure 13 Timing information for SRMD non-posted Write Burst

S
lave Sends TL2

N
P W

rite R
esponse

M
aster S

ends TL2 B
urst

non-posted W
rite R

equest

SR
M

D
 non-posted w

rite burst

W
rite

R
eq

R
eq

D
H

S

R
esp

W
rite

D
ata1

W
rite

D
ata2

W
rite

D
ata3

M
aster

Slave

OCP

A
A

1

B
1

B
2

B
3

A
2

A
3

Tim
e

1

C

R
qD

L
avgW

D
I(D

SndI,D
A

L)
avgW

D
I(D

SndI,D
A

L)

D
A

L
D

A
L

D
A

L

3

W
rite R

esp

R
pA

L

D

2

4

M
aster A

ccepts TL2
N

P W
rite R

esponse

S
lave Accepts TL2

N
P

 W
rite R

equest

OCP TL2 Channel 68

4.7.9 Non-Posted Write Timing
A non-posted write is a request that receives an acknowledgement response from the
slave. The non-posted write’s timing model is like a composition of the posted write
burst’s timing model and the response side of the read burst’s timing model (see Figure
11 for details). On the request side, timing points and variables described in the posted
write section apply here also. On the response side, the differences compared to the
read burst one are as follows:

 Even though no data words are delivered, the avgRDI function is used for the
interval between responses (avgWRpI).

 For a SRMD non-posted write burst, only one write response is sent back for a write
burst transaction (see Figure 13, the Resp line).

Details about the new timing points and variables for the non-posted write burst are
described below.

4.7.9.1 Time between Two MRMD Write Responses
Timing information between two consecutive OCP write responses of a MRMD write
burst can be important and is represented by the average time between the i-th write
response and the (i+1)-th write response of a MRMD write burst; i.e., the average Write
Response Interval (avgWRpI). The start time of the i-th write response, Ei, can be
computed approximately as:

Define: Ci := Ci-1 + avgWRpI, where i >2

In order to reduce the complexity of the timing variables, it is assumed that the
avgWRpI is the same as the avgRDI for read responses and this is used instead. Thus:

Ci := Ci-1 + avgRDI, where i >2 & avgRDI = avgWRpI

Where avgRDI is calculated exactly as with read responses.

4.7.9.2 Posted Write Burst with Responses
Note that the above response-side timing model can be applied to posted write burst
with responses.

4.7.10 OCP TL2 Timing Variables
In order for the master and slave core models attached to an OCP TL2 channel to
calculate the approximate timing points regarding individual OCP transfers of the
bursts that they receive, the core models need to set and read the basic channel timing
variables. Table 15 lists timing variables that are stored in the channel to help derive
the timing points of the corresponding transfers.

Table 15 TL2 Channel Timing Variables

Timing
Variables

Set by Description

RqAL Slave Request accept latency

RqDL Master Request-data latency. The number of cycles between the
start of the first request of a write burst and the start of the first
write data word of the burst. Note that this variable is zero in

69

the case where there is no data handshake in the channel.

DAL Slave Write data accept latency. The number of cycles it takes the
slave to accept a write data word (for data handshake) or to
accept a write request (when data handshake is not part of
the channel).

RpAL Master Response accept latency. How many cycles it take the
master to accept a response.

RqSndI Master Request Send Interval. Number of cycles between read
requests when the master is sending to a very fast slave. If the
master could send every cycle, RqSndI=1. If the master can
only send a new request every other cycle, RqSndI=2.

DSndI Master Data Send Interval. Number of cycles between write data
words when the master is sending to a very fast slave. If the
master could send a new data word every cycle, DSndI=1. If
the master can only send a new write data word every other
cycle, DSndI=2.

RpSndI Slave Response Send Interval. Number of cycles between responses
when the slave is sending to a very fast master. If the slave
could send a new response every cycle, RpSndI=1. If the slave
can only send a new response every third cycle, RpSndI=3.

These timing variables are stored in the master and slave timing structures described in
the trimming structures section above.

4.7.11 OCP TL2 Timing Functions
In addition to providing the timing variables, the TL2 channel also provides timing
helper functions that calculate derived timing information commonly needed by core
models. The functions are further described in the master and slave interface sections
above.

4.8 OCP TL2 Channel Monitor Interface

The OCP TL2 channel implements the OCP TL2 monitor interface. This allows monitors
to be connected to the channel, for performance analysis, trace dumping, protocol
checking and so on.

The methods of the monitor interface are listed below. Multiple monitors may be used
in parallel on a single OCP TL2 channel. A TL2 monitor support the OCP TL2 observer
interface. The monitor registers itself with the channel as observing certain aspects of
the traffic, such as request-start-events. The channel informs the monitor by call-back
when observed events occur and the monitor is able in turn to poll (peek) the associated
data values (eg the OCP request group) from the channel.

The methods of the interfaces are merely listed here. More detailed documentation of
their meaning is required but not yet available. There are four C++ interfaces:

• Peek interface, for getting data values from channel transactions

• Register interface, for registering a monitor with the channel

• Monitor interface, which is simply the union of the peek and register interfaces

OCP TL2 Channel 70

• Observer interface, from which the monitor is derived, to allow the channel to call it
back. In this interface the methods have default implementations (not shown below)
which means that the monitor is not obliged to implement all methods anew.

template <class Tdata, class Taddr>
class OCP_TL2_Monitor_ObserverIF
{
public:
 typedef OCP_TL2_MonitorPeekIF<Tdata,Taddr> tl2_peek_type;

 virtual void registerChannel(tl2_peek_type *,
 bool master_is_node=false,
 bool slave_is_node=false);

 virtual void start_of_simulation();

 virtual void NotifyRequestStart(tl2_peek_type *);
 virtual void NotifyRequestEnd(tl2_peek_type *);
 virtual void NotifyResponseStart(tl2_peek_type *);
 virtual void NotifyResponseEnd(tl2_peek_type *);

 virtual void NotifyMThreadBusy(tl2_peek_type *);
 virtual void NotifySThreadBusy(tl2_peek_type *);

 // timing
 virtual void NotifyMasterTiming(tl2_peek_type *);
 virtual void NotifySlaveTiming(tl2_peek_type *);

 // reset
 virtual void NotifyResetStart(tl2_peek_type *);
 virtual void NotifyResetEnd(tl2_peek_type *) ;

 // sideband signals
 virtual void NotifySidebandMaster(tl2_peek_type *);
 virtual void NotifySidebandSlave(tl2_peek_type *);
 virtual void NotifySidebandCore(tl2_peek_type *);
 virtual void NotifySidebandSystem(tl2_peek_type *);
};

template <class Tdata, class Taddr>
class OCP_TL2_MonitorPeekIF : virtual public sc_interface
{
public:
 typedef OCPTL2RequestGrp<Tdata,Taddr> request_type;
 typedef OCPTL2ResponseGrp<Tdata> response_type;

 // port names
 virtual const string peekChannelName() const = 0;
 virtual const string peekMasterPortName() const = 0;
 virtual const string peekSlavePortName() const = 0;

 // transactions
 virtual const request_type& peekOCPRequest() const = 0;

71

 virtual const response_type& peekOCPResponse() const = 0;
 virtual bool requestInProgress() const = 0;
 virtual bool responseInProgress() const = 0;

 // thread busy
 virtual const unsigned int peekMThreadBusy() const = 0;
 virtual const unsigned int peekSThreadBusy() const = 0;

 // timing
 virtual const MTimingGrp& peekMasterTiming() const = 0;
 virtual const STimingGrp& peekSlaveTiming() const = 0;

 // timing helper
 virtual int getWDI() const = 0;
 virtual int getRqI() const = 0;
 virtual int getTL2ReqDuration() const = 0;
 virtual int getRDI() const = 0;
 virtual int getTL2RespDuration() const = 0;

 // reset
 virtual bool getReset() = 0;

 // sideband signals
 virtual const OCPSidebandGrp& peekSideband() const = 0;

 // OCP paramertes
 virtual OCPParameters* GetParamCl() = 0;
};

template <class Tdata, class Taddr>
class OCP_TL2_MonitorRegisterIF : virtual public sc_interface
{
public:
 typedef OCP_TL2_Monitor_ObserverIF<Tdata,Taddr> observer_type;

 // transactions
 virtual void RegisterRequestStart (observer_type *) = 0;
 virtual void RegisterRequestEnd (observer_type *) = 0;
 virtual void RegisterResponseStart(observer_type *) = 0;
 virtual void RegisterResponseEnd (observer_type *) = 0;
 // thread busy
 virtual void RegisterMThreadBusy(observer_type *) = 0;
 virtual void RegisterSThreadBusy(observer_type *) = 0;

 // timing
 virtual void RegisterMasterTiming(observer_type *) = 0;
 virtual void RegisterSlaveTiming (observer_type *) = 0;

 // reset
 virtual void RegisterResetStart(observer_type *) = 0;
 virtual void RegisterResetEnd (observer_type *) = 0;

 // sideband signals
 virtual void RegisterSidebandMaster(observer_type *) = 0;
 virtual void RegisterSidebandSlave (observer_type *) = 0;

OCP TL2 Channel 72

 virtual void RegisterSidebandCore (observer_type *) = 0;
 virtual void RegisterSidebandSystem(observer_type *) = 0;

};

template <class Tdata, class Taddr>
class OCP_TL2_MonitorIF :
 virtual public OCP_TL2_MonitorPeekIF<Tdata,Taddr>,
 virtual public OCP_TL2_MonitorRegisterIF<Tdata,Taddr>
{};

73

5 OCP TL3 Channel Model

5.1 OCP TL3 Communication API

The OCP TL3 implements the Architects View use model, which is defined in OCP TLM
for Architectural Modeling white paper (www.ocpip.org). The Architects View use model
requires a communication API, which supports timing approximate modeling of the
platform architecture. On the other hand the API has to be agnostic to any particular
bus protocol to enable the flexible and unbiased exploration of different communication
architectures. In principle, these capabilities are delivered by the unidirectional non-
blocking transfer API in the OSCI TLM standard. The OCP TL3 can be seen as a
convenience layer for architectural modeling.

The TL3 API was first presented in the OCP-IP White Paper for SoC Communication
Modeling and implemented in the first release of the OCP-IP SystemC models.

The TL3 Master API definition is listed and explained in the following table:

API Function Description
Regular Request Commands

bool
sendRequest(const REQ& req)

Puts a request on the channel. Returns true if the
request was successfully placed on the channel.
False otherwise.

bool
sendRequestBlocking(const REQ& req);

Puts a request on the channel, waiting until the
channel is free if necessary. Waits until the slave
accepts the request and then returns.
Blocking calls may only be called from
SC_THREAD processes.

bool requestInProgress() const True if there is currently an active request on the
channel.

const sc_event RequestStartEvent() Returns the event that is triggered when the
master places a new request on the channel.

const sc_event RequestEndEvent() Returns the event that is triggered when the
slave accepts the current request.

Timed Request Commands

bool
sendRequest(const REQ&, const sc_time& t)

Delays the sending of the request for time t.
Otherwise identical to sendRequest.

bool
sendRequest(const REQ&, const int cycles)

Delays the sending of the request for cycles
number of clock ticks. Otherwise identical to
sendRequest.

Regular Response Commands

Bool
getResponse(RESP& resp)

Gets a new response from the channel and
returns true. Returns false if no new response
transaction available.

OCP TL2 Channel 74

bool
getResponseBlocking(RESP& resp)

Waits for a new, unread OCP TL2 response to
come on to the channel and then gets it.
Can only be called from an SC_THREAD process.

bool acceptResponse() Accepts the response immediately and returns
true. Returns false if no response to accept.

bool
responseInProgress() const

True if there is currently an active response on
the channel.

const sc_event ResponseStartEvent() Returns the event that is triggered when the
slave places a new response on the channel.

const sc_event ResponseEndEvent() Returns the event that is triggered when the
master accepts the current response.

Timed Response Commands

bool
acceptResponse(const sc_time& t)

Delays accept by t SystemC time units from now.
Returns false if no response to accept.

bool
acceptResponse(const int cycles)

Delays accept by cycles OCP clock periods from
now. If cycles=0 then the accept is immediate.
Returns false if no response to accept.

Table 16: OCP TL3 Master Interface Definition

The conversion of integer cycles into SystemC time is based on the clock-period, which
is a member of the channel. The slave interface is not depicted as it is perfectly
symmetrical to the master interface, with just Request and Response interchanged.

5.2 Mapping TL3 onto OSCI TLM

All the functions and events in the TL3 API can be implemented on top of the non-
blocking unidirectional OSCI TLM standard. This section demonstrates the mapping of
the TL3 primitives onto the OSCI TLM API. In a similar way, the complete TL2 API
including thread-busy, handshake-timing, and reset, can be mapped onto the TLM API.
The TL2-TLM mapping is also included in the methodology example package, but not
discussed in detail in this document.

75

OCP TLM Channel

TLM

OCP TLM Master
Transactor

OCP TLM Slave
Transactor

put

get

get

putTLM

OCP Maser
Interface

OCP Slave
Interface

response
channel

request
channel

delayQ

delayQ

Figure 14: Mapping the TL3 API onto the OSCI TLM standard

The overall structure of the OSCI-TLM based OCP channel is depicted in the figure.
From the outside perspective, the TLM based OCP channel looks just like any other
OCP channel, i.e. it implements a master and a slave interface. As the only minor
difference with the original OCP-TLM-channel does not implement master and a slave
interfaces but uses the sc_export feature of SystemC 2.1.

Inside the OCP TLM channel the interfaces are implemented by two separate modules,
the master-transactor and the slave-transactor. Most importantly the master- and
slave-transactor are completely separated, i.e. they communicate only via two OSCI
TLM FIFOs. In that the mapping of the OCP API onto the TLM API is 100% complete.
Each of these FIFOs is of course a size of 1, which corresponds to the current
transaction in the OCP channel.

The master- and slave-transactor are composed of policy-classes, which each
implement one aspect of the OCP protocol. The put-policy implements everything
related to the transmitting of data and the get-policy implements everything related to
the receiving of data. Both policies are templatized with the transaction data structure,
so they can be used for both master and slave side. Apart from reusing the code in the
transactor this structure nicely emphasizes the symmetry of the OCP protocol: the
sending of request is handled in the exact same way as the sending of response.

The implicit timing annotation features of the TL3 API require additional functionality.
The timed sendRequest (and sendResponse) methods are implemented using a special
delay queue called ChronoQueue, which delays the sending of transactions by a specific
amount of time. The timed requestAccept (and responseAccept) methods are
implemented by the get policy itself by means of delayed event notification.

The detailed mapping of OCP TL3 methods and events on the OSCI TLM standard is
depicted in the following table:

OCP TL3 Master API Function OSCI TLM Standard API
Regular Request Commands

bool sendRequest(const REQ& req) bool nb_put(const T &t

OCP TL2 Channel 76

bool sendRequestBlocking(const REQ& req); derived from sendRequest and RequestEndEvent

bool requestInProgress() const !(bool can_nb_put() const)

const sc_event RequestStartEvent() local event

const sc_event RequestEndEvent() const sc_event &ok_to_put() const

Timed Request Commands

bool sendRequest(const REQ&, const sc_time& t)

bool sendRequest(const REQ&, const int cycles)
derived from sendRequest and local delay
queue

Regular Response Commands

bool getResponse(RESP& resp) bool nb_peek(T &t) and local flag

bool getResponseBlocking(RESP& resp) derived from getResponse

bool acceptResponse() bool nb_get(T &t)

bool responseInProgress() const bool nb_can_peek() const

const sc_event ResponseStartEvent() const sc_event &ok_to_peek() const

const sc_event ResponseEndEvent() local event

Timed Response Commands

bool acceptResponse(const sc_time& t)

bool acceptResponse(const int cycles)
derived from acceptResponse and delayed
event notification

Table 17: TLM mapping of OCP TL3 master interface

The regular request commands and events are implemented in the put-policy. These
TL3 primitives have almost a one-to-one correspondence with the
tlm_nonblocking_put_if of the TLM API. Only the RequestStartEvent is missing in the
TLM API, but the occurrence of this event is of course known at the master side. Hence
a local event in the put-policy is notified whenever a new request is put into the TLM
FIFO.

master slave
sendResponse()ResponseStart

ok_to_putget()

OCP method()

OCP event peek()

put()
TLM method()

TLM event

getResponse()

acceptResponse() ResponseEnd

ok_to_peek

Figure 15: Sequence of methods and events

The get policy is slightly more sophisticated, because we need to mimic the get-accept
mechanism of the OCP protocol. As illustrated in the figure, we cannot use the TLM-get
method for the OCP-getResponse method, since the TLM-get is destructive and

77

immediately notifies the ok_to_put event on the producer side. According to the OCP
protocol, this event is not supposed to be notified until the master has released the
response channel by calling the acceptResponse method. Hence we need the full
expressiveness of the tlm_nonblocking_get_peek_if, which provides with the required
non-destructive peek method.

In analogy to the put-policy, the get-policy provides a local ResponseEndEvent, which is
notified upon the acceptance of the current response. Additionally, the get-policy needs
a local SC_METHOD together with a separate event to implement the delayed accept
methods.

Please refer to the online documentation of the methodology package for detailed
information on the implementation of the tlm_tl3_transactor_channel implementing the
mapping.

5.3 TL3 Timing

The major purpose of the Architects View use-case is to investigate the performance of a
given HW/SW partitioning and platform architecture based on an approximate timing
model. Hence special care needs to be given to the modeling of timing.

In principle the implicit timing annotation primitives in the TL3 API operate at the
interval-level, i.e. the granularity is limited to the boundaries of transactions. Two
timing parameters characterize the performance of any activity in the system:

• The accept-delay Δtaccept specifies the minimum time between two consecutive
start request events or two consecutive start response events. In essence the accept-
delay constraints the bandwidth of a block, i.e. during this period a slave module is
busy with the processing of a request or a master module is busy with the processing of
a response.

• The latency Δtlatency specifies the time between the process activation and the
sending of the transaction. At the target side, this parameter is called response-delay
Δtresponse and denotes the duration between request start event and the response start
event.

In that way the timing requirements of arbitrary platform building blocks can be
roughly specified. For example a pipelined ASIC block will exhibit an accept delay
smaller than the response delay, whereas for a task executed on a programmable core it
will be the other way around. Please note, that the accept-delay and latency are not
specific for the performance modeling of a communication node or a processing
element.

OCP TL2 Channel 78

requestStart

master slave

Δts,accept

sendRequest()

Δtresponse

requestEnd

responseStart

responseEnd
Δtm,acceptaccept(Δtm,accept)

methodCall()

eventNotification

accept(Δts,accept)

sendResponse(Δtresponse)

Figure 16: TL3 point-to-point timing annotation

The diagram depicted above shows the implicit timing annotation methodology of the
TL3 channel applied to a typical sequence of method calls (blue) and events (red):

• The master initiates a transaction using the sendRequest API call

• The channel immediately triggers the RequestStartEvent

• The slave reads the data from the channel (not depicted) and at the same time
uses the delayed acceptRequest method to specify the slave accept delay Δts,accept. The
OCP TL3 slave interface also supports implicit timing annotation for the response delay
in the sendResponse method, so even here the slave does not have to call wait(). (This
feature is not implemented in the TL2 API, but is under consideration for the later
versions.)

• After Δts,accept the OCP channel self-acting releases the request path and notifies
the RequestEndEvent

• After Δts,response the OCP channel self-acting initiates the response phase by
notifying the ResponseStartEvent. The remainder of the response phase is completely
symmetric to the request phase.

Of course both delays could also be specified explicitly by calling wait(Δtaccept) and
wait(Δtresponse). However the explicit way of modeling timing is unfavorable in terms of
simulation speed and orthogonalization of timing and behavior. The latter limitation is
not obvious and shall be further explained by means of a simplified example depicted in
the next figure.

79

thread(){
ocp->getRequest(req);
wait(Δt_1);
ocp->acceptRequest();
wait(Δ_2);
ocp->sendResponse(resp);

}

thread(){
ocp->getRequest(req);
wait(Δt_1);
ocp->sendResponse(resp);
wait(Δt_2);
ocp->acceptRequest();

}

thread(){
ocp->getRequest(req);
ocp->acceptRequest(Δt_1);
ocp->sendResponse(resp,Δt_2);

}

a) ASIC b) SW task c) implicit timing model

Figure 17: AV timing annotation

In case a) the anticipated implementation of a SystemC thread is an ASIC block, so the
accept delay is smaller than the response delay. Modeled explicitly the request must be
accepted before the response is sent. To change the implementation into a SW task, the
source code of the SystemC model needs to be modified according to b). The implicit
timing model depicted in c) is more flexible, in that only the values of Δt_1 and Δt_2
need to be modified to change the performance characteristic from ASIC to SW.

The actual value of the timing parameters can either be a (configurable) constant, a
data-dependent variable, or can be drawn from a stochastic distribution function. The
TL2 and TL3 APIs allow specifying the implicit delay in terms of cycles as well as in
terms of time. In case cycles are used, the channel calculates the effective delay by
multiplying the cycle count with its clock period parameter. In principle this cycle-based
annotation is favorable, because it enables a more efficient exploration of the impact of
clock frequency on performance. The frequency could even be modified during runtime
to investigate e.g. the impact of dynamic voltage scaling on system performance. A delay
specification based on cycles is also more re-usable than a timing value, as it does not
tie a TLM model to a certain technology.

In principle we advocate the concept of individual timing annotation, i.e. the timing
parameters should be maintained by the respective model. For example, a
communication node should own the delay parameters related to communication
latency and bandwidth. On the other hand, the computational element should own the
delay parameters related to processing latency and bandwidth. It is absolutely
discouraged to mix up the ownership of delay parameters, for example using the accept
delay in a target processing element to annotate the communication latency.

The major advantage of individual timing annotation is that it is modular and
compositional, i.e. components can be successively composed to systems without
reworking the timing annotation. Figure below shows the deployment of the individual
interval-level timing annotation parameters in a typical request phase of a simple
platform model. The platform comprises a shared bus connected to one or multiple
initiators and one or multiple targets.

OCP TL2 Channel 80

initiator node

requestStart
Δtpending

sendRequest()

getRequest()

requestEnd

requestStart

Δ tt,accept

sendRequest()

requestEnd

Δ ttransfer

accept(Δttransfer)

accept(Δtt,accept)

target

Figure 18: AV platform timing

In case of a computational element like the target module on the right hand side, the
assignment of accept- and response-delays to processing delays is straight-forward. For
the communication node however, the accept delay representing the bandwidth is split
into a pending delay and a transfer delay. The former corresponds to the send-delay of
the request and has to be modeled explicitly, because it depends on the current traffic
situation. In contrast the transfer delay can be arithmetically derived from the
performance parameters and is therefore applicable for implicit timing annotation.

The point of the figure is that neither the initiator nor the targets need to change their
timing annotation, when a bus node is plugged between them. Of course the system-
level timing changes, but this merely turns out as a consequence of all the individual
timing annotations.

In summary, this section has introduced the AV timing model by means of timing
annotation:

• Implicit timing annotation refers to the modeling of timing by means of TLM
communication API parameters in favor of using wait or delayed event notification.

• Interval level timing annotation refers to the transaction granularity of the AV
timing model, in that the timing resolution is limited to the start and end of
transactions.

• Individual timing annotation refers to a well-defined ownership policy of the
timing annotation parameters in order to achieve a compositional performance model.

The OCP TL2 API also supports implicit timing annotation at the word-level, which
specifies in more detail the timing of individual beats in a burst. This is done by a set of
timing parameters, which are defined in the master and slave timing-groups. Word-level
annotation may increase the timing accuracy in case the data-handshaking feature of
the OCP protocol is used (see section 6.8 of the OCP channel documentation [5]).
However it is rather specific for OCP and hence not part of the protocol agnostic TL3
API.

5.3.1 Scalable Accuracy

There is not necessarily a one-to-one relation between an OCP burst and a TL2 or TL3
request. The LastOfBurst attribute in the TL2 data structures allows the user defined

81

segmentation of an OCP protocol burst into multiple chunks. This degree of freedom
enables a scalable accuracy of the timing model:

The user can transfer an OCP burst as a single TL2 request, i.e. LastOfBurst is always
true, and the DataLength equals the total OCP burst size. However the granularity of
TL2 timing annotation is tied to the TL2 transfers, and no predication can be made the
timing within the transfer. The parameters in the TL2 timing group specify the timing of
individual beats in a burst, but this assumes these timing parameters are constant
during the complete burst. In summary, this is for sure the fastest way to transfer the
data, but on the other the least accurate.

On the other had, the user can decide to segment an OCP burst into multiple TL2
request, e.g. a burst of 8 word is split into 2 TL2 requests of DataLength 4 each. Now
the timing information can be applied to each of the requests, so the performance model
is more accurate. On the other hand, more events are required to transfer the data, so
naturally the simulation speed degrades.

The decision on the granularity depends very much on the required accuracy of the
performance model as well as on the dynamic in the system. As long as the state of a
module does not change during an OCP burst, a finer granularity would not increase
the accuracy.

5.4 TL3 Channel Monitor Interface
The TL3 channel implements the TL3 monitor interface. This allows monitors to be
connected to the channel, for performance analysis, trace dumping, protocol checking
and so on.

The methods of the monitor interface are listed below. Multiple monitors may be used
in parallel on a single TL3 channel. A TL3 monitor supports the TL3 observer interface.
The monitor registers itself with the channel as observing certain aspects of the traffic,
such as request-start-events. The channel informs the monitor by call-back when
observed events occur and the monitor is able in turn to poll (peek) the associated data
values (eg the request group) from the channel.

The methods of the interfaces are merely listed here. More detailed documentation of
their meaning is required but not yet available. There are four C++ interfaces:

• Peek interface, for getting data values from channel transactions

• Register interface, for registering a monitor with the channel

• Monitor interface, which is simply the union of the peek and register interfaces

• Observer interface, from which the monitor is derived, to allow the channel to call it
back. In this interface the methods have default implementations (not shown below)
which means that the monitor is not obliged to implement all methods anew.

template
< typename REQ,
 typename RESP
>
class OCP_TL3_Monitor_ObserverIF
{
public:
 typedef OCP_TL3_MonitorPeekIF<REQ,RESP> tl3_peek_type;

OCP TL2 Channel 82

 virtual ~OCP_TL3_Monitor_ObserverIF() {};

 virtual void registerChannel(tl3_peek_type *,
 bool master_is_node = false,
 bool slave_is_node = false) = 0;

 virtual void NotifyRequestStart(tl3_peek_type *) = 0;
 virtual void NotifyRequestEnd(tl3_peek_type *) = 0;
 virtual void NotifyResponseStart(tl3_peek_type *) = 0;
 virtual void NotifyResponseEnd(tl3_peek_type *) = 0;

};

template
<
 typename REQ,
 typename RESP
>
class OCP_TL3_MonitorPeekIF : virtual public sc_interface
{
public:
 typedef REQ request_type;
 typedef RESP response_type;

 // port names
 virtual const std::string peekChannelName() const = 0;
 virtual const std::string peekMasterPortName() const = 0;
 virtual const std::string peekSlavePortName() const = 0;

 // transactions
 virtual const request_type& peekRequest() const = 0;
 virtual const response_type& peekResponse() const = 0;
 virtual bool requestInProgress() const = 0;
 virtual bool responseInProgress() const = 0;
};

template
<
 typename REQ,
 typename RESP
>
class OCP_TL3_MonitorRegisterIF : virtual public sc_interface
{
public:
 typedef OCP_TL3_Monitor_ObserverIF<REQ,RESP> observer_type;

 // transactions
 virtual void RegisterRequestStart (observer_type *) = 0;
 virtual void RegisterRequestEnd (observer_type *) = 0;
 virtual void RegisterResponseStart(observer_type *) = 0;
 virtual void RegisterResponseEnd (observer_type *) = 0;
};

83

template
<
 typename REQ,
 typename RESP
>
class OCP_TL3_MonitorIF :
 virtual public OCP_TL3_MonitorPeekIF<REQ,RESP>,
 virtual public OCP_TL3_MonitorRegisterIF<REQ,RESP>
{};

OCP TL2 Channel 84

6 Example Using OCP TL1 Channel and API
The example described in this section demonstrates the use of the OCP TL1 channel in
a simple reference master and slave. The first part of the example shows how the
configuration parameters can be set in the OCP TL1 channel. This technique is
expanded upon to configure a master and a slave core.

The second part of the example shows a configurable reference master core that uses
the OCP TL1 API. The third part of the example is a configurable slave core that also
uses the OCP TL1 API.

This example makes a heavy use of blocking TL1 methods, and timed wait statements.
There are simpler examples included in the release package that use non-blocking
methods and clocks.

6.1 Configuring the OCP TL1 Simulation
As described in section 2.2, in this example the OCP TL1 channel is configured using
some of the available parameters. It does not use all the OCP configuration options.
This example is of configuration by the environment, during elaboration.

To configure the channel, the channel’s setConfiguration() function is called with a
MAP object that contains all of the parameter settings:

setConfiguration(map<string,string>& parameterMap);

In this example the configuration of the channel comes from the environment, and both
master and slave adapt to it. For models of “real” cores that do something more than
simply excite the bus interface, the OCP parameters would often be known in advance
and fixed. In such cases configuration of the channel would be done from the cores,
using the methods setOCPMasterConfiguration() and setOCPSlaveConfiguration().

The master and slave in this example use the getParamCl() method of the channel, at
end of elaboration, to learn the channel’s configuration and adapt their behaviour. This
style of implementation is not recommended because it is not compatible with
configuration of the channel from the other core. Thus this master and slave work well
together, but this master would not work properly with a slave using
setOCPSlaveConfiguration().

6.1.1 Configurable Master and Slave
The same parameter map scheme described in section 2.2 is used to configure the
reference master and reference slave. The following table gives the parameters for the
reference master.

Table 18 Reference Master Parameters

Parameter Name

Type

Default
Value

Description

mrespaccept_delay i 1 The number of cycles to delay before
accepting a response from the slave.

mrespaccept_fixeddelay i 1 MRespAccept Delay Style. If this parameter is
true (1), the master always waits for
“mrespaccept_delay” cycles before
accepting a response. If this parameter is false

85

(0), the master waits for a random number of
cycles before accepting the response. This
random number of cycles will vary uniformly
from 0 to mrespaccept_delay.

To configure the reference master, create a parameter map using the parameters above
and then send it to the reference master using the following command:

void Master<TdataCl>::setConfiguration(MapStringType& passedMap)

The following table gives the parameters for the reference slave:

Table 19 Reference Slave Parameters

Name Type Default
Value

Description

latencyX i 3 This is actually a set of parameters, one for each
thread in the channel. Each parameter sets the
latency for one thread. The latency is the minimum
number of cycles between when the request arrives
and when the response is sent. As an example, the
parameter latency0 will set how many cycles the
slave will wait before accepting a request on thread
number zero, while latency5 will set the latency
cycles for thread 5

limitreq_enable i 0 (false) Should the slave limit how many requests it has
outstanding?

limitreq_max i 4 The maximum number of requests that the slave can
have outstanding at any one time on any one
thread. Note that this parameter is not used if
limitreq_enable is false.

Once the parameter map for the reference slave has been built, it can be sent to the
slave with the following commands:

void Slave<TdataCl>::setConfiguration(MapStringType& passedMap)

6.1.2 Building a Custom Configurable Core
A user core may also be configurable and of course the core writer is free to use the
parameter map scheme presented here to configure their own custom core.

6.2 A Configurable Master Model
This section provides an example of a configurable master model that has a single-
threaded master OCP interface and that can generate simple OCP traffic to mimic an
initiator core. This master model not only has its own parameters but can also deal with
different OCP parameter settings. For instance, the master model can talk to an OCP
channel with the following settings:

 - cmdaccept == 1, sthreadbusy == 0 or 1, and sthreadbusy_exact == 0

 - cmdaccept == 0, sthreadbusy == 1, and sthreadbusy_exact == 1

 - respaccept == 0, mthreadbusy == 0, and mthreadbusy_exact == 0

OCP TL2 Channel 86

 - respaccept == 1, mthreadbusy == 0 or 1, and mthreadbusy_exact == 1

 - respaccept == 0, mthreadbusy == 1, and mthreadbusy_exact == 1

The address, the request type (WR or RD), and the write data of a request can also be
specified.

In addition, the latency between the acceptance of a previous request and sending of a
current request can be controlled. Also, the latency between receiving a response and
accepting the response can be controlled.

Figure 8 shows a diagram of the configurable master model. This master model
implements two SystemC thread processes (represented by the two ovals in the figure).
(The master model is a derived class of the SystemC sc_module class.) The request
thread process handles the sending of requests for the master core. The response
thread process handles the receiving of responses for the master core.

In the following sections, the source code (with explanations) of the master model is
described to help you understand the implementation of the model.

Figure 19 Master Model

SysC Request Thread Proc

request 0

Class Master : public sc_module

delay

request 1
delay

request 2
request 3

..........

Request
Stream

single-threaded
OCP

SysC Response Thread Proc

response

delay

Response
Processing

and
Acceptance

New Response

MRespAccept
or

ThreadbusyReq Phase
SCmdAccept

6.2.1 Header File
You must follow a few rules in defining the master core template class so that it can
communicate with the OCP Channel. The following are comments on the code followed
by the full master header file.

First, include the OCP TL1 channel header files:

 // OCP-IP Channel header files
 #include "globals.h"
 #include "ocp_tl1_master_port.h"

87

 #include "ocp_tl_param_cl.h"

The file globals.h contains the definitions of the types used in the channel. This also
includes the file ocp_tl1_data_cl.h that defines the data class used by the OCP TL1
channel, which then includes ocp_globals.h. The header file ocp_globals.h in turn is
used to define the structures used to pass requests and responses to the channel. If
this core did not have a header file such as globals.h, it would need to directly include
the header files ocp_tl1_data_cl.h and ocp_globals.h.

The header ocp_tl1_master_port.h contains the master port to the OCP TL1 channel. In
addition to providing the master interface to the channel, the port also provides event
finders for all of the master and sideband events of the channel.

The ocp_tl_param_cl.h header file contains the definition of the parameter class. The
configurable master uses this class to read the channel’s configuration and then uses
that information to set up its own configuration to match.

The master class is a template class and the parameter of the template is the data class
that the master will support over the OCP connection. A data class with 32-bit data
width and a 32-bit address is specified as follows:

OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32>

Where OCPCHANNELBit32 is defined as follows in the file globals.h:

typedef unsigned int OCPCHANNELBit32;

After including the header files, you must declare a SystemC port (sc_port).
Specifically, you need to declare an OCP TL1 master port (ipP) for the Master class to
communicate with an OCP SystemC TL1 channel. This is accomplished with the
following statement:

 OCP_TL1_MasterPort<TdataCl> ipP;

The master port provides event finders for the channel events (such as RequestStart
and RequestEnd). If these event finders are not needed, they could be declaared the as
follows, which would also work:

sc_port< OCP_TL1_MasterIF<TdataCl> > ipP;

Next, declare functions that define SystemC thread or method processes used in your
model. For example, in this master core model, the following functions are defined:

 SC_HAS_PROCESS(Master);

 void requestThreadProcess();

 void responseThreadProcess();

 void exerciseSidebandThreadProcess();

The macro SC_HAS_PROCESS(Master) tells SystemC that the master core is a SystemC
module with its own processes. In this case, the thread processes that follow. Each of
these processes are explained in detail in later sections.

After declaring the functions for the thread or method processes, define a SystemC
end_of_elaboration function. For example,

 void end_of_elaboration(); // SystemC method

OCP TL2 Channel 88

Now define a pointer that points to the OCP parameters of the OCP channel that is
connected to the master core model’s ipP port:

ParamCl<TdataCl>* m_pOCPParam; // pointer to OCP parameters

The rest of the data members hold the parameter and configuration values of the
master.

The following is the complete header file for the master.

#ifndef _SIMPLE_MASTER_H
#define _SIMPLE_MASTER_H

#include <iostream>
#include "stdlib.h"
#include "globals.h"

// OCP-IP Channel header files
#include "ocp_globals.h"
#include "ocp_tl1_master_port.h"
#include "ocp_tl_param_cl.h"

// For multithreaded masters only
// #include "master_data_queue.h"

// define the Master transactor class
template <typename TdataCl>
class Master : public sc_module
{
 public:
 // --------------------------
 // public members and methods
 // --------------------------

 // type definitions
 typedef typename TdataCl::DataType Td;
 typedef typename TdataCl::AddrType Ta;

 // member definitions

 // channel port
 OCP_TL1_MasterPort<TdataCl> ipP;

 // SystemC macros
 // has SystemC processes
 SC_HAS_PROCESS(Master);

 // constructor and destructor
 Master(sc_module_name, double, sc_time_unit,
 int, ostream* debug_os_ptr = NULL);
 ~Master();

 // methods
 void setConfiguration(MapStringType& passedMap);

 // process methods
 void requestThreadProcess();
 void responseThreadProcess();

89

 void exerciseSidebandThreadProcess();

private:
 // ---------------------------
 // private members and methods
 // ---------------------------

 // SystemC methods
 void end_of_elaboration();

 // member definitions

 // master identification
 int m_ID;

 // ocp clock information
 double m_ocpClkPeriod;
 sc_time_unit m_ocpClkTimeUnit;

 // model a per thread data queue
 // used for multi-threaded master
 // DataQueue<TdataCl> m_DataQueueThread0;

 //
 ostream* m_debug_os_ptr;

 // Parameters from the OCP Channel:

 // Class that holds all OCP parameters
 ParamCl<TdataCl>* m_OCPParamP;

 // The number of threads
 int m_threads;

 // is MAddrSpace part of the OCP channel?
 bool m_addrspace;

 // is SThreadBusy part of the channel?
 bool m_sthreadbusy;

 // Is SThreadBusy compliance required?
 bool m_sthreadbusy_exact;

 // is MThreadBusy part of the channel?
 bool m_mthreadbusy;

 // Is MThreadBusy compliance required?
 bool m_mthreadbusy_exact;

 // is MRespAccept part of the channel?
 bool m_respaccept;

 // is Data Handshake part of the channel?
 bool m_datahandshake;

 // is write response part of the channel?
 bool m_writeresp_enable;

OCP TL2 Channel 90

 // is the READ-EX command part of the channel
 bool m_readex_enable;

 // Are non-posted writes (write commands that receive responses)
 // part of the channel?
 bool m_writenonpost_enable;

 //---
 // Master Specific Parameters
 //---

 // Response delay style - fixed or random
 bool m_respaccept_fixeddelay;

 // Delay in accepting responses (max delay for random)
 int m_respaccept_delay;

 // Map of string to string that holds the Master's paramter
values
 MapStringType m_ParamMap;

};

#endif // _SIMPLE_MASTER_H

6.2.2 Constructor
In the master core model’s constructor, the following items are implemented:

• The base sc_module class is initialized using the name parameter passed to the
Master class.

• The OCP master interface port (ipP) is also initialized and named “ipPort”.

• The master’s configuration and parameters are given their initial default values.

• Functions for sending a request from the master, processing a response from the
slave, and for setting sideband signals on the channel are registered using the
SystemC SC_THREAD macro.

The following is the code for the constructor of the master core model:

// ---
--
// constructor
// ---
--
template<typename TdataCl>
Master<TdataCl>::Master(
 sc_module_name name,
 double ocp_clock_period,
 sc_time_unit ocp_clock_time_unit,
 int id,
 ostream* debug_os_ptr
) : sc_module(name),
 ipP("ipPort"),
 m_ID(id),
 m_ocpClkPeriod(ocp_clock_period),

91

 m_ocpClkTimeUnit(ocp_clock_time_unit),
 m_debug_os_ptr(debug_os_ptr),
 m_OCPParamP(NULL),
 m_threads(1),
 m_addrspace(false),
 m_sthreadbusy(false),
 m_sthreadbusy_exact(false),
 m_mthreadbusy(false),
 m_mthreadbusy_exact(false),
 m_respaccept(true),
 m_datahandshake(false),
 m_writeresp_enable(false),
 m_writenonpost_enable(false),
 m_respaccept_delay(0)
{
 // setup a SystemC thread process, which uses dynamic sensitive
 SC_THREAD(requestThreadProcess);

 // setup a SystemC thread process, which uses dynamic sensitive
 SC_THREAD(responseThreadProcess);

 // setup a SystemC thread process to drive any connected
sideband signals
 SC_THREAD(exerciseSidebandThreadProcess);
}

6.2.3 The end_of_elaboration() Method
The end_of_elaboration() method is called by SystemC after the model has been built
and connected, but before the simulation begins. Sometime during the construction of
the models, the master’s setConfiguration function should have been called with a
parameter map of the master’s parameters. During the end_of_elaboration() method,
that master processes this parameter map to set its own master parameters.

At the end of elaboration point, the OCP channel must have already been connected to
the core. The master takes advantage of this to read the OCP parameters of the channel
and then uses those parameters to configure itself to work with the channel it was
connected to.

The following are some important points regarding the code for the
end_of_elaboration() method:

• The GetParamCl() method returns a pointer that points to the OCP channel’s
parameters. The master then uses this pointer to extract the channel’s parameters
and to use them to configure itself. For example,
m_OCPParamP = ipP->GetParamCl();

 The master uses functions in the ParamCl class that extract integers and Booleans from
string formatted parameter maps. For example, the complex looking function call

ParamCl<TdataCl>::getBoolOCPConfigValue(myPrefix, paramName,
 m_respaccept_fixeddelay, m_ParamMap)

returns true if the passed parameter map (m_ParamMap) contains a Boolean
parameter named by the string “parameterName” where “parameterName” is the
concatenation of “myPrefix” and “paramName”. (Note that “myPrefix” is

OCP TL2 Channel 92

generally not used and set to “”. If the parameter map does contain the parameter,
the value of m_respaccept_fixeddelay is set to the value of that parameter.

The following is code for the end_of_elaboration method.

// ---
// SystemC Method Master::end_of_elaboration()
// ---
//
// At this point, everything has been built and connected.
// We are now free to get our OCP parameters and to set up our
// own variables that depend on them.
//
template<typename TdataCl>
void Master<TdataCl>::end_of_elaboration()
{
 // Call the System C version of this function first
 sc_module::end_of_elaboration();

 //---
 // OCP Parameters
 //---

 // This Master adjusts to the OCP it is connected to.

 // Now get my OCP parameters from the port.
 m_OCPParamP = ipP->GetParamCl();

 // Get the number of threads
 m_threads = m_OCPParamP->threads;

 // This Reference Master is single threaded.
 if (m_threads > 1) {
 cout << "ERROR: Single threaded Master \"" << name()
 << "\" connected to OCP with " << m_threads
 << " threads." << endl;
 }

 // is the MAddrSpace field part of the OCP channel?
 m_addrspace = m_OCPParamP->addrspace;

 // is SThreadBusy part of the channel?
 m_sthreadbusy = m_OCPParamP->sthreadbusy;

 // Is SThreadBusy compliance required?
 m_sthreadbusy_exact = m_OCPParamP->sthreadbusy_exact;

 // is MThreadBusy part of the channel?
 m_mthreadbusy = m_OCPParamP->mthreadbusy;

 // Is MThreadBusy compliance required?
 m_mthreadbusy_exact = m_OCPParamP->mthreadbusy_exact;

 // is MRespAccept part of the channel?
 m_respaccept = m_OCPParamP->respaccept;

 // Just a double check here

93

 if (m_mthreadbusy_exact && m_respaccept) {
 cout << "ERROR: Master \"" << name()
 << "\" connected to OCP with both MThreadBusy_Exact and
MRespAccept
 active which are exclusive." << endl;
 }

 // is Data Handshake part of the channel?
 m_datahandshake = m_OCPParamP->datahandshake;
 // if so, quit. This core does not support it.
 assert(m_datahandshake == false);

 // is write response part of the channel?
 m_writeresp_enable = m_OCPParamP->writeresp_enable;

 // is READ-EX part of the channel?
 m_readex_enable = m_OCPParamP->readex_enable;

 // Are non-posted writes (write commands that receive responses)
 //part of the channel?
 m_writenonpost_enable = m_OCPParamP->writenonpost_enable;

 //---
 // Master Specific Parameters
 //---

 // Retrieve any configuration parameters that were passed to this
block
 // in the setConfiguration command.

#ifdef DEBUG
 cout << "I am configuring a Master!" << endl;
 cout << "Here is my configuration map for Master >"
 << name() << "< that was passed to me." << endl;
 MapStringType::iterator map_it;
 for (map_it = m_ParamMap.begin(); map_it != m_ParamMap.end();
++map_it) {
 cout << "map[" << map_it->first << "] = " << map_it->second <<
endl;
 }
 cout << endl;
#endif

 string myPrefix = "";
 string paramName = "undefined";

 // MRespAccept delay in OCP cycles
 paramName = "mrespaccept_delay";
 if (!(ParamCl<TdataCl>::getIntOCPConfigValue(myPrefix, paramName,
 m_respaccept_delay, m_ParamMap))) {
 // Could not find the parameter so we must set it to a default
#ifdef DEBUG
 cout << "Warning: master paramter \"" << paramName
 << "\" for Master \"" << name()
 << "\" was not found in the parameter map." << endl;
 cout << " setting missing parameter to 1." << endl;
#endif

OCP TL2 Channel 94

 m_respaccept_delay = 1;
 }

 // MRespAccept Delay Style. 1=fixed delay : 0=random delay
 paramName = "mrespaccept_fixeddelay";
 if (!(ParamCl<TdataCl>::getBoolOCPConfigValue(myPrefix, paramName,
 m_respaccept_fixeddelay, m_ParamMap))) {
 // Could not find the parameter so we must set it to a default
#ifdef DEBUG
 cout << "Warning: master paramter \"" << paramName
 << "\" for Master \"" << name()
 << "\" was not found in the parameter map." << endl;
 cout << " setting missing parameter to 1 (fixed
delay)."
 << endl;
#endif
 m_respaccept_fixeddelay = true;
 }
}

6.2.4 SystemC Request Thread Process
For this master core example, the master request thread process works from a table of
requests. The delays between the sending out of each request are also set in a table. For
each table entry, the master sends the corresponding request then waits the
corresponding time before moving on to the next table entry.

The Commands table is the table of commands to send out while the NumWait table
contains the length of time to wait before sending out the next command. Each time is
organized by row with each row being a “test” of up to four commands.

The following is an explanation of the code below:

Sets up the tables to be used by the process. The code then enters the infinite loop of
the thread and waits for the first wait period before sending its first request.

After the wait is over, the code checks to see if the slave has set threadbusy. Note that
the parameter m_sthreadbusy was set by looking at the OCP channel’s parameters
during the end_of_elaboration() method. If SThreadBusy is part of the channel, and
if that signal has been asserted, the request process will continue to wait until the slave
releases threadbusy by driving it to zero.

Once the threadbusy hurtle has been cleared, the request process then tries to send a
request. First it constructs the request by reading the next command from the table. If
the command is incompatible with the channel that the master is connected to, the
master changes the command to a simpler one that the channel can accept. If the
command calls for data (that is, it is some sort of write command) new data is generated
through a counter.

The data is sent with the OCP TL1 channel command:

ipP->startOCPRequestBlocking(req);

This command places the newly generated request on the channel. If there is already a
request on the channel (for example, if the previous request has not yet been accepted),
that command will block until the channel is free and the new command can be placed
on the channel. The function returns once the request has started, but before it has
been accepted by the slave. A blocking call like this one may only be used within a

95

thread process. A SystemC method does not allow the context switching required by a
blocking command.

Finally, return to step 1, processing the table and setting up the wait time before the
next command may be issued.

The following is the code for the Request Thread Process.

template<typename TdataCl>
void Master<TdataCl>::requestThreadProcess()
{
 Ta Addr[] = {0x1784, 0x20, 0x20, 0x40};

 // start time of requests
 int NumWait[NUM_TESTS][4] = {
 {100, 3, 0xF, 0xF},
 {7, 1, 3, 0xF},
 {6, 0xF, 0xF, 0xF},
 {10, 2, 1, 0xF},
 {7, 1, 3, 0xF},
 {6, 1, 1, 1},
 {7, 2, 0xF, 0xF},
 {8, 2, 1, 0xF},// no data handshake
 {7, 2, 2, 2}
 };

 // specifies the command to use
 OCPMCmdType Commands[NUM_TESTS][4] = {
 {OCP_MCMD_WR, OCP_MCMD_RD, OCP_MCMD_IDLE, OCP_MCMD_IDLE},
 {OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_IDLE},
 {OCP_MCMD_RD, OCP_MCMD_IDLE, OCP_MCMD_IDLE, OCP_MCMD_IDLE},
 {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_IDLE},
 {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_IDLE
 {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD},
 {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_IDLE, OCP_MCMD_IDLE},
 {OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_WR, OCP_MCMD_IDLE},
 {OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD, OCP_MCMD_RD}
 };

 // number of specified transactions in a test
 int NumTr[] = {2, 3, 1, 3, 3, 4, 2, 3, 4};

 // -----------------------------------
 // (1) processing and preparation step
 // -----------------------------------

 // initialize data
 OCPRequestGrp<Td,Ta> req;
 int Count = 0;
 int Nr = 0;
 sc_time old_time;
 sc_time current_time;
 bool sthreadbusy;
 unsigned int my_data = 0;

 // calculate the new waiting time
 double wait_for = NumWait[Nr][Count];

OCP TL2 Channel 96

 // Do requests contain data (or will it be sent separately)
 // Always true as this core does not support data handshake
 req.HasMData = true;

 ipP->ocpWait();

 // main loop
 while (true) {
 // wait for the time to send the current request

 if (m_debug_os_ptr) {
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << "master wait_for = " << wait_for <<
endl;
 }

 ipP->ocpSafeWait(wait_for);

 // remember the time
 old_time = sc_time_stamp();

 // --
 // (2) is SThreadBusy?
 // --

 // NOTE: we are single threaded so the thread busy signal
 // looks like a boolean (0 or 1).
 // Abritration based on thread busy will be needed for a
 // multi-threaded model.
 if (m_sthreadbusy_exact) {
 sthreadbusy = ipP->getSThreadBusy();
 while (sthreadbusy) {
 ipP->ocpWait();
 sthreadbusy = ipP->getSThreadBusy();
 }
 }

 // --
 // (3) send a request
 // --

 // NOTE: data handshake is not handled by this simple
example.

 // Compute the next request
 req.MCmd = Commands[Nr][Count];

 // is this an extended command to be sent over a basic
 // channel?
 if ((!m_readex_enable) && (req.MCmd == OCP_MCMD_RDEX)) {
 // channel cannot handle READ-EX. Send simple READ.
 req.MCmd = OCP_MCMD_RD;
 } else if ((!m_writenonpost_enable) && (req.MCmd ==
OCP_MCMD_WRNP)){
 // channel cannout handle WRITE-NP. Send simple WRITE.
 req.MCmd = OCP_MCMD_WR;
 }

97

 // compute the address
 req.MAddr = Addr[Count] + m_ID*0x40;
 req.MByteEn = 0xf;
 if (m_addrspace) {
 req.MAddrSpace = 0x1;
 }
 // compute the data
 switch (req.MCmd) {
 case OCP_MCMD_WR:
 case OCP_MCMD_WRNP:
 case OCP_MCMD_WRC:
 case OCP_MCMD_BCST:
 // This is a write command - it has data
 my_data++;
 // put the data into the request
 req.MData = my_data + m_ID*0x40;
 break;
 case OCP_MCMD_RD:
 case OCP_MCMD_RDEX:
 case OCP_MCMD_RDL:
 // this is a read command - no data.
 req.MData = 0;
 break;
 default:
 cout << "ERROR: Master \"" << name()
 << "\" generates unknown command #"
 << req.MCmd << endl;
 }

 if (m_debug_os_ptr) {
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << "send request." << endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " t = " << sc_simulation_time() <<
endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " MCmd: " << req.MCmd << endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " MData: " << req.MData << endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " MByteEn: " << req.MByteEn <<
endl;
 }

 // send the request
 ipP->startOCPRequestBlocking(req);

 // -------------------------------
 // (1) processing and preparation step
 // -------------------------------

 // compute the next pointer
 if (++Count >= NumTr[Nr]) {
 Count = 0;
 if (++Nr >= NUM_TESTS) Nr = 1;
 }

OCP TL2 Channel 98

 // calculate the new waiting time
 wait_for = NumWait[Nr][Count];
 current_time = sc_time_stamp();
 double delta_time =
 (current_time.value() - old_time.value()) / 1000;
 if (delta_time >= wait_for) {
 wait_for = 0;
 } else {
 wait_for = wait_for - delta_time;
 }
 }
}

6.2.5 SystemC Response Thread Process
The code for the master’s response thread process is much simpler than that for the
request. The code follows this pattern:

• The master receives a response.

• The master waits for a given amount of time.

• The master accepts the response.
The following is an explanation of the code below.

Once the process enters the infinite loop of the thread, it starts waits for a response to
come from the slave. The command

ipP->getOCPResponseBlocking(resp);

gets the current response from the OCP channel that is connected to the ipP port. If
there is no request waiting on the OCP channel, the command blocks until a new
request arrives. Because this is a blocking command, it may only be used in a thread
process like this one. A SystemC method process does not allow for the context
switching required by a blocking command.

Once the request has arrived, the response delay is calculated using the master
parameters set from the passed parameter map.

The thread implements the delay based on the channel configuration. If the OCP
channel has an MRespAccept signal, that signal is used to keep the slave from sending
more responses. The following command is used to set MRespAccept to true to accept
the response:

ipP->putMRespAccept();

If instead, the slave is threadbusy_exact, the MThreadBusy signal is used to pause
the slave. The following command is used to set MThreadBusy to true:

ipP->putMThreadBusy(1);

The same command (with a different parameter) is used to unset MThreadBusy as well,
that is:

ipP->putMThreadBusy(0);

In between the two calls to putMThreadBusy(), the following command causes the
response thread to wait for wait_for OCP channel cycles before resuming:

99

ipP->ocpWait(wait_for);

The following is the code for the master’s response thread process.

template<typename TdataCl>
void Master<TdataCl>::responseThreadProcess()
{

 // initialization
 OCPResponseGrp<Td> resp;
 double wait_for;

 ipP->ocpWait();

 // main loop
 while (true) {
 // --
 // (1) wait for a response (blocking wait)
 // --

 // get the next response
 ipP->getOCPResponseBlocking(resp);

 // ------------------------
 // (2) process the response
 // ------------------------

 // compute the response acceptance time
 if (m_respaccept_fixeddelay) {
 wait_for = m_respaccept_delay;
 } else {
 // Go random up to max delay
 wait_for =
 (int)((m_respaccept_delay+1) * rand() / (RAND_MAX +
1.0));
 }

 // --
 // (3) generate a one-cycle-pulse MRespAccept signal
 // --

 if (m_respaccept) {
 if (wait_for == 0) {
 // send an one-cycle-pulse MRespAccept signal
 ipP->putMRespAccept();
 } else {
 // wait for the acceptance pulse cycle
 ipP->ocpWait(wait_for);
 //wait(ocpClkP->posedge_event());

 // send an one-cycle-pulse MRespAccept signal
 ipP->putMRespAccept();
 }
 }

 if (m_mthreadbusy_exact) {
 // use the MThreadBusy signal instead of resp accept

OCP TL2 Channel 100

 if (wait_for > 0) {
 // Set MThreadBusy
 ipP->putMThreadBusy(1);
 // keep MThreadBusy on
 ipP->ocpWait(wait_for);
 // now release it
 ipP->putMThreadBusy(0);
 }
 }
 }
}

6.2.6 SystemC Sideband Process
The code example shown in this section is a simple process that illustrates how the
OCP TL1 API can be used to set sideband signals in the OCP channel.

The following is an explanation of the code below.

Before the start of the infinite loop of the thread, the sideband process checks the
channel’s parameters to determine which (if any) master sideband signals are available
in the channel.

Once the code reaches the main loop, the process waits then sets all of the master
sideband signals that are connected to it. It updates the values to be set next time and
then repeats.

The following is the code for the master’s sideband thread process.

template<typename TdataCl>
void Master<TdataCl>::exerciseSidebandThreadProcess(void)
{
 // Systematically send out sideband signals on
 // any signals that are attached to us.
 ipP->ocpWait(10);
 int tweakCounter =0;
 bool hasMError = m_OCPParamP->merror;
 bool nextMError = false;
 bool hasMFlag = m_OCPParamP->mflag;
 int numMFlag = m_OCPParamP->mflag_wdth;
 unsigned int nextMFlag = 0;
 unsigned int maxMFlag = (1 << numMFlag) -1;

 // main loop
 while (true) {
 // wait 10 cycles
 ipP->ocpWait(10);

 // Now count through my sideband changes
 tweakCounter++;

 // Drive MError
 if (hasMError) {
 if (tweakCounter%2 == 0) {
 // Toggle MERROR
 nextMError = !nextMError;
 ipP->MputMError(nextMError);
 }

101

 }

 // Drive MFlags
 if (hasMFlag) {
 if (tweakCounter%1 == 0) {
 // go to next MFlag
 nextMFlag += 1;
 if (nextMFlag > maxMFlag) {
 nextMFlag = 0;
 }
 ipP->MputMFlag(nextMFlag);
 }
 }
 }
}

6.2.7 Template Instantiation
The final line of the master.cc file makes sure that the compiler creates an instance of
the Master template for the OCP_TL1_SIGNAL_CL type defined in the globals.h header
file. The last line is

template class Master< OCP_TL1_SIGNAL_CL >;

6.3 A Configurable Slave Model
This section provides an example of a configurable slave model, which reacts like a
target memory core and takes in or delays the acceptances of OCP requests based on
parameterized settings. The slave model has a single-threaded slave OCP interface. This
slave model not only has its own parameters but can also deal with different OCP
parameter settings. For instance, the slave model can talk to an OCP channel with the
following settings:

 - cmdaccept == 1, sthreadbusy == 0 or 1, and sthreadbusy_exact == 0

 - cmdaccept == 0, sthreadbusy == 1, and sthreadbusy_exact == 1

 - respaccept == 0, mthreadbusy == 0, and mthreadbusy_exact == 0

 - respaccept == 1, mthreadbusy == 0 or 1, and mthreadbusy_exact == 1

 - respaccept == 0, mthreadbusy == 1, and mthreadbusy_exact == 1

Parameters belonging to the slave model itself are:

latencyX
This is the response latency for thread number X. There is a latency parameter for
each thread in the channel. This parameter sets the minimum number of cycles
between receiving the request and issuing the response.

limitreq_enable and limitreq_max
When the limitreq_enable parameter is set to 1, the outstanding requests per
thread are limited to limitreq_max

Figure 20 shows a diagram of the configurable slave model.

OCP TL2 Channel 102

Figure 20 Slave Model

SysC
Request
Thread

Proc

Class Slave : public sc_module

single-threaded
OCP

SysC
Response

Thread
Proc

Read
Response

FIFO

Resp Phase
(w default acceptance)

Req Phase

SCmdAccept

Simple
Read/Write

Memory

6.3.1 Header File
The header file for the simple configurable slave calls the header files for the channel it
is connected to and for the objects it uses. It then defines the template class that is the
slave. The following are a few explanations regarding some of the highlights of the code.
The full header file is provided below.

First, the slave includes the OCP TL1 channel header files:

// OCP-IP Channel header files
#include "globals.h"
#include "ocp_tl1_slave_port.h"
#include "ocp_tl_param_cl.h"

The file globals.h contains the definitions of the types used in the channel. This file
also includes the header ocp_tl1_data_cl.h that defines the data class used by the
OCP TL1 channel. The header ocp_tl1_data_cl.h in turn includes ocp_globals.h,
which is used to define the structures used to pass requests and responses to the
channel. If this core did not have an include file like globals.h, it would need to
directly include ocp_tl1_data_cl.h and ocp_globals.h.

The header ocp_tl1_slave_port.h is the slave port to the OCP TL1 channel. In addition to
providing the slave interface to the channel, the port also provides event finders for all
of the slave events and sideband events of the channel.

The ocp_tl_param_cl.h header file contains the definition of the parameter class. The
configurable slave uses this class to read the channel’s configuration and then uses
that information to set up its own configuration to match the channel it is connected to.

103

The header file then defines objects that are used by the slave. The file
slave_response_queue.h defines a simple response queue that the slave uses to queue
responses as they are waiting to go out on the channel. The file MemoryCl.h implements
a simple memory.

Following the include statements, the slave header file defines the slave class. The slave
is a template class and the parameter of the template is the data class that the slave
will support over the OCP connection. A data class with 32-bit data width and a 32-bit
address is specified as follows:

OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32>

Where OCPCHANNELBit32 is defined in the file globals.h as

typedef unsigned int OCPCHANNELBit32;

The simple configurable slave has a single port which connects to the OCP channel. The
following code declares the slave port for the OCP channel:

// channel port
OCP_TL1_SlavePort<TdataCl> tpP;

Next the slave class declares functions that define SystemC thread or method
processes used in your model. For example, in this slave core model, the following
functions are defined:

// has SystemC processes
SC_HAS_PROCESS(Slave);
void requestThreadProcess();
void responseThreadProcess();
void exerciseSidebandThreadProcess();

The SC_HAS_PROCESS(Slave) macro tells SystemC that the slave core is a SystemC
module with its own processes. In this case, the thread processes that follow. Each of
these processes are explained in detail in below.

Lastly, the Slave class define a SystemC end_of_elaboration function to be called
automatically after all models are built and connected but just before the simulation is
to start:

void end_of_elaboration(); // SystemC method

Following the declaration of the end_of_elaboartion method, the Slave class define a
pointer that points to the OCP parameters of the OCP channel that is connected to the
model’s tpP port:

ParamCl<TdataCl>* m_OCPParamP;

Also, there is the following function for compatibility with the base generic channel
class:

bool MputDirect(int, bool, Td*, Ta, int);

The rest of the data members of the Slave class hold the parameter and configuration
values of the master.

The following is the complete header file for the slave.

#ifndef _SIMPLE_SLAVE_H
#define _SIMPLE_SLAVE_H

OCP TL2 Channel 104

#include <iostream>
#include <map>
#include "globals.h"

// OCP-IP Channel header files
#include "ocp_tl1_slave_port.h"
#include "ocp_tl_param_cl.h"

#include "slave_response_queue.h"

#include "MemoryCl.h"

// define the Slave class
template <typename TdataCl>
class Slave : public sc_module
{
 public:
 // --------------------------
 // public members and methods
 // --------------------------

 // type definitions
 typedef typename TdataCl::DataType Td;
 typedef typename TdataCl::AddrType Ta;
 typedef map< Ta, Td > MemMapType;

 // member definitions

 // channel port
 OCP_TL1_SlavePort<TdataCl> tpP;

 // Systemc macros

 // has SystemC processes
 SC_HAS_PROCESS(Slave);

 // constructor and destructor
 Slave(sc_module_name, double, sc_time_unit,
 int, Ta, ostream* debug_os_ptr = NULL);
 ~Slave();

 // methods
 void setConfiguration(MapStringType& passedMap);

 void requestThreadProcess();
 void responseThreadProcess();
 void exerciseSidebandThreadProcess();

 private:
 // ---------------------------
 // private members and methods
 // ---------------------------

 // SystemC methods
 void end_of_elaboration();

105

 // methods
 bool MputDirect(int, bool, Td*, Ta, int);

 // member definitions

 // slave identification
 int m_ID;

 // ocp clock information
 double m_ocpClkPeriod;
 sc_time_unit m_ocpClkTimeUnit;

 // number of memory bytes and the memory array
 Ta m_MemoryByteSize;

 // model a per thread response queue
 ResponseQueue<TdataCl> m_ResponseQueue;

 MemoryCl<TdataCl> *m_Memory;

 ostream* m_debug_os_ptr;

 // current value of SThreadBusy as set by this Slave.
 int m_curSThreadBusy;

 // --
 // Parameters of the connected OCP channel
 // --

 ParamCl<TdataCl>* m_OCPParamP;

 // Number of threads in the OCP channel
 int m_threads;

 // Does the channel use data handshaking?
 bool m_datahandshake;

 // Are writes with responses part of the OCP channel?
 bool m_writeresp_enable;

 // is SThreadBusy part of the OCP channel?
 bool m_sthreadbusy;

 // do we follow the rules of sthread_busy exact?
 bool m_sthreadbusy_exact;

 // is MThreadBusy part of the OCP channel?
 bool m_mthreadbusy;

 // is SCmdAccept part of the OCP channel?
 bool m_cmdaccept;

 // --
 // Parameters of the Slave Model
 // --

OCP TL2 Channel 106

 // should there be a limit to the number of outstanding requests
per
 // thread?
 // default = false;
 bool m_limitreq_enable;

 // maximum number of outstanding requests per thread
 // default = 4;
 int m_limitreq_max;

 // Response Latency
 int m_Latency;

 MapStringType m_ParamMap;

};

#endif // _SIMPLE_SLAVE_H

6.3.2 Constructor
In the slave model’s constructor, the following items are implemented:

• The base sc_module class is initialized using the name parameter passed to the
Slave class.

• The OCP slave interface port (tpP) is also initialized and named “tpPort”.

• The slave’s configuration and parameters are given their initial default values. They
will receive their parameter values at the end of elaboration.

• Functions for receiving requests, sending responses and for checking sideband
signals on the channel are registered using the SystemC SC_THREAD macro.

The following is the code for the constructor.

// ---
--
// constructor
// ---
--
template<typename TdataCl>
Slave<TdataCl>::Slave(
 sc_module_name n,
 double ocp_clock_period,
 sc_time_unit ocp_clock_time_unit,
 int id,
 Ta memory_byte_size,
 ostream* debug_os_ptr
) : sc_module(n),
 tpP("tpPort"),
 m_ID(id),
 m_ocpClkPeriod(ocp_clock_period),
 m_ocpClkTimeUnit(ocp_clock_time_unit),
 m_MemoryByteSize(memory_byte_size),
 m_Memory(NULL),
 m_debug_os_ptr(debug_os_ptr),
 m_curSThreadBusy(0),

107

 m_OCPParamP(NULL),
 m_threads(1),
 m_datahandshake(false),
 m_writeresp_enable(false),
 m_sthreadbusy(false),
 m_sthreadbusy_exact(false),
 m_mthreadbusy(false),
 m_cmdaccept(true),
 m_limitreq_enable(1),
 m_limitreq_max(4),
 m_Latency(0)
{
 // Note: member variables that depend on values of
 // configuration parameters are constructed when those
 // values are known - at the end of elaboration.

 // setup a SystemC thread process, which uses dynamic sensitive
 SC_THREAD(requestThreadProcess);

 // setup a SystemC thread process, which uses dynamic sensitive
 SC_THREAD(responseThreadProcess);

 // setup a SystemC thread process to check and
 // set sideband signals
 SC_THREAD(exerciseSidebandThreadProcess);
}

6.3.3 Destructor
The destructor cleans up the memory created in the end_of_elaboration() function.

The following is the code for the destructor.

template<typename TdataCl>
Slave<TdataCl>::~Slave()
{
 delete m_Memory;
}

6.3.4 The end_of_elaboration() Method
This function is automatically called after the model has been built and connected but
before the simulation begins. At the end of elaboration point, the OCP channel must
have already been connected to the core. The slave takes advantage of this to read the
OCP parameters of the channel and then to use those parameters to configure itself to
work with the channel it was connected to.

The following are some points regarding the code for the end_of_elaboration()
method:

• The GetParamCl() method returns a pointer that points to the OCP channel’s
parameters. For example,
m_OCPParamP = tpP->GetParamCl();

The slave then uses this pointer to extract the channel’s parameters and to use
them to configure itself. Because the names of the channel parameters match the

OCP TL2 Channel 108

names in the OCP Specification document, the parameter look-up is one to one.
The channel parameters are then stored locally in the core for convenience.

• Sometime before the end of elaboration, the setConfiguration() function was
called and the slave’s parameters were passed to it using a string to string
parameter map. The read this map, the slave uses functions in the ParamCl class
that extract integers and Booleans from string formatted parameter maps. The
complex looking function call
ParamCl<TdataCl>::getBoolOCPConfigValue(myPrefix, paramName,
 m_limitreq_enable, m_ParamMap)

returns true if the passed parameter map (m_ParamMap) contains a Boolean
parameter named by the string “paramName”. If the parameter map does contain
the parameter, the value of m_limitreq_enable is set to the value of that
parameter. The parameter “myPrefix” is generally not used and can be set to “”.

• Finally, the slave uses the values of its own parameters and the configuration of the
channel to which it is connected to build the memory model that it will use during
the simulation.

The following is the complete code for the slave’s end_of_elaboration() method.

// ---
// SystemC Method Slave::end_of_elaboration()
// ---
//
// At this point, everything has been built and connected.
// We are now free to get our OCP parameters and to set up our
// own variables that depend on them.
//
template<typename TdataCl>
void Slave<TdataCl>::end_of_elaboration()
{
 sc_module::end_of_elaboration();

 /////////////
 //
 // Process OCP Parameters from the port
 //
 /////////////

 m_OCPParamP = tpP->GetParamCl();

 // Set the number of threads
 m_threads = m_OCPParamP->threads;

 if (m_threads > 1) {
 cout << "Warning: Singled threaded reference Slave "
 << name() << " attached to multi-threaded OCP." << endl;
 cout << "Only commands sent on thread 0 will be processed."
 << endl;
 }

 // Does the channel use data handshaking?
 m_datahandshake = m_OCPParamP->datahandshake;
 // Is so, quit as this Slave does not handle data handshake.
 assert(!m_OCPParamP->datahandshake);

109

 // Do writes get reponses?
 m_writeresp_enable = m_OCPParamP->writeresp_enable;

 // is SThreadBusy part of the channel?
 m_sthreadbusy = m_OCPParamP->sthreadbusy;

 // is this slave expected to follow the threadbusy exact protocol?
 m_sthreadbusy_exact = m_OCPParamP->sthreadbusy_exact;

 // is MThreadBusy part of the channel?
 m_mthreadbusy = m_OCPParamP->mthreadbusy;

 // is SCmdAccept part of the channel?
 m_cmdaccept = m_OCPParamP->cmdaccept;

 /////////////
 //
 // Process Slave Parameters
 //
 /////////////

 // For Debugging
 if (m_debug_os_ptr) {
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << "Configuring Slave." << endl;
 (*m_debug_os_ptr) << "DB ("
 << name()
 << "): was passed the following configuration map:" <<
endl;
 MapStringType::iterator map_it;
 for (map_it = m_ParamMap.begin();
 map_it != m_ParamMap.end(); ++map_it) {
 (*m_debug_os_ptr) << "map[" << map_it->first << "] = "
 << map_it->second << endl;
 }
 cout << endl;
 }

 // Here the prefix is not needed.
 // the future.
 string myPrefix = "";
 string paramName = "undefined";

 // latency(0), latency(1), ... , latency(n)
 paramName = "latency(0)";
 if (!(ParamCl<TdataCl>::getIntOCPConfigValue(myPrefix,
 paramName,
 m_Latency,
 m_ParamMap))) {
 // Could not find the parameter so we must set it to a default
#ifdef DEBUG
 cout << "Warning: paramter \"" << paramName
 << "\" for Slave \"" << name()
 << "\" was not found in the parameter map." << endl;
 cout << " setting missing parameter to 3." << endl;
#endif

OCP TL2 Channel 110

 m_Latency = 3;
 }

 // limitreq_enable
 paramName = "limitreq_enable";
 if (!(ParamCl<TdataCl>::getBoolOCPConfigValue(myPrefix,
 paramName,
 m_limitreq_enable,
 m_ParamMap))) {
 // Could not find the parameter so we must set it to a default
#ifdef DEBUG
 cout << "Warning: paramter \"" << paramName
 << "\" for Slave \"" << name()
 << "\" was not found in the parameter map." << endl;
 cout << " setting missing parameter to false." << endl;
#endif
 m_limitreq_enable = false;
 }
 // limitreq_max
 paramName = "limitreq_max";
 if (!(ParamCl<TdataCl>::getIntOCPConfigValue(myPrefix,
 paramName,
 m_limitreq_max,
 m_ParamMap))) {
 // Could not find the parameter so we must set it to a default
#ifdef DEBUG
 cout << "Warning: paramter \"" << paramName
 << "\" for Slave \"" << name()
 << "\" was not found in the parameter map." << endl;
 cout << " setting missing parameter to 4." << endl;
#endif
 m_limitreq_max = 4;
 }

 /////////////
 //
 // Initialize the Slave with New Parameters
 //
 /////////////

 // Clear the response queue
 m_ResponseQueue.reset();

 // Create the memory:
 if (m_Memory) {
 // Just in case we are called multiple times.
 delete m_Memory;
 }
 char id_buff[10];
 sprintf(id_buff,"%d",m_ID);
 string my_id(id_buff);
 m_Memory =
 new MemoryCl<TdataCl>(my_id,m_OCPParamP->addr_wdth,sizeof(Td));

}

111

6.4 SystemC Request Thread Process
The request thread processes each new request as it arrives from the channel. This
section explains some highlights of the code for the request thread process. The
complete code for the request process is presented below.

The basis loop of the request thread process does the following: gets a new request,
processes it, generates a response (if needed), then queues that response for the
response thread to process. The request thread uses a blocking command to get the
next request:

tpP->getOCPRequestBlocking(req, false);

This command gets the current request from the channel if there is one. If there is no
request, the command blocks until a new request arrives. When a request is found, it is
copied into the variable req. The second parameter to the command (false) indicates
that the command should not automatically accept the request it receives. The thread
then processes the command. Either it updates the memory (for a write command) or it
extracts a value from the memory for a read command.

After receiving a request, the process then builds a response. In this slave model, all
requests generate a response for the response queue. Some are actual responses such
as the responses to a read request. These responses have SResp of type
OCP_SRESP_DVA. Some of the responses are just placeholder responses. They are there
to make sure that the timing for activities such as writes are accurate. Placeholder
responses take up a spot in the response queue, but they have an SResp type of
OCP_SRESP_NULL and are never sent on the OCP channel. Each item in the outgoing
response queue consists of a response and a time stamp of the earliest time that the
response may be sent (if it is an actual response) or cleared from the queue (if it is a
place-holder response).

Note in the code (see comment 2 in the code below) how each element of the response
structure is set by the slave. For example, the following line sets the response type of
the out going response:

resp.SResp = OCP_SRESP_DVA;

If the outgoing response queue is full, the slave can no longer accept any new requests.
Based on the configuration of the channel, the slave uses either SThreadBusy or a delay
on accepting the request to keep the master from sending any new requests that cannot
be processed due to the full queue (see comment 4 in the code below)

The following is the complete code for the slave’s request thread process.

template<typename TdataCl>
void Slave<TdataCl>::requestThreadProcess()
{
 // The new request we have just received
 OCPRequestGrp<Td,Ta> req;

 // The response to the new request
 OCPResponseGrp<Td> resp;

 // Time after which the response can be sent or this
 // request can be cleared from incoming queue.
 sc_time send_time;

 // We are in the initialization call.
 // Wait for the first simulation cycle.

OCP TL2 Channel 112

 tpP->ocpWait();

 // main loop
 while (true) {
 // --
 // (1) Get the next request
 // --
 tpP->getOCPRequestBlocking(req,false);

 // --
 // (2) process the new request and generate a response.
 // --

 // compute the word address
 if (req.MAddr >= m_MemoryByteSize) {
 req.MAddr = req.MAddr - m_MemoryByteSize;
 }

 // send a response for writes if channel requires it.
 if (m_writeresp_enable && (req.MCmd == OCP_MCMD_WR)) {
 req.MCmd = OCP_MCMD_WRNP;
 }

 // write to or read from the memory
 switch (req.MCmd) {
 case OCP_MCMD_WR:
 // posted write to memory
 m_Memory->write(req.MAddr,req.MData,req.MByteEn);

 // note that posted writes do not have responses.
 // However, they do have a processing delay that can
 // contribute to a max request limit back up.
 // To solve this problem, requests that have no
 // response to generate a dummy respose with
 // SRESP=NULL which is defined as "No response".
 // Dummy responses are never sent out on the channel.
 resp.SResp = OCP_SRESP_NULL;
 resp.SThreadID = req.MThreadID;
 break;

 case OCP_MCMD_RD:
 case OCP_MCMD_RDEX:
 // NOTE that for a single threaded slave,
 // Read-EX works just like Read
 // read from memory
 m_Memory->read(req.MAddr,resp.SData,req.MByteEn);
 // setup a read response
 resp.SResp = OCP_SRESP_DVA;
 resp.SThreadID = req.MThreadID;
 break;

 case OCP_MCMD_WRNP:
 // Generate an acknowledgement response
 resp.SResp = OCP_SRESP_DVA;
 resp.SThreadID = req.MThreadID;
 resp.SData = 0;
 break;

113

 default:
 cout << "MCmd #" << req.MCmd << " not supported yet."
 << endl;
 sc_stop();
 break;
 }

 // --
 // (3) generate a completion time stamp and add the response
 // to the queue
 // --

 // compute pipelined response delay
 send_time = sc_time_stamp() +
sc_time(m_Latency,m_ocpClkTimeUnit);

 // purge the queue of any posted write place holder responses
 // that have reached their send times
 m_ResponseQueue.purgePlaceholders();

 m_ResponseQueue.enqueueBlocking(resp.SResp,resp.SData,
send_time);

 // --
 // (4) if our queue is full, generate back pressure halt
 // the flow of requests. Otherwise, accept the request
 // and move on.
 // --

 // Do we need to set SThreadBusy??
 if (m_sthreadbusy && (m_ResponseQueue.length() >=
m_limitreq_max)) {
 m_curSThreadBusy = 1;
 tpP->putSThreadBusy(m_curSThreadBusy);
 }

 // Should we accept this command?
 if (m_cmdaccept) {
 // if queue is full, delay accepting request
 while (m_ResponseQueue.length() >= m_limitreq_max) {
 // Our queue is full. Wait for this to change.
 tpP->ocpWait();
 }
 // now it is okay to accept the request
 tpP->putSCmdAccept();
 }

 }
}

6.4.1 SystemC Response Thread Process
The response thread process cycles through the response queues, and then places each
response into the channel at the appropriate time. This section explains some
highlights of the code for the response thread process. The complete code for the
request process is presented below.

OCP TL2 Channel 114

The basis loop of the response thread process does the following:

Clears and processes any writes that do not need a response, then it finds the next
response to send out (if any)

Builds the response, makes sure the channel is free, then places the new response on
the channel.

If no more responses are available to be sent, the process waits until responses arrive.

The command following command changes the channel’s SThreadBusy signal at the
next delta cycle:

tpP->putSThreadBusy(m_curSThreadBusy);

The following loop checks to see if the master’s MThreadbusy signal is true for our
thread (thread zero). As long as the master keeps this signal high, the slave must wait
before sending a new response on that thread.

mthreadbusy = tpP->getMThreadBusy();
while (mthreadbusy & 1) {
 tpP->ocpWait();
 mthreadbusy = tpP->getMThreadBusy();
}

The following command will try to place the passed response unto the channel:

tpP->startOCPResponseBlocking(resp);

If the channel is busy (that is, there is already a response on the channel waiting to be
accepted, the command will block until the response can be placed on the channel.
Note that this command returns once the response has been placed on the channel, but
before the response has been accepted by the master.

The following is the complete code for the Response Thread Process.

template<typename TdataCl>
void Slave<TdataCl>::responseThreadProcess()
{
 OCPResponseGrp<Td> resp;
 sc_time send_time;
 sc_time CurTime;
 unsigned int mthreadbusy;

 tpP->ocpWait();

 // main loop
 while (true) {

 // ---
 // (1) Find a response to place on the channel
 // ---

 // We are single threaded - always choose thread zero:
 int selectedThread = 0;

 // Get to next response (wait for one, if necessary).

 // First, clear any stale write latency waits
 m_ResponseQueue.purgePlaceholders();

115

 // Can we free SThreadBusy??
 if (m_sthreadbusy && (m_curSThreadBusy==1) &&
 (m_ResponseQueue.length() < m_limitreq_max)) {
 // Our queue has been shortened. Clear threadBusy.
 m_curSThreadBusy = 0;
 tpP->putSThreadBusy(m_curSThreadBusy);
 }

 // Get the next request off of the queue

m_ResponseQueue.dequeueBlocking(resp.SResp,resp.SData,send_time);
 resp.SThreadID = selectedThread;

 // check if we still need to wait
 CurTime = sc_time_stamp();
 if (send_time > CurTime) {
 tpP->ocpWait((send_time.value() - CurTime.value())/1000);
 }

 if (m_debug_os_ptr) {
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << "slave wait time = "
 << send_time.value() << endl;
 }

 // The response could be a place holder response
 // used to implement write latency. If this is the case,
 // skip the rest of the steps.

 if (resp.SResp == OCP_SRESP_NULL) {
 if (m_debug_os_ptr) {
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << "finished Write Latency waiting." << endl;
 }
 } else {

 // ----------------------------------
 // (2) is MThreadBusy?
 // ----------------------------------

 if (m_mthreadbusy) {
 mthreadbusy = tpP->getMThreadBusy();
 while (mthreadbusy & 1) {
 tpP->ocpWait();
 mthreadbusy = tpP->getMThreadBusy();
 }
 }

 // ----------------------------------
 // (3) return a response
 // ----------------------------------

 if (m_debug_os_ptr) {
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << "send response." << endl;

OCP TL2 Channel 116

 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " t = " << sc_simulation_time() << endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " SResp: " << resp.SResp << endl;
 (*m_debug_os_ptr) << "DB (" << name() << "): "
 << " SData: " << resp.SData << endl;
 }

 // Send out the response
 tpP->startOCPResponseBlocking(resp);
 }

 // We must be able to clear ThreadBusy now as we just sent a
 // request (or cleared a write latency)
 if (m_sthreadbusy && (m_curSThreadBusy==1) &&
 (m_ResponseQueue.length() < m_limitreq_max)) {
 // Our queue has been shortened. Clear threadBusy.
 m_curSThreadBusy = 0;
 tpP->putSThreadBusy(m_curSThreadBusy);
 } else {
 assert("Slave should have been able to clear SThreadBusy");
 }

 // wait until next cycle to send out the next response (if any)
 tpP->ocpWait();
 }
}

6.4.2 The Sideband Thread Process
This slave process demonstrates how the sideband signals on the channel may be
exercised. The code below reads the MError signal and then uses that to set the SError
signal. This process also periodically changes the SInterrupt and SFlag signals as well.

The following is the complete code for the Sideband Thread Process.

// Exercises the sideband signals by setting them with a recurring
pattern
// Also loops back error signal from the Master if both Master and
Slave
// versions (MError and SError) are configured into the channel
template<typename TdataCl>
void Slave<TdataCl>::exerciseSidebandThreadProcess()
{
 // Systematically send out sideband signals on any signals that are
attached to us.
 tpP->ocpWait(10);
 int tweakCounter =0;
 bool hasMError = m_OCPParamP->merror;
 bool hasSError = m_OCPParamP->serror;
 bool nextSError = false;
 bool hasSInterrupt = m_OCPParamP->interrupt;
 bool nextSInterrupt = false;
 bool hasSFlag = m_OCPParamP->sflag;
 int numSFlag = m_OCPParamP->sflag_wdth;
 unsigned int nextSFlag = 0;
 unsigned int maxSFlag = (1 << numSFlag) -1;

117

 // main loop
 while (true) {
 // wait 10 cycles
 tpP->ocpWait(10);

 // Now count through my sideband changes
 tweakCounter++;

 // Drive SError every time we are called
 if (hasSError) {
 if (hasMError) {
 // loop MError back through SError
 nextSError=tpP->SgetMError();
 tpP->SputSError(nextSError);
 } else {
 // Toggle SError
 nextSError = !nextSError;
 tpP->SputSError(nextSError);
 }
 }

 // Drive SInterrupt
 if (hasSInterrupt) {
 // Drive every other time we are called
 if (tweakCounter%2 == 0) {
 // Toggle SInterrupt
 nextSInterrupt = !nextSInterrupt;
 tpP->SputSInterrupt(nextSInterrupt);
 }
 }

 // Drive SFlag
 if (hasSFlag) {
 // Drive every fourth time we are called
 if (tweakCounter%4 == 0) {
 nextSFlag += 1;
 if (nextSFlag > maxSFlag) {
 nextSFlag = 0;
 }
 tpP->SputSFlag(nextSFlag);
 }
 }
 } // end while
}

6.4.3 Template Instantiation
The final line of the slave.cc file makes sure that the compiler creates an instance of
the Slave template for the OCP_TL1_SIGNAL_CL type defined in the globals.h header
file. The final line is as follows:

// ---
// explicit instantiation of the Slave template class
// ---
template class Slave< OCP_TL1_SIGNAL_CL >;

OCP TL2 Channel 118

6.5 The Main Program
The main.cc program processes its command line options with the
process_command_line() function, then reads in the configuration parameters for the
channel, master, and slave. The configuration files are converted into the STL maps in
the readMapFromFile() function. The main.cc program then creates a channel and
uses the new channel configuration map to configure it. The program then does the
same for the master and slave. Finally, it connects the master to the channel and the
slave to the channel.

Once the model has been build, the main.cc program calls the SystemC function:

sc_start(simulation_end_time,SC_NS);

that runs the simulation for simulation_end_time nano-seconds. After the simulation
has completed, some minimal reporting is done.

The following is the complete code of the main.cc program.

///////////////////////////
//
// Simple Main to read in Map data from files
// and then use that to configure and connect
// a master and slave.
//
///////////////////////////

#include <map>
#include <set>
#include <string>
#include <algorithm>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>

#include "systemc.h"

#include "master.h"
#include "slave.h"
#include "ocp_tl1_data_cl.h"
#include "ocp_tl_param_cl.h"
#include "ocp_tl1_channel.h"

#define OCP_CLOCK_PERIOD 1
#define OCP_CLOCK_TIME_UNIT SC_NS

#define MASTER_CLOCK_PERIOD 1
#define MASTER_CLOCK_TIME_UNIT SC_NS

#define SLAVE_CLOCK_PERIOD 1
#define SLAVE_CLOCK_TIME_UNIT SC_NS

void process_command_line(int argc,
 char* argv[],
 string& ocp_params_file_name,

119

 string& master_params_file_name,
 string& slave_params_file_name,
 double& simulation_end_time,
 bool& debug_dump,
 string& debug_file_name)
{
 // get the ocp parameters file name
 ocp_params_file_name = "";
 if (argc > 1) {
 string file_name(argv[1]);
 ocp_params_file_name = file_name;
 }

 // get the master parameters file name
 master_params_file_name = "";
 if (argc > 2) {
 string file_name(argv[2]);
 master_params_file_name = file_name;
 }
 // get the slave parameters file name
 slave_params_file_name = "";
 if (argc > 3) {
 string file_name(argv[3]);
 slave_params_file_name = file_name;
 }

 // get the simulation end time
 simulation_end_time = 1000;
 if (argc > 4) {
 simulation_end_time = (double) atoll(argv[4]);
 }

 // do we dump out a log file?
 debug_dump= false;
 debug_file_name = "";
 if (argc > 5) {
 string file_name(argv[5]);
 debug_file_name = file_name;
 debug_dump = true;
 }
}

void readMapFromFile(const string &myFileName, MapStringType
&myParamMap)
{
 // read pairs of data from the passed file
 string leftside;
 string rightside;

 // (1) open the file
 ifstream inputfile(myFileName.c_str());
 assert(inputfile);

 // set the formatting
 inputfile.setf(std::ios::skipws);

OCP TL2 Channel 120

 // Now read through all the pairs of values and add them to the
passed map
 while (inputfile) {
 inputfile >> leftside;
 inputfile >> rightside;
 myParamMap.insert(std::make_pair(leftside,rightside));
 }

 // All done, close up
 inputfile.close();
}

int
sc_main(int argc, char* argv[])
{
 OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32>
>* pOCP;
 Master< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> >*
pMaster;
 Slave< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> >* pSlave;
 MapStringType ocpParamMap;
 MapStringType masterParamMap;
 MapStringType slaveParamMap;

 double simulation_end_time;
 bool debug_dump;
 string ocpParamFileName;
 string masterParamFileName;
 string slaveParamFileName;
 string dump_file_name;
 ofstream debugFile;

 // --------------------------------
 // (1) process command line options
 // and read my parameters
 // --------------------------------

process_command_line(argc,argv,ocpParamFileName,masterParamFileName,

slaveParamFileName,simulation_end_time,debug_dump,dump_file_name);

 if (! ocpParamFileName.empty()) {
 readMapFromFile(ocpParamFileName, ocpParamMap);
 }

 if (! masterParamFileName.empty()) {
 readMapFromFile(masterParamFileName, masterParamMap);
 }

 if (! slaveParamFileName.empty()) {
 readMapFromFile(slaveParamFileName, slaveParamMap);
 }

 // open a trace file
 if (debug_dump) {
 cout << "Debug dumpfilename: " << dump_file_name << endl;
 debugFile.open(dump_file_name.c_str());

121

 }

 // --
 // (2) Create the clocked OCP Channel
 // --
 sc_clock clk("clk", OCP_CLOCK_PERIOD,OCP_CLOCK_TIME_UNIT) ;

pOCP = new OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBit32,
OCPCHANNELBit32> >

((std::string)"ocp0",(sc_clock *)&clk);

 pOCP->setConfiguration(ocpParamMap);

 // --
 // (3) Create the Master and Slave
 // --

 pMaster = new Master< OCP_TL1_DataCl<OCPCHANNELBit32,
OCPCHANNELBit32> >("master", MASTER_CLOCK_PERIOD,
MASTER_CLOCK_TIME_UNIT, 0, &debugFile);

 pSlave = new Slave< OCP_TL1_DataCl<OCPCHANNELBit32,
OCPCHANNELBit32> >("slave", SLAVE_CLOCK_PERIOD, SLAVE_CLOCK_TIME_UNIT,
0, 0x3FF, &debugFile);

 // --
 // (4) connect channel, master, and slave, & clock
 // --
 pMaster->ipP(*pOCP);
 pSlave->tpP(*pOCP);

 // ------------------------
 // (5) start the simulation
 // ------------------------
 sc_start(simulation_end_time,SC_NS);

 // -------------------
 // (6) post processing
 // -------------------

 cout << "main program finished at "
 << sc_time_stamp().to_double() << endl;

 sc_simcontext* sc_curr_simcontext = sc_get_curr_simcontext();
 cout << "delta_count: " << dec << sc_curr_simcontext->delta_count()
 << endl;
 cout << "next_proc_id: " << dec << sc_curr_simcontext-
>next_proc_id()
 << endl;

 return (0);
}

OCP TL2 Channel 122

7 Examples Using OCP TL2 Channel and API
The examples described in this section demonstrate the use of the OCP TL2 channel.
The first example illustrates a single-threaded OCP communication between an OCP
master and an OCP slave. Both are using the TL2 API to model the protocol.

The second example shows a more complex example in which a multi-threaded master
communicates with a multi-threaded slave via the original OCP TL2 channel.

All the concerned files for these examples are located in ‘tl_sc/examples/ocp_tl2_1’.
A README file details how to compile and run the code.

7.1 Example # 1
In this example, a simple TL2 master communicates with a simple TL2 slave. The OCP
parameters describing the channel are stored in the 'ocpParams' file. The master uses
an OCP TL2 master port to connect the channel, and the slave uses an OCP TL2 slave
port. These ports allow modules to perform access to all the TL2 API functions and
events available.

The master and the slave use an 'OCPRequestGrp' structure to pass/get all the
request signals to the channel, and an 'OCPResponseGrp' structure to store/send the
response signals.

Both master and slave are non-pipelined modules, which use one single thread to
handle requests and responses.

The communication between the master and the slave is composed of the following
sequences:

7.1.1 Master Sequence
Master sends a 10-length WRITE burst to the slave using sendOCPRequestBlocking().
Only one chunk is used (i.e. transaction is atomic).

Master sends a 10-length READ burst to the slave using sendOCPRequestBlocking().
Only one chunk is used (i.e. transaction is atomic).

Master waits and get the corresponding response using two successive
getOCPResponseBlocking() calls catching 5-length chunks.

Master performs a complete 20-length WRITE transaction using the serialized method
'OCPWriteTransfer()'. This call includes the following phases:

• request send

• request acknowledge
Master performs a complete 20-length READ transaction using the serialized method
'OCPReadTransfer()'. This call includes the following phases:

• request send

• request acknowledge

• response reception

• response acknowledge

123

7.1.2 Slave sequence
Slave receives a 10-length WRITE burst from the master, and stores the received data
in an internal array.

Slave receives a 10-length READ burst from the master, and sends the response using
two consecutive response chunks (5-length each) with a different 'SRespInfo' signal
value.

Slave receives a 20-length WRITE burst from the master, and stores the received data
in an internal array.

Slave receives a 20-length READ burst from the master, and sends the response using
one response call.

7.2 Example #2
In this example, a multi-threaded TL2 master communicates with a multi-threaded TL2
slave. The OCP parameters describing the channel are stored in the
‘ocpParams_complex’ file.

7.2.1 Slave Description
The TL2 slave emulates a '3 threads' OCP slave. It uses two SystemC threads, one for
requests and one for responses. The request SC_THREAD catches every request,
computes the response and stores it in one of the three response queues, depending on
the ThreadID of the request. Then, the response SC_THREAD issues responses to the
master. The slave acts as a memory: a write request updates an internal memory array,
and a read request reads a cell of this array.

The slave accepts some parameters, described in the ‘slaveParams’ files:

• latencyX

• limitreq_enable

• limitreq_max
These parameters are described in section 6.1.3 of the OCP API documentation. Note
that for TL2, delays are not expressed in terms of clock cycles but as absolute timings
(unit is SC_NS in the slave).

7.2.2 Master Description
The TL2 master emulates a '3 threads' master. It sends requests labelled with a
MThread ID varying from 0 to 2. Depending on the current thread, each request targets
a different location in the target memory space (no overlap between thread operations).
The master uses two SystemC threads, one for the requests and one for the responses.

The master accepts some parameters, described in the ‘masterParams’ file:

• mrespaccept_delay

• mrespaccept_fixeddelay

• command_cycles
The first two parameters are described in section 6.1.3. Note that for TL2, delays are not
expressed in terms of clock cycles but as absolute timings (unit is SC_NS in the

OCP TL2 Channel 124

master). 'Command_cycles' specifies the number of times the predefined TL2 requests
sequence is sent.

125

8 Debugging Your Model Using
SOCCREATOR® Tools

The OCP TL1, TL2 and TL3 channels all implement monitor interfaces. The user is able
to create monitors which can be bound to the channels and used to obtain debug and
analysis data from SystemC simulations. Some monitors have been implemented by
OCP-IP.

For the OCP TL1 and TL2 channels, there is a trace monitor available. The TL1 trace
monitor prints out the state of the OCP interface at the end of every OCP clock cycle.

The resulting OCP Monitor file can be processed with “ocpdis,” a tool that is available
separately from the channel, which reformats the data for easy reading. The tool
“ocpcheck,” also available separately, processes the OCP Monitor data and checks that
the OCP channel followed the OCP protocol.

OCP TL2 Channel 126

9 Debugging Your Model Using OCP
Performance Monitor

The OCP TL1, TL2 and TL3 channels all implement monitor interfaces. The user is able
to create monitors which can be bound to the channels and used to obtain debug and
analysis data from SystemC simulations. Some monitors have been implemented by
OCP-IP.

For all three channels there is a performance monitor available. These performance
monitors enable intuitive performance analysis by means of fast transaction level
recording. The analysis instrumentation is based on the SystemC Verification (SCV)
standard. The monitor is available to the OCP-IP members in a separate release
package together with the old OCPMon monitor class. For use, see the documentation
included in the release package, which is available at www.ocpip.org.

127

10 Sideband Signals (OCP TL1)
The access methods for sending and receiving sideband signals are shared by both the
base generic class API and the OCP TL1 API. The commands described in this section
may be used with either API.

10.1 MError Signal
This section describes the methods for the MError signal.

void MputMError(bool nextValue)

Caller: Master

Purpose: Changes the next value of the MError signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous,
the change occurs at the next update.

bool SgetMError() const

Caller: Slave

Purpose: Returns the current value of the MError signal in the channel.

const sc_event& SidebandMErrorEvent() const

Caller: Slave

Purpose: Returns the event associated with the MError signal. This event is
triggered whenever the MError signal changes to a new value. Note that a
call to setMError() or resetMError() will not always result in the event
SidebandMErrorEvent occurring. For example, if the current value of
MError is true and the function setMError() is called, the event
SidebandMErrorEvent will not be triggered because the current value
(true) and the next value (true) are the same. This method is called by the
slave.

10.2 MFlag Signal
This section describes the methods for the MFlag signal.

void MputMFlag(int nextValue)

Caller: Master

Purpose: Changes the next value of the MFlag signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous,
the change occurs at the next update.

void MputMFlag(int nextValue, unsigned int mask)

Caller: Master

OCP TL2 Channel 128

Purpose: Changes the next value of the MFlag signal. Only nextValue & mask bits
are written. If the OCP channel is asynchronous, the change is
immediate. If the channel is synchronous, the change occurs at the next
update.

int SgetMFlag() const

Caller: Slave

Purpose: Returns the current value of the MFlag signal in the channel.

const sc_event& SidebandMFlagEvent() const

Caller: Slave

Purpose: Returns the event associated with the MFlag signal. This event is
triggered whenever the MFlag signal changes to a new value.

10.3 SError Signal
This section describes the methods for the SError signal.

void SputSError(bool nextValue)

Caller: Slave

Purpose: Changes the next value of the SError signal. If the OCP channel is
asynchronous, change is immediate. If the channel is synchronous, the
change occurs at the next update.

bool MgetSError() const

Caller: Master

Purpose: Returns the current value of the SError signal in the channel.

const sc_event& SidebandSErrorEvent() const

Caller: Master

Purpose: Returns the event associated with the SError signal. This event is
triggered whenever the SError signal changes to a new value. Note that a
call to setSError() or resetSError() will not always result in the
event SidebandSErrorEvent occurring. For example, if the current value
of SError is true and the function setSError() is called, the event
SidebandSErrorEvent will not be triggered because the current value
(true) and the next value (true) are the same.

10.4 SFlag Signal
This section describes the methods for the SFlag signal.

void SputSFlag(int nextValue)

Caller: Slave

129

Purpose: Changes the next value of the SFlag signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous,
the change occurs at the next update.

void SputSFlag(int nextValue, unsigned int mask)

Caller: Slave

Purpose: Changes the next value of the SFlag signal. Only nextValue&mask bits
are written. If the OCP channel is asynchronous, the change is
immediate. If the channel is synchronous, the change occurs at the next
update.

int MgetSFlag() const

Caller: Master

Purpose: Returns the current value of the SFlag signal in the channel.

const sc_event& SidebandSFlagEvent() const

Caller: Master

Purpose: Returns the event associated with the SFlag signal. This event is
triggered whenever the SFlag signal changes to a new value.

10.5 SInterrupt Signal
This section describes the methods for the SInterrupt signal.

void SputSInterrupt(bool nextValue)

Caller: Slave

Purpose: Changes the next value of the SInterrupt signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous,
the change occurs at the next update.

bool MgetSInterrupt() const

Caller: Master

Purpose: Returns the current value of the SInterrupt signal in the channel.

const sc_event& SidebandSInterruptEvent() const

Caller: Master

Purpose: Returns the event associated with the SInterrupt signal. This event is
triggered whenever the SInterrupt signal changes to a new value. Note
that a call to setSInterrupt() or resetSInterrupt() will not always
result in the event SidebandSInterruptEvent occurring. For example, if
the current value of SInterrupt is true and the function
setSInterrupt() is called, the event SidebandSInterruptEvent will

OCP TL2 Channel 130

not be triggered since the current value (true) and the next value (true)
are the same.

10.6 Control Signal
This section describes the methods for the Control signal.

bool SysputControl(int nextValue)

Caller: System side

Purpose: If ControlBusy is false, this function changes the next value of the
Control sideband signal. If the ControlBusy signal is part of the OCP
channel configuration, and the current value of ControlBusy is true, the
next value of the Control sideband signal will not be changed and the
setControl() method will return false. Otherwise, the method will
return true and will set the next value of the Control signal. If the OCP
channel is asynchronous, the change to the Control signal is immediate.
If the channel is synchronous, the change occurs at the next update.

int CgetControl() const

Caller: Core side

Purpose: Returns the current value of the Control signal in the channel.

const sc_event& SidebandControlEvent() const

Caller: Core side

Purpose: Returns the event associated with the Control signal. This event is
triggered whenever the Control signal changes to a new value.

10.7 ControlWr Signal
This section describes the methods for the ControlWr signal.

void SysputControlWr(bool nextValue)

Caller: System side

Purpose: Changes the next value of the ControlWr signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous,
the change occurs at the next update.

bool CgetControlWr() const

Caller: Core side

Purpose: Returns the current value of the ControlWr signal in the channel.

const sc_event& SidebandControlWrEvent() const

Caller: Core side

131

Purpose: Returns the event associated with the ControlWr signal. This event is
triggered whenever the ControlWr signal changes to a new value.

10.8 ControlBusy Signal
This section describes the methods for the ControlBusy signal.

void CputControlBusy(bool nextValue)

Caller: Core side

Purpose: Changes the next value of the ControlBusy signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous,
the change occurs at the next update.

bool SysgetControlBusy() const

Caller: Core side

Purpose: Returns the current value of the ControlBusy signal in the channel.

const sc_event& SidebandControlBusyEvent() const

Caller: System side

Purpose: Returns the event associated with the ControlBusy signal. This event is
triggered whenever the ControlBusy signal changes to a new value. Note
that a call to setControlBusy() or resetControlBusy() will not
always result in the event SidebandControlBusyEvent occurring. For
example, if the current value of ControlBusy is true and the function
setControlBusy() is called, the event SidebandControlBusyEvent will
not be triggered because the current value (true) and the next value
(true) are the same.

10.9 Status Signal
This section describes the methods for the Status Signal.

void CputStatus(int nextValue)

Caller: Core side

Purpose: This function changes the next value of the Status sideband signal. If the
OCP channel is asynchronous, the change to the Status signal is
immediate. If the channel is synchronous, the change occurs at the next
update.

int SysgetStatus() const

Caller: System side

Purpose: Returns the current value of the Status signal in the channel.

bool readStatus(int& currentValue) const

OCP TL2 Channel 132

Caller: System side

Purpose: If the channel signal StatusBusy is false, then this function sets the
passed parameter currentValue to the current value of the Status
signal in the channel. Then the event SidebandStatusRdEvent is
triggered and the function returns true. If the channel signal StatusBusy
is true, the read is not performed, the event SidebandStatusRdEvent is
not triggered, and the function returns false.

const sc_event& SidebandStatusEvent() const

Caller: System side

Purpose: Returns the event associated with the Status signal. This event is
triggered whenever the Control signal changes to a new value.

10.10 StatusRd Signal
This section describes the methods for the StatusRd Signal.

void SysputStatusRd(bool nextValue)

Caller: System side

Purpose: Changes the next value of the StatusRd signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous,
the change occurs at the next update.

bool CgetStatusRd() const

Caller: Core side

Purpose: Returns the current value of the StatusRd signal in the channel.

const sc_event& SidebandStatusRdEvent() const

Caller: Core side

Purpose: Returns the event associated with the StatusRd signal. This event is
triggered whenever the ControlWr signal changes to a new value.

10.11 StatusBusy Signal
This section describes the methods for the StatusBusy signal.

void CputStatusBusy(bool nextValue)

Caller: Core side

Purpose: Changes the next value of the StatusBusy signal. If the OCP channel is
asynchronous, the change is immediate. If the channel is synchronous,
the change occurs at the next update.

bool SysgetStatusBusy() const

133

Caller: System side

Purpose: Returns the current value of the StatusBusy signal in the channel.

const sc_event& SidebandStatusBusyEvent() const

Caller: System side

Purpose: Returns the event associated with the StatusBusy signal. This event is
triggered whenever the StatusBusy signal changes to a new value. Note
that a call to setStatusBusy() or resetStatusBusy() will not always
result in the event SidebandStausBusyEvent occurring. For example, if
the current value of StatusBusy is true and the function
setStatusBusy() is called, the event SidebandStatusBusyEvent will
not be triggered because the current value (true) and the next value
(true) are the same.

OCP TL2 Channel 134

11 Sideband signals (OCP TL2)
The OCP TL2 channel has full sideband signal support.

Sideband API Function Description
Called by Master

bool
MgetSError(void)

Returns the value of SError.

unsigned long long int
MgetSFlag(void)

Returns the value of SFlag.

bool
MgetSInterrupt(void)

Returns the value of SInterrupt.

void
MputMError(bool nextValue)

Set the value of MError.
Triggers SidebandMasterEvent.

void
SputMFlag(
 unsigned long long int nextValue)

Set the value of MFlag.
Triggers SidebandMasterEvent.

Called by Slave

bool
SgetMError(void)

Returns the value of MError.

unsigned long long int
SgetMFlag(void)

Returns the value of MFlag.

void
SputSError(bool nextValue)

Set the value of SError.
Triggers SidebandSlaveEvent.

void
SputSFlag(
 unsigned long long int nextValue)

Set the value of SFlag.
Triggers SidebandSlaveEvent.

void
SputSInterrupt(bool nextValue)

Set the value of SInterrupt.
Triggers SidebandSlaveEvent.

Called by “System” side

void
SysputControl(unsigned int
nextValue)

Set the value of Control.
Triggers the SidebandSystemEvent.

bool
SysgetControlBusy(void)

Gets the value of ControlBusy.

void
SysputControlWr(bool nextValue)

Set the value of ControlWr.
Triggers the SidebandSystemEvent.

unsigned int
SysgetStatus(void)

Gets the value of Status.

bool
SysgetStatusBusy(void)

Gets the value of StatusBusy.

void
SysputStatusRd(bool nextValue)

Set the value of StatusRd.
Triggers the SidebandSystemEvent.

Called by “Core” side

unsigned int
CgetControl(void)

Gets the value of Control.

void
CputControlBusy(bool nextValue)

Set the value of ControlBusy.
Triggers the SidebandCoreEvent.

135

unsigned int
CgetControlWr(void)

Gets the value of ControlWr.

void
CputStatus(unsigned int nextValue)

Set the value of Status.
Triggers the SidebandCoreEvent.

void
CputStatusBusy(
 unsigned int nextValue)

Set the value of StatusBusy.
Triggers the SidebandCoreEvent.

bool
CgetStatusRd(void)

Gets the value of StatusRd.

OCP TL2 Channel 136

12 OCP TL1 Timing
Level-1 of the OCP TLM model is designed to allow cycle-accurate modelling of bus
interfaces. Any OCP traffic pattern that is possible in hardware should also be possible
to model at TL1, without modifications to the design hierarchy or topology, and in a
fully modular manner. This means that the TL1 infrastructure needs to support,
among other things:

• Modules with internal combinatorial paths from one OCP signal to another
within a single OCP interface

• Modules with internal combinatorial paths from an OCP signal on one interface
to OCP signals on another interface

• Cascading of modules with OCP interfaces to an arbitrary degree

• Modules that change the values of OCP signals at some time in the middle of a
clock cycle rather than at the clock edges, for example scaled-synchronous clock
bridges

As OCP is a synchronous clocked protocol, to model it at a cycle-accurate level means
that at very least the OCP master must understand the location of the clock cycles in
time. In fact it is usual that the OCP slave also needs an understanding of the OCP
clock cycles, and when both master and slave have this information, it must be the
same for both of them, otherwise the channel will not work correctly. Furthermore, the
channel may be clocked and there may be one or more monitors attached to the
channel, and these also need to be correctly synchronized with the OCP master.

The section below attempts to explain what is meant by synchronization in this context.
This is followed by a section describing how the OCP-TL1 timing information
distribution system can be used to support non-default cases.

12.1 OCP TL1 Synchronisation
In the OCP protocol time is divided into clock cycles. Clock cycles are generally of a
constant duration, the clock period, but this is not obligatory. In hardware, each clock
cycle begins with a rising edge of a single-wire clock signal. The clock signal returns to
zero some time during the cycle and the cycle ends when the following cycle begins,
with the next rising edge.

In SystemC it is usual to define clock cycles in the same way, using an sc_channel of
type sc_signal<bool> or the convenient library module sc_clock. SystemC allows many
other ways of defining clock cycles and most ways are tolerated by the
OCP_TL1_Channel. However users are warned that exotic or unusual definitions of
clock cycles will greatly reduce the chances of compatibility between modules.

The OCP_TL1_Channel understands only one way to define OCP clock cycles, and that
is by using an sc_clock or sc_signal<bool>. If clock cycles are defined in any other way
then the untimed version of the channel must be used instead of the timed version. The
untimed version of the channel has reduced functionality; for example it does not
support the blocking calls or the ocpWait() call.

There is a trace monitor available for the untimed channel. This monitor needs to
understand the definition of the OCP clock cycles. It assumes that they have constant
duration and start at the first delta cycle at time 0. This is one delta cycle different
from the normal implementation and use of sc_clock, where the clock cycles start at the
second delta cycle at time 0, because one delta cycle is consumed in the sc_clock’s

137

internal process. If the untimed trace monitor is used, then the OCP master and in
most cases the OCP slave need to understand the clock cycles in the same way that it
does. That means they should not use sc_clock or sc_signal<bool> channels as an OCP
clock. Rather they should be implemented with SC_THREAD() proceses containing
wait(OCP_CLOCK_PERIOD)-type statements or SC_METHOD() processes contaning
next_trigger(OCP_CLOCK_PERIOD)-type statements. On the other hand, a clocked OCP
master/slave pair can use the untimed channel without trace monitor support.

For every OCP_TL1_Channel in a simulation, there are several other modules associated
with it:

• Exactly one module with an OCP master port, the master

• Exactly one module with an OCP slave port, the slave (which is allowed to be
the same module as the master)

• Optionally one or more monitors

The master and slave may contain processes that access the channel. If so, these
processes must be synchronized with each other, so that they understand the same
clock cycle boundaries, down to delta-cycle-accuracy.

If the channel or any monitor is clocked, it must be clocked with the same clock used in
the master and slave for OCP clock cycle synchronisation.

There are several cases where the modules do not need to understand the clock cycles.
For example:

• The channel has an untimed option, as discussed above

• An OCP slave can be fully event-driven. It can be implemented as a process
which waits for the RequestStartEvent, then calls startOCPResponse() within the
same clock cycle. This corresponds to a zero-latency (combinatorial) hardware
module. Note that such a module is sensitive to the timing of the master and
does not have default timing itself and as such it needs to use the timing
information distribution system described below.
In this case the master alone needs to understand the OCP clock cycle
definition.

• A simple combinatorial bridge, for example a bridge to cut INCR bursts’ lengths
to some maximum value without introducing any latency, has both an OCP
master port and an OCP slave port. It can be implemented as a pair of
processes sensitive to RequestStartEvent and ResponseStartEvent, which modify
slightly the OCPRequestGrp and OCPResponseGrp and forward them from one
port to the other in the same cycle. Note that such a module is sensitive to the
timing of the external OCP master and slave, and does not have default timing
itself and as such it needs to use the timing information distribution system
described below.
In this case the external OCP master and possibly the external OCP slave need
to understand the OCP clock cycle definition.

All modules that do need to understand the clock cycle definition need to understand it
identically. Note that:

• All accesses from master or slave to the channel that change the channel’s state
do so with a delay of one delta cycle.

• Hence, at the boundary between two clock cycles, there is a single instant where
a master (or slave) can read the OCP signals from the past cycle and write the
OCP signals for the future cycle.
A process arrives at this instant, in the case of the clocked channel, by

OCP TL2 Channel 138

executing a statement of the form wait(clock_port->posedge_event()) for an
SC_THREAD or next_trigger(clock_port->posedge_event()) for an SC_METHOD.
Obviously static sensitivity works as well.

• This means that in many cases the master and slave modules can be
implemented in a fully-synchronous style, having just a single process sensitive
only to the clock’s rising edge.

• Accesses to the channel at other times than at the instant between two clock
cycles are fully within one clock cycle. This is true even if the accesses are at
the same time as the cycle boundary but a different delta. At such times the
master (or slave) can write the OCP signals only for the current cycle.
Furthermore, it can reliably read the signals only from the current cycle. It
needs to find out from the channel the timing of the slave (or master) on the
other side of the channel and ensure that it does not attempt to read until these
signals are stable (meaning they will not be changed again in the clock cycle).

12.2 Timing Information Distribution (OCP TL1)
There are certain cases where TL1 models are unable to use only the clock period
boundaries as their timing reference. The underlying reason for this is that the TL1
methodology recommended for OCP does not permit the retraction of either an OCP
request or command accept, or the equivalents for data-handshake and response
phases.

These cases include:

• thread-busy-exact OCP interfaces, where the OCP protocol obliges the master (for
sthreadbusy_exact) to choose its request only after having seen the SThreadBusy
signals from the slave.

• a combinatorial request or response merger (arbiter), which needs to wait for a time
long enough for all inputs to be stable before it chooses one of them. In particular
where combinatorial OCP modules are cascaded some inputs may arrive later than
others.

• the OCP TL1 channel after preemptive release has been set, which needs to wait
sufficient time after a new request (or response/data-handshake) has been started,
to allow the slave to de-assert the preemptive release.

To allow simple management of such cases, a mechanism is provided in the OCP TL1
channel which allows distribution of timing information at end-of-elaboration. Only
OCP modules that are either "timing-sensitive" or "non-default-timing" need to use this
mechanism. All other modules may ignore it completely.

12.2.1 Timing-sensitive Modules
A timing-sensitive module is a module which needs to know when inputs can safely be
assumed to be stable, in order to work correctly. A non-timing-sensitive module might
sample all inputs at the end of the OCP clock cycle, as a counter-example.

All OCP masters that are sthreadbusy-exact or sdatathreadbusy-exact are by definition
timing-sensitive. All OCP slaves that are mthreadbusy-exact are by definition timing-
sensitive.

Timing-sensitive modules register themselves with the OCP TL1 channel during end-of-
elaboration. They do this by calling one of the channel methods:

139

• registerTimingSensitiveOCPTL1Master(this);

• registerTimingSensitiveOCPTL1Slave(this);

depending on whether they are a master or a slave. Here it is suggested that a pointer
to the module itself be passed as parameter. This would mean the module is derived
from OCP_TL1_Slave_TimingIF (for an OCP master) or OCP_TL1_Master_TimingIF (for
an OCP slave). However this may be impractical in some cases, for example where a
module has multiple OCP master ports. The alternative is that the OCP module
contains one or more member variables of classes derived from
OCP_TL1_Master_TimingIF or OCP_TL1_Slave_TimingIF as appropriate. Any class
derived from OCP_TL1_Master_TimingIF is obliged to implement the method
setOCPTL1MasterTiming() (and similar for the slave).

Once the module is registered with the channel as timing-sensitive, the channel will
inform it of the timing parameters of the module on the other side of the channel. This
may happen several times depending on the order of the end-of-elaboration calls in the
SystemC simulation. The implementation of the method setOCPTL1MasterTiming() or
setOCPTL1SlaveTiming() must allow it to be called multiple times during end-of-
elaboration. The first time it is called might be before the registerTimingSensitive..()
method returns.

If the other side of the OCP TL1 channel is a default-timing module, the channel will
never call the callback.

12.2.2 Non-default-timing Modules
A non-default-timing module is a module whose outputs are not presented to the OCP
TL1 channel immediately at the start of the OCP clock cycle. If a clock signal is used to
synchronise the OCP master and OCP slave, this means that default-timing modules
call all channel methods in the delta cycle after the clock rising edge.

Non-default timing modules must call the channel method setOCPTL1MasterTiming() or
setOCPTL1SlaveTiming() (for masters and slaves respectively) during end-of-elaboration,
providing their timing parameters.

A non-default timing module may not know its timing parameters when its own end-of-
elaboration method is called. This is the case for example for a combinatorial module
passing OCP requests from a slave port to a master port (an address translation bridge
for example). A module like this is both timing-sensitive and non-default-timing. It
must register itself as timing-sensitive on its OCP slave port and send its timing
information to its OCP master port. It may occur that the module is provided several
times with timing information from the OCP slave port, and every time that its
setOCPTL1MasterTiming() method is called from the slave port channel, it should
recalculate the timing parameters of its master port and call the
setOCPTL1MasterTiming() method of the master port if they changed.

To avoid infinite loops at end-of-elaboration it is important that a non-default-timing
module only call setOCPTL1XyyTiming() when necessary. It should not call this method
if it has previously been called with the same parameters.

12.2.3 Start Times
Start times are sc_time variables. They indicate when a signal/group is given to the
OCP_TL1_Channel by the OCP master or slave. The other side of the OCP interface can
safely retrieve the signal/group from the OCP TL1 channel after waiting for the start-

OCP TL2 Channel 140

time and one delta cycle. It is then sure that the signal will not change again this clock
cycle.

Start times give duration of simulated time after the start of an OCP clock cycle.

It is assumed that the OCP master and OCP slave are exactly synchronised.

• start_time = SC_ZERO_TIME

This means that the signal/group is started immediately after the synchronisation
event indicating the start of an OCP cycle. The other side of the OCP interface can
sample safely after one delta.

• start_time > SC_ZERO_TIME

This means that the signal/group is started after wait(start_time) after the
synchronisation event indicating the start of an OCP cycle. Or before. It is not
allowed that the signal/group be started some delta cycles after wait(start_time) (one
delta = wait(SC_ZERO_TIME)). In this case the other side of the OCP interface must
at least wait(start_time) AND wait(SC_ZERO_TIME) before sampling.

The most frequent example is a thread-busy-exact OCP. In the simplest case the slave
produces SThreadBusy directly after the start of cycle. It has therefore default timing.
The master must wait at least one delta before sampling SThreadBusy and starting an
OCP request. Therefore the OCP request start time is +1 delta. This is impossible to
represent as an sc_time, so the master must indicate a start-time strictly greater than
0.

It is recommended to use the function sc_get_time_resolution(), which returns an
sc_time object, to create sample times as small as possible and as independent as
possible from simulator configuration and clock frequency choices.

12.2.4 OCP TL1 Timing Example
In the distribution there is an example of how the TL1 timing distribution feature of the
OCP TL1 channel can be used. It is a simulation of a multi-threaded non-blocking
shared bus with zero-cycle minimum round-trip latency. In this design a
request/response transfer can pass through up to 10 cascaded OCP_TL1_Channel()
instances in the same clock cycle. For more details look in the source code and the
readme.txt file, in the directory examples/supplementary/ocp_tl1_timing.

	DISCLAIMER
	1
	1 Introduction
	1.1 Overview of Transaction Channels
	1.2 Directory structure and Class Hierachy
	1.3 Datatypes
	2 OCP TL1 Channel Model
	2.1 OCP TL1 Channel Constructors
	Default Constructor
	Simple Clocked Constructor
	2.1.1 OCP TL1 Channel Clock Wrapper
	2.1.2 OCP TL1 Channel Untimed Wrapper

	2.2 Configuration of OCP TL1 Channel
	2.2.1 Configuration from Cores
	2.2.2 Configuration from Environment
	2.2.3 Parameter Map Format
	2.2.4 Building the Parameter Map from a File

	2.3 OCP TL1 Enum Types and Template Classes
	2.3.1 OCPMCmdType Enum
	2.3.2 OCPRespType Enum
	2.3.3 OCPMBurstSeqType Enum
	2.3.4 OCPRequestGrp Template Class
	2.3.4.1 Data Type and Address Type
	2.3.4.2 Members
	2.3.4.3 Constructor
	2.3.4.4 Assignment Operator (=)
	2.3.4.5 copy

	2.3.5 OCPResponseGrp Template Class
	2.3.5.1 Data Type
	2.3.5.2 Members
	2.3.5.3 Constructor
	2.3.5.4 Assignment Operator (=)
	2.3.5.5 copy

	2.3.6 OCPDataHSGrp Template Class
	2.3.6.1 Data Type
	2.3.6.2 Members
	2.3.6.3 Constructor
	2.3.6.4 Assignment Operator (=)
	2.3.6.5 copy

	2.3.7 OCP_TL1_Master_TimingCl Class
	2.3.7.1 Members
	2.3.7.2 Equality Operator ==

	2.3.8 OCP_TL1_Slave_TimingCl Class
	2.3.8.1 Members
	2.3.8.2 Equality Operator ==

	2.4 TL1 Master Interface Methods (ocp_tl1_master.if.h)
	2.4.1 Reset
	2.4.2 Request Phase
	2.4.3 Response Phase
	2.4.4 Data Handshake
	2.4.5 Timing Distribution Methods
	2.4.6 OCP Configuration Management Methods

	2.5 OCP TL1 Slave Interface Methods (ocp_tl1_slave_if.h)
	2.5.1 Reset
	2.5.2 Request Phase
	2.5.3 Response Phase
	2.5.4 Data Handshake
	2.5.5 Timing Distribution Methods
	2.5.6 OCP Configuration Management Methods

	2.6 OCP TL1 Timing Interface Classes
	2.7 OCP TL1 Configuration Management Classes
	2.8 OCP TL1 Monitor Interface

	3 Overview of the OCP TL2
	3.1 OCP TL1 vs OCP TL2
	3.1.1 Event Driven Models
	3.1.2 No Separate Data Handshake
	3.1.3 Simpler Phase Timing
	3.1.4 Burst at Once
	3.1.5 Passing Pointers

	3.2 Using the OCP TL2 Channel
	3.2.1 Timing
	3.2.2 Events
	3.2.3 OCP Burst Signals
	3.2.4 DataLength
	3.2.5 LastOfBurst
	3.2.6 MBurstSeq
	3.2.7 MBurstPrecise & MBurstLength
	3.2.8 MBurstSingleReq
	3.2.9 MAtomicLength
	3.2.10 MReqLast
	3.2.11 SRespLast

	3.3 Benchmarking the Channels
	3.3.1 Overview of the Benchmark Tests
	3.3.2 Single Data Word Writes and Reads
	3.3.3 Burst Writes and Reads

	4 OCP TL2 Channel Model
	4.1 Data Structures for the OCP TL2 Channel
	4.1.1 OCPTL2RequestGrp Template Class
	4.1.1.1 Data Type and Address Type
	4.1.1.2 Members

	4.1.2 OCPTL2ResponseGrp Template Class
	4.1.2.1 Data Type
	4.1.2.2 Members

	4.1.3 Timing Values
	4.1.3.1 Master Timing Variables
	4.1.3.2 Slave Timing Variables

	4.2 Building the OCP TL2 Channel
	4.2.1 Constructor
	4.2.2 Configuring the Channel Clock Period
	4.2.3 Setting the Parameters

	4.3 OCP TL2 Master Interface Methods (ocp_tl2_master_if.h)
	4.4 OCP TL2 Slave Interface Methods (ocp_tl2_slave_h)
	4.5 OCP TL2 Channel Events
	4.6 Reset
	4.7 Timing Model for the OCP TL2 Channel
	4.7.1 Time in the OCP TL2 Channel
	4.7.2 Timing for Different Burst Types
	4.7.3 A Guide to the Timing Figures
	Expected rates:
	Latency estimation functions:

	4.7.4 Write Requests
	4.7.5 OCP Posted Write Burst Timing
	4.7.5.1 Start Time of the First Data Word
	4.7.5.2 Time between Two Data Write Words
	4.7.5.3 End Time of the OCP Write Burst
	4.7.5.4 SRMD Posted Write Burst
	4.7.5.5 Posted Write with Responses

	4.7.6 Read Requests
	4.7.7 OCP Read Burst Timing
	4.7.7.1 Time between Two Read Requests
	4.7.7.2 Different Chunk Sizes for the Request Burst and Data Response Burst
	4.7.7.3 Time of the First OCP Data Response
	4.7.7.4 Time between Two Read Data Words
	4.7.7.5 SRMD Read Burst

	4.7.8 Non-Posted Writes
	4.7.9 Non-Posted Write Timing
	4.7.9.1 Time between Two MRMD Write Responses
	4.7.9.2 Posted Write Burst with Responses

	4.7.10 OCP TL2 Timing Variables
	4.7.11 OCP TL2 Timing Functions

	4.8 OCP TL2 Channel Monitor Interface

	5 OCP TL3 Channel Model
	5.1 OCP TL3 Communication API
	5.2 Mapping TL3 onto OSCI TLM
	5.3 TL3 Timing
	5.3.1 Scalable Accuracy
	5.4 TL3 Channel Monitor Interface

	6 Example Using OCP TL1 Channel and API
	6.1 Configuring the OCP TL1 Simulation
	6.1.1 Configurable Master and Slave
	6.1.2 Building a Custom Configurable Core

	6.2 A Configurable Master Model
	6.2.1 Header File
	6.2.2 Constructor
	6.2.3 The end_of_elaboration() Method
	6.2.4 SystemC Request Thread Process
	6.2.5 SystemC Response Thread Process
	6.2.6 SystemC Sideband Process
	6.2.7 Template Instantiation

	6.3 A Configurable Slave Model
	6.3.1 Header File
	6.3.2 Constructor
	6.3.3 Destructor
	6.3.4 The end_of_elaboration() Method

	6.4 SystemC Request Thread Process
	6.4.1 SystemC Response Thread Process
	6.4.2 The Sideband Thread Process
	6.4.3 Template Instantiation

	6.5 The Main Program

	7 Examples Using OCP TL2 Channel and API
	7.1 Example # 1
	7.1.1 Master Sequence
	7.1.2 Slave sequence

	7.2 Example #2
	7.2.1 Slave Description
	7.2.2 Master Description

	8 Debugging Your Model Using SOCCREATOR® Tools
	9 Debugging Your Model Using OCP Performance Monitor
	10 Sideband Signals (OCP TL1)
	10.1 MError Signal
	10.2 MFlag Signal
	10.3 SError Signal
	10.4 SFlag Signal
	10.5 SInterrupt Signal
	10.6 Control Signal
	10.7 ControlWr Signal
	10.8 ControlBusy Signal
	10.9 Status Signal
	10.10 StatusRd Signal
	10.11 StatusBusy Signal

	11 Sideband signals (OCP TL2)
	12 OCP TL1 Timing
	12.1 OCP TL1 Synchronisation
	12.2 Timing Information Distribution (OCP TL1)
	12.2.1 Timing-sensitive Modules
	12.2.2 Non-default-timing Modules
	12.2.3 Start Times
	12.2.4 OCP TL1 Timing Example

